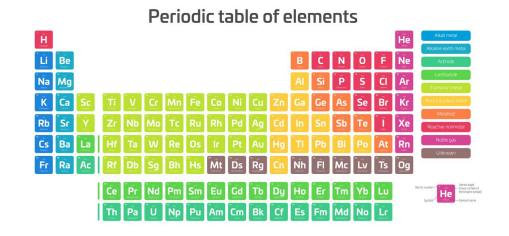

Recovery of Plant Nutrients, Potentially toxic trace and Valuable Elements via Anaerobic Digestion and Acid-Leached Digestate Ash

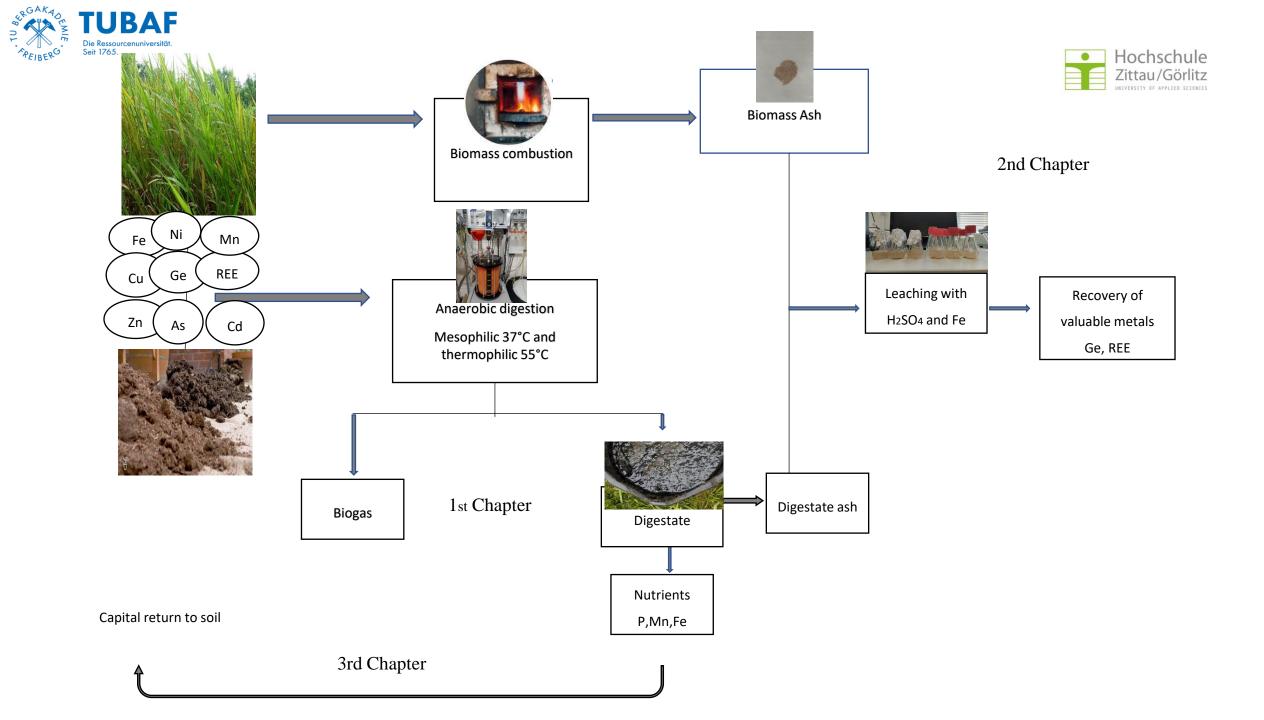

•M.Sc. Nazia Zaffar

•Institute of Biosciences

•TU Bergakademie Freiberg

•Date 08.05.2025

Background & Problem Statement


- Growing demand for plant nutrients (P, Fe, Mn) potentially toxic elements (Zn, Cr, As, Cd, Cu, Pb) and valuable elements (Ge, REEs)
- High nutrient and metal concentrations in bioenergy crops and biosolids
- Use of *Phalaris arundinacea* as bioenergy crop
- Role of anaerobic digestion (mesophilic vs. thermophilic) bioenergy and circular economy
- Unused potential in digestate and ash for element recovery
- > Need for sustainable and safe phytomining, nutrient recovery, and circular use strategies

Research Objectives

Compare	study	Evaluate	Focus on
Compare enrichment/fractionation under mesophilic vs. thermophilic digestion	Study thermal and chemical leaching of plant nutrients (P, Mn) potential toxic elements (Zn, Cu, As, Cd) and valuable elements (Ge, REE) in ash	Evaluate effect of biosolids amendment on metal/nutrient mobility and uptake plant nutrients (P, Fe Mn) potential toxic elements (Zn, Cu, As, Cd) and valuable elements (Ge, REE) in ash	Plant nutrient (P, Fe Mn) potential toxic elements (Zn, Cu, As, Cd) and valuable elements (Ge, REE) in ash

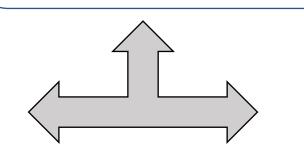
Methodology Overview

Digestate analyzed for:

- Total and dissolved elements
- Exchangeable/acid-soluble fractions
- Digestion & ICP-MS Analysis:
 - Microwave digestion with HNO₃, HF
 - ICP-MS for P, Fe, Mn, Zn, CuAs, Cd, Cr, Ge, REEs, etc

 $\sqrt[n]{}$

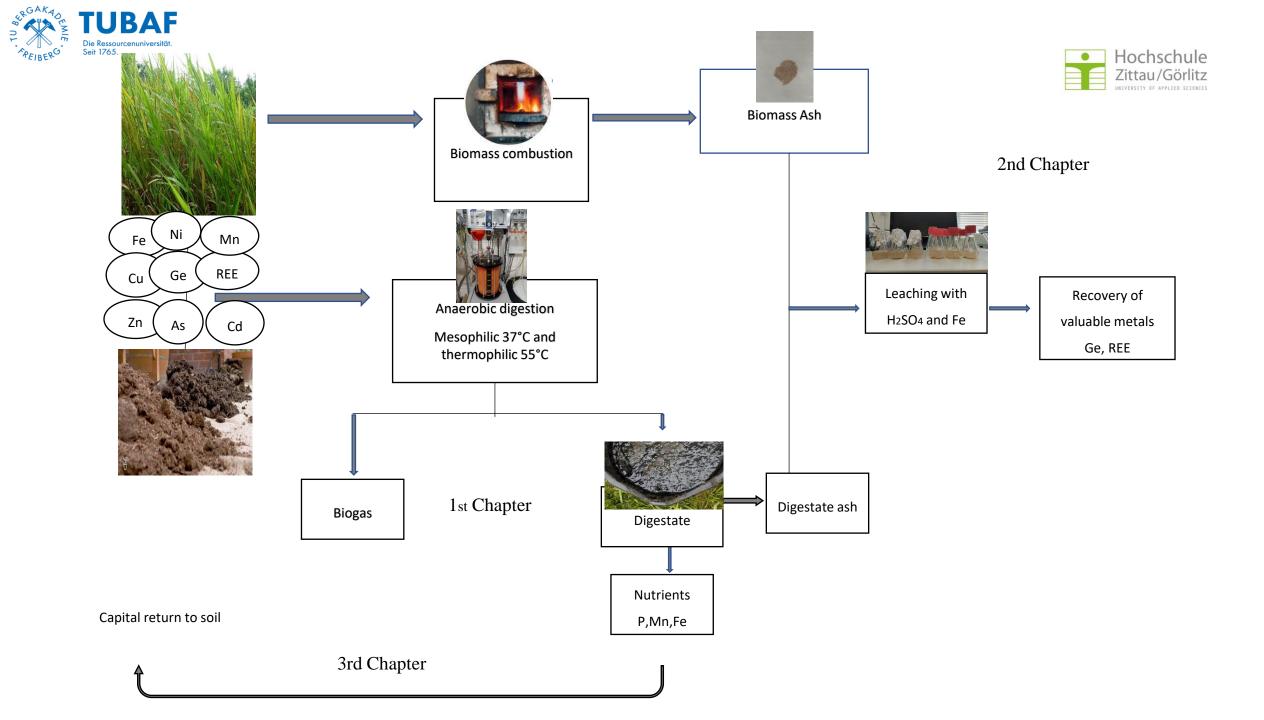
Pot Experiment with Biosolids


- Soil: Luvisol (0–20 cm depth) from TU Freiberg campus.
- Treatments:
 - Soil only (control)
 - Soil + Sewage sludge (40:60 fw, $\approx 24\%$ dm)
 - Soil + Digestate (15:85 fw, $\approx 3\%$ dm)
- Plants:
 - Alyssum murale, Lupinus albus, Carthamus tinctorius, Fagopyrum esculentum
 - Surface-sterilized, germinated seedlings (n = 5 replicates/species/treatment)
- Harvest & Sample Prep:
 - Shoots cut, dried (60°C), milled, stored at 4°C

Anaerobic Digestion (Batch Experiments)

Biomass: *Phalaris arundinacea* (air-dried, ≤1 mm).
Inoculum: Fresh digestate from prior runs (low TS: 3.5%).

• Setup:


- 2 L glass reactors (1.5 L working volume)
- Mesophilic temp (~37°C) Thermophilic (55 °C)
- Batch reactors, 40-day digestion

• Ash Characterization & Leaching

- Ash Production:
 - Biomass & digestate ash (1–4 g) heated at 550–950°C
 - Ground & homogenized
- Leaching Setup:
 - 500 mg ash + 50 mL solution (1 M H₂SO₄, DI water, Fe³⁺)
 - Incubated at 30°C, 200 rpm (1 month)
 - Separation via centrifugation (20,000 rpm), stored at 4°C

Contents lists available at ScienceDirect Biomass and Bioenergy journal homepage: www.elsevier.com/locate/biombioe

Results Chapter 1: Enrichment and chemical fractionation of plant nutrients, potentially toxic and economically valuable elements in digestate from mesophilic and thermophilic fermentation

Concentration μ g/g of plant nutrients, potentially toxic trace and valuable elements in fresh (fw) and dried (dw) digestate after 40 days of mesophilic and thermophilic digestion (mean \pm sd (n = 14 (Meso) – 10 Thermo).

Elements	Mesophilic (37 °C)	Thermophilic	Mesophilic	Thermophilic
	µg g ⁻¹ fw		µg g ⁻¹ dw	
Р	481 ± 127	$827 \pm 150^{**}$	$14667 \pm$	$18434 \pm$
			3252	3495*
Mn	14 ± 5	$20 \pm 4^{**}$	419 ± 57	$438 \pm 47 ns$
Fe	190 ± 42	$432 \pm 98^{***}$	6376 ±	9572 ±
			2031	1133***
Co	$\textbf{0.05} \pm \textbf{0.01}$	$0.27 \pm 0.16^{**}$	2.0 ± 0.2	$6.0 \pm 3.4^{*}$
Ni	$\textbf{0.37} \pm \textbf{0.09}$	$1.6\pm0.9^{\star\star}$	16 ± 4	$34 \pm 19^{*}$
Cu	3.9 ± 1.1	$10.5 \pm 4.5^{**}$	164 ± 32	226 ± 88 ns
Zn	22 ± 9	$40 \pm 8^{***}$	700 ± 109	894 ± 88***
Cr	$\textbf{0.36} \pm \textbf{0.09}$	$0.97 \pm 0.31^{***}$	15 ± 3	$21 \pm 4^{\star\star\star}$
As	$\textbf{0.22} \pm \textbf{0.07}$	$0.51 \pm 0.13^{***}$	7.1 ± 1.2	$11.3 \pm 1.3^{***}$
Cd	$\textbf{0.09} \pm \textbf{0.01}$	$0.28 \pm 0.05^{***}$	3.9 ± 0.6	$\textbf{6.2} \pm \textbf{0.6}^{***}$
Pb	$\textbf{0.87} \pm \textbf{0.37}$	$1.7\pm0.4^{\star\star\star}$	26 ± 5	$37 \pm 4^{***}$
Ge	$\textbf{0.017} \pm \textbf{0.005}$	0.031 ±	0.56 ± 0.09	$\textbf{0.70} \pm \textbf{0.14}^{\star}$
		0.007***		
REEs	$\textbf{0.33} \pm \textbf{0.12}$	$\textbf{0.59} \pm \textbf{0.11}^{***}$	$\textbf{10.4} \pm \textbf{2.5}$	$\textbf{13.1} \pm \textbf{1.6}^{**}$

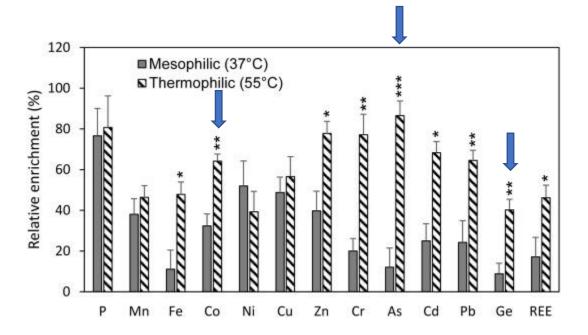
ns denoted as non-significant * denoted as p < 0.05 ** denoted as p < 0.01 *** denoted as p < 0.001.

P, Mn and Fe show significantly higher concentrations under thermophilic digestion, especially Fe (432 $\mu g/g$ fw vs 190 $\mu g/g$ fw)

Cu, Zn):increased concentrations in thermophilic digestion, often statistically significant indicates higher solubilization/mobilization at higher temperatures

Pb, Cd, Cr show higher concentrations under thermophilic conditions, raising considerations for environmental management

Ge and REEs are more enriched in thermophilic digestate



Results Chapter 1: Enrichment and chemical fractionation of plant nutrients, potentially toxic and economically valuable elemen mesophilic and thermophilic fermentation

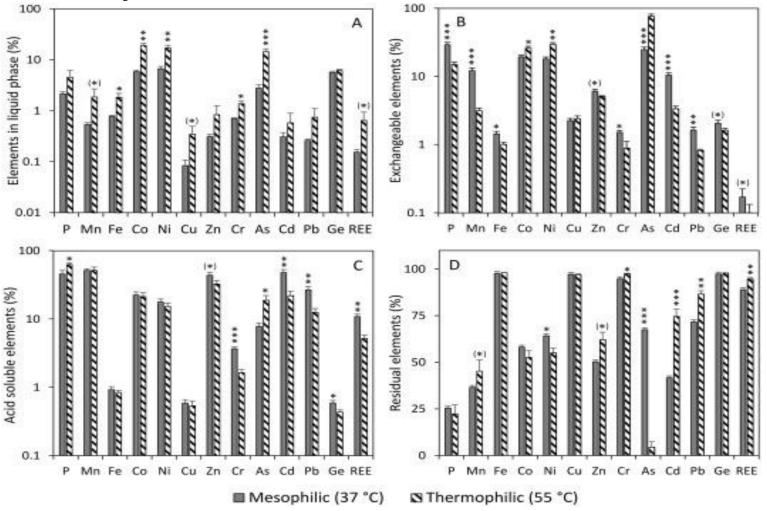
SEVIER

•Thermophilic digestion significantly enriched:

• Ge: +193%, REEs: +90%

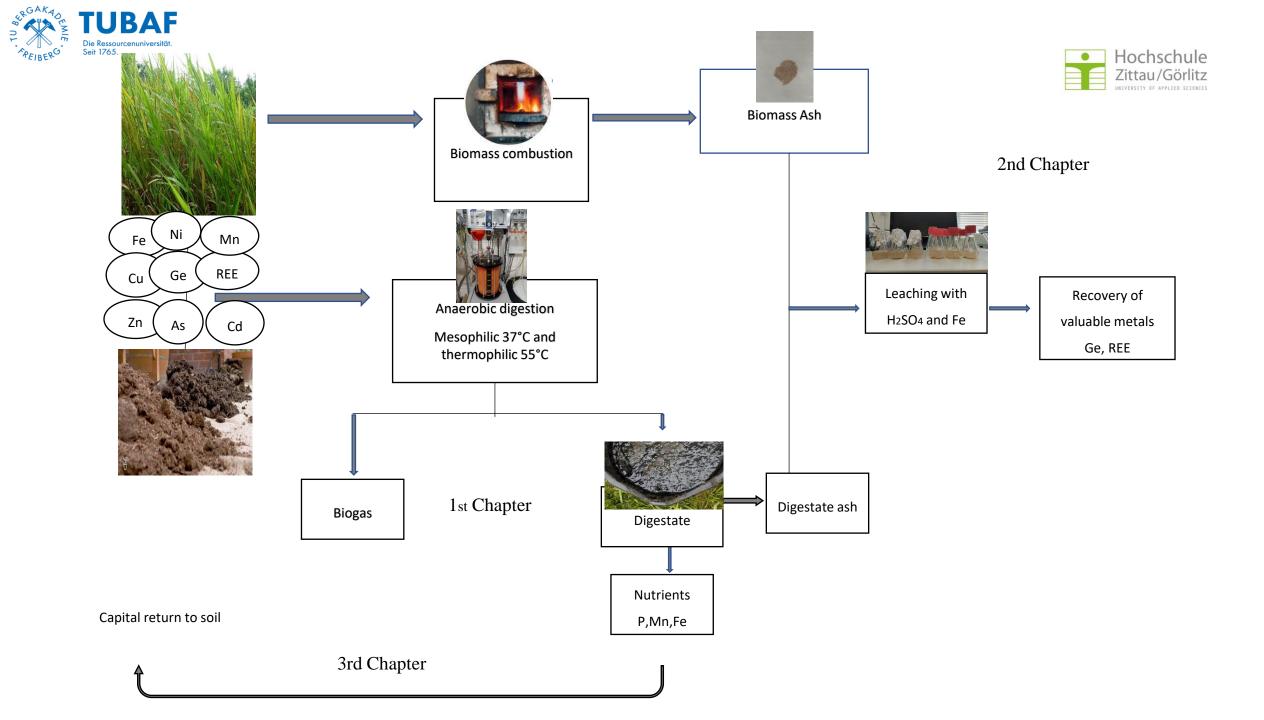
• Fe, Co, As, Cd, Pb: all >50% increase •Over 70% of elements bound in solid phase

Effect of mesophilic and thermophilic digestion on the relative enrichment (percentage increase of concentrations in digestate relative to the initial concentrations) of plant nutrients, potentially toxic trace and valuable elements in digestate. Means \pm sd (n = 24); * denoted as p < 0.05 ** denoted as p < 0.01.



Contents lists available at ScienceDirect	
Biomass and Bioenergy	
87	
ournal homepage: www.elsevier.com/locate/biombioe	

Results Chapter 1:Enrichment and chemical fractionation of plant nutrients, potentially toxic and economically valuable elements in digestate from mesophilic and thermophilic fermentation

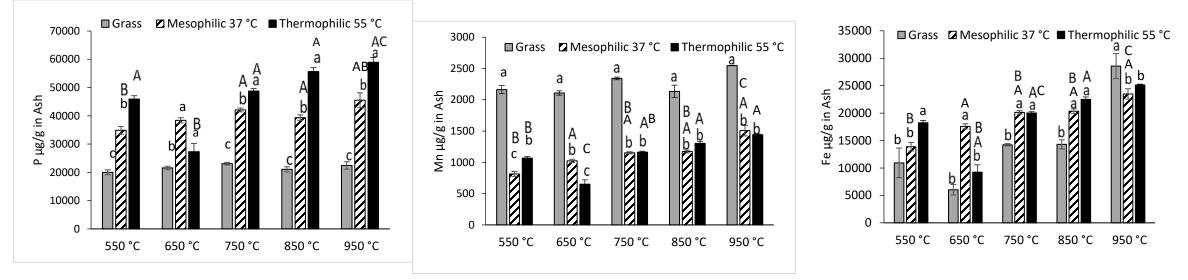


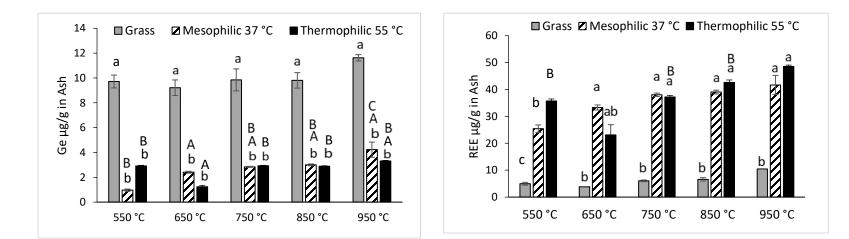
Effect of mesophilic and thermophilic digestion on distribution of plant nutrients (%), potentially toxic, trace and valuable elements (%) in water-soluble (5A), mobile/exchangeable (5B), acid soluble (5C), and residual (5D) (*) denoted as p < 0.1, * denoted as p < 0.05, ** denoted as p < 0.01, *** denoted as p < 0.001.

Elements distribution

BIOMASS &

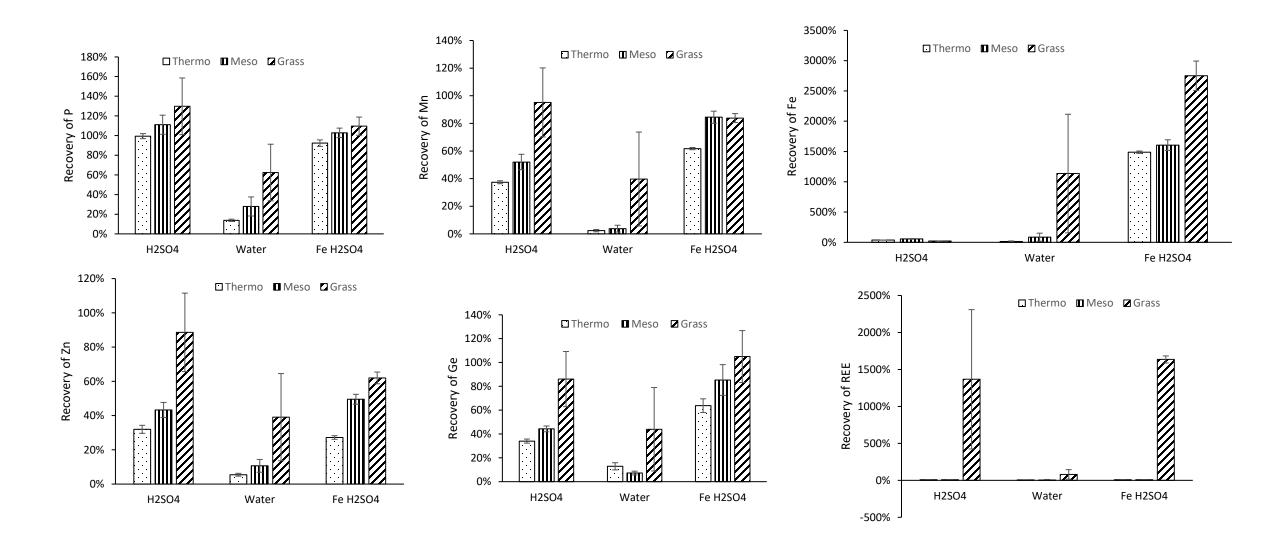
- Compared to mesophilic digestions, thermophilic conditions increased the percentage share of all elements in the liquid phase; however, this increase was only statistically significant for Mn, Fe, Co, Ni, Cu, Cr, As and REE, while there was no significant effect on P, Zn, Cd
- More specifically, in mesophilic, P (2%), Co (6%), Ni (7%), As (3%) and Ge (6%) showed the highest portion of dissolved forms, whereas the dissolved portion of other elements was substantially lower and ranged between 0.1% (Cu) and 0.8% (Fe).
- Moreover, in the ammonium acetate-soluble element fraction (F2) which largely integrates elements adsorbed onto particulate substances the concentrations of P, Mn Cu and Zn were significantly lower in thermophilic
- Considering the percentage share of elements in the different fractions, digestate from both operating conditions contained on average less than 5% of the investigated elements in dissolved forms, less than 30% were present in exchangeable and acid soluble forms and more than 70% were present in the residual fraction.

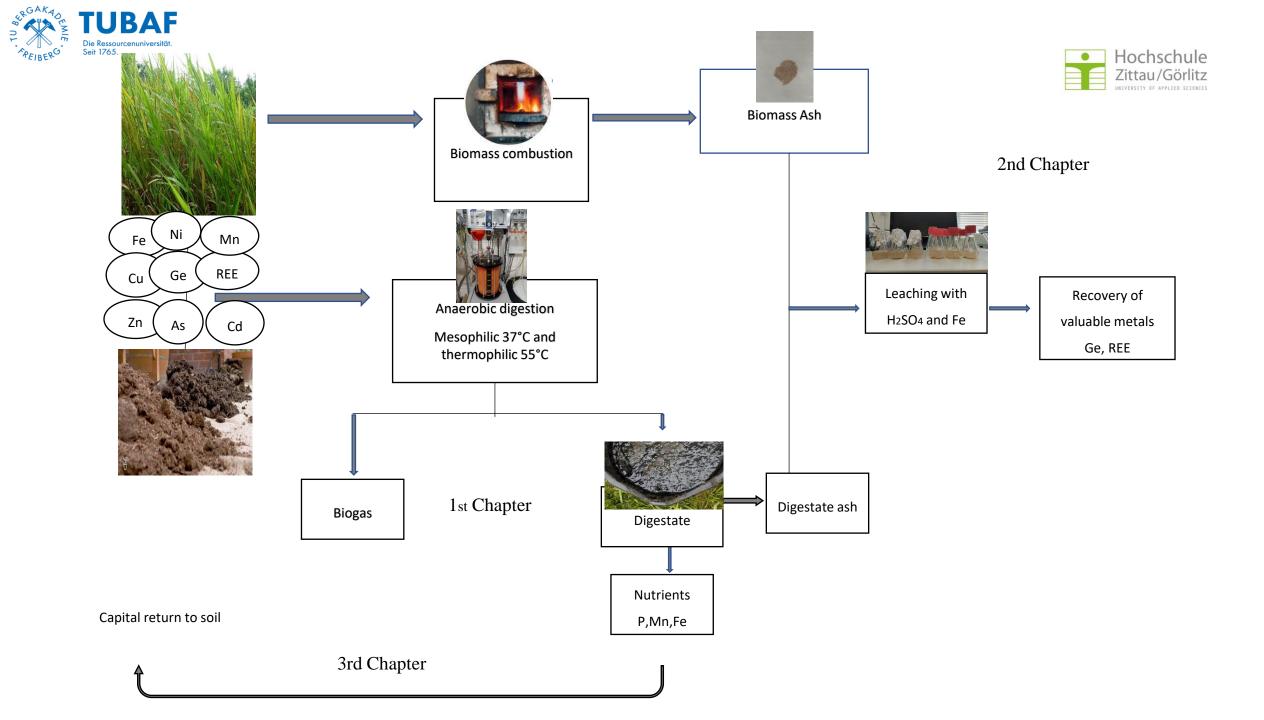




Chapter 2 results: Effect of Burning Temperature on plant nutrients, potentially toxic and economically valuable elements and leaching of selected elements in Biomass and anaerobic digestate Ash

Small letters show concentration differences among different substrate and treatment within a specific Temperature. Capital letters denote differences between same substrate and treatment within a different Temperature.





Chapter 2 results: Effect of Burning Temperature on plant nutrients, potentially toxic and economically valuable elements and leaching of selected elements in Biomass and anaerobic digestate Ash

rare earth elements (REEs) in soil and uptake by plants with different nutrition strategies Total and NH_4 -acetate extractable concentrations (mg/kg dw) of plant nutrients and potentially

Chapter 3 results: Effect of sewage sludge and digestate from anaerobic fermentation on the mobility of cadmium (Cd), gallium (Ga), germanium (Ge) and

toxic in soil, soil amended with digestate (soil + DG) and soil amended with sewage sludge (soil + SS).

Element	Fraction	Soil	Soil + DG	Soil+ SS
	mg/kg dw			
Р	Total	$745 \pm 46b$	$889\pm92b$	4006 ±648a
	Labile	$6.3\pm0.6c$	$14 \pm 4b$	53 ± 6a
Fe	Total	$31465\pm2718a$	$33256 \pm 4644a$	$28870 \pm 1647b$
	Labile	$4.7 \pm 1.1c$	10.1 ± 2.1a	$7.2\pm0.9b$
Mn	Total	$720\pm44a$	847 ± 68a	$593\pm29b$
	Labile	$17 \pm 2c$	107 ± 12a	60 ± 4b
Zn	Total	$214 \pm 32b$	279 ± 62ab	358 ± 41a
	Labile	$9.1\pm0.8c$	$13 \pm 1b$	22 ± 1a

- Total P was significantly higher in soil + sewage sludge (SS) compared to other treatments.
- Labile P (plant-available) also increased in SS treatment, showing high P availability.
- the addition of digestate did alter the total concentrations of the plant nutrients Fe, Mn
- Digestate improved micronutrient availability (Mn, Fe).
- Sewage sludge increased total nutrient content but also elevated toxic elements (Zn).

Chapter 3 results: Effect of sewage sludge and digestate from anaerobic fermentation on the mobility of cadmium (Cd), gallium (Ga), germanium (Ge) and rare earth elements (REEs) in soil and uptake by plants with different nutrition strategies

Total and NH_4 -Ac extractable concentrations (mg/kg dw) of essential elements in soil, soil amended with digestate (soil + DG) and soil amended with sewage sludge (soil + SS).

Element	Fraction	Soil	Soil + DG	Soil + SS
	mg/kg dw			
Cd	Total	1.8 ± 0.6 ns	1.3 ± 0.4 ns	1.9 ± 1.0 ns
	Labile	$0.62 \pm 0.04b$	$0.75\pm0.16ab$	$0.81 \pm 0.05a$
Ge	Total	$1.87 \pm 0.05a$	$2.14 \pm 0.27a$	$1.57 \pm 0.24b$
	Labile	$0.0049 \pm 0.0009 \text{ ns}$	$(0.0037 \pm 0.0015 \text{ns})$	$0.0036 \pm 0.0002 ns$
Ga	Total	14.1 ± 0.2b	16.5 ± 2.1a	$12.5 \pm 0.1c$
	Labile	0.0037±0.0008c	0.0103±0.0012a	0.0067±0.0012b
LREE	Total	$125 \pm 3a$	$137 \pm 16a$	$109 \pm 4c$
	Labile	$\left(0.39\pm0.02\mathrm{b}\right)$	0.45 ± 0.03a	$0.28 \pm 0.01c$
HREE	Total	44 + 2ab	$52 \pm 6a$	$34\pm7b$
	Labile	$0.16 \pm 0.01b$	$0.18 \pm 0.02a$	$0.12 \pm 0.01c$
LREE/HREE	Total	2.86 ± 0.06 ns	$2.82\pm0.09ns$	3.26 ± 0.70 ns
	Labile	$2.46\pm0.02b$	$2.52\pm0.04a$	$2.27\pm0.04c$

- the portion of labile Ge, Ga, and REE did not exceed 0.5% of the total concentrations.
- Based on results from NH₄-acetate extracts, the potential availability decreased in the order Cd > LREE > HREE > Ge, Ga.
- This is in accordance with the findings of Tyler and Olsson (2001), who demonstrated that compared to Cd and REE, the solubility of Ge and Ga in soils is low, and their mobilization requires substantial changes in physicochemical soil properties

Chapter 3 results .Effect of sewage sludge and digestate from anaerobic fermentation on the mobility of cadmium (Cd), gallium (Ga), germanium (Ge) and rare earth elements (REEs) in soil and uptake by plants with different nutrition strategies

Shoot biomass and concentrations of nutrients in plants cultivated on soil (reference), soil amended with digestate (Soil + DG), and soil amended with sewage sludge (Soil + SS); mean \pm sd, n = 5. Small letters show concentration differences among different substrates within a specific plant species. Capital letters denote differences between plant species within a specific substrate.

Species	Treatment	Biomass	Р	Mn	Fe	Zn	Ni
		g	g/kg	mg/kg			
A. murale	Reference	$0.41 \pm 0.17C$	$2.4\pm0.2 bA$	$24\pm4bB$	78 ± 23bAB	$107\pm87b$	$1.6 \pm 0.3 b$
	Soil + DG	$0.14 \pm 0.09B$	$2.5\pm0.6b$	$224 \pm 91 aB$	252 ± 117aA	$173\pm86\text{bA}$	$2.5 \pm 1.4 b$
	Soil + SS	$0.25 \pm 0.16C$	$4.5 \pm 0.9 \mathrm{aA}$	231 ± 36aB	135 ± 57abA	1071 ± 639aA	$6.2 \pm 2.6 a A$
	p-value	0.08	<0.01	< 0.01	0.03	< 0.01	0.03
F. esculentum	Reference	7.4 ± 1.0bA	$2.5\pm0.4 bA$	$40 \pm 22 bB$	$31 \pm 10 bB$	$54\pm10 bB$	$1.1\pm0.2b$
	Soil + DG	3.6 ± 3.0bA	$2.2\pm0.7b$	$163 \pm 159 bB$	$100 \pm 81 bB$	$38\pm16bB$	$1.3 \pm 0.1 b$
	Soil + SS	13.9 ± 2.1aA	6.9 ± 1.4aA	$632 \pm 262aA$	$132 \pm 63aA$	$482\pm133 aA$	$4.0 \pm 0.9 a A$
	p-value	< 0.001	< 0.001	< 0.001	0.04	< 0.001	< 0.001
C. tinctorius	Reference	$1.2 \pm 0.9 \text{bB}$	$2.0\pm0.4 bAB$	$27 \pm 5 cB$	$98\pm75\mathrm{A}$	$79\pm13b$	2.0 ± 1.3
	Soil + DG	$1.8 \pm 0.6 abAB$	$2.3\pm0.1b$	$82\pm5bB$	$68 \pm 49B$	$71\pm10 bB$	2.7 ± 2.4
	Soil + SS	3.1 ± 1.5aB	$3.0\pm0.5aB$	$216 \pm 22aB$	$55 \pm 10B$	$152\pm25aB$	$1.1 \pm 0.3B$
	p-value	0.05	< 0.01	< 0.001	0.4	< 0.001	0.37
L. albus	Reference	$2.7 \pm 1.0 \text{bB}$	$1.5\pm0.2bB$	996 ± 353aA	$79 \pm 15 abAB$	$48\pm 5b$	2.4 ± 1.1
	Soil + DG	$1.3 \pm 0.5 \text{bB}$	$1.9\pm0.3b$	$1412\pm805aA$	$103 \pm 38 aB$	$42\pm9bB$	1.7 ± 0.3
	Soil + SS	$4.9 \pm 1.0 \mathrm{aB}$	$2.5\pm0.4aB$	$404 \pm 149 bB$	$46\pm7bB$	$94\pm21aB$	$1.8\pm0.3B$
	p-value	< 0.001	< 0.01	0.05	0.01	< 0.001	0.45

Chapter 3 results : Effect of sewage sludge and digestate from anaerobic fermentation on the mobility of cadmium (Cd), gallium (Ga), germanium (Ge) and rare earth elements (REEs) in soil and uptake by plants with different nutrition strategies

Concentrations of non-essential elements in plants cultivated on soil (reference), soil amended with digestate (Soil + DG) and soil amended with sewage sludge (Soil + SS); mean \pm sd, n = 5).

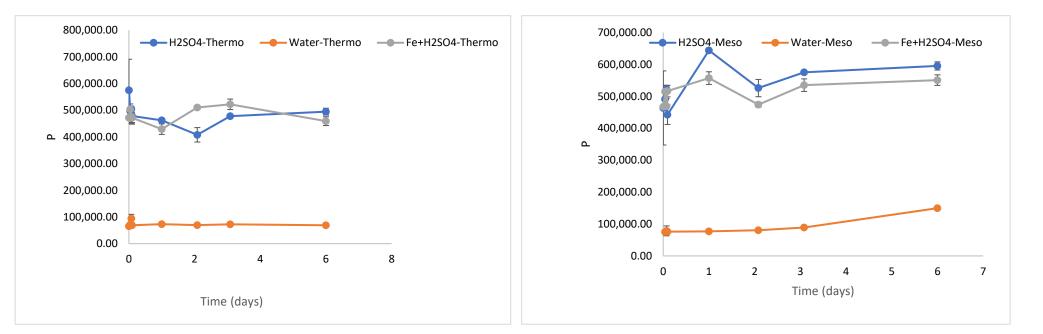
	Treatment	Cd	Ge	Ga	LREE	HREE
		mg/kg	µg/kg	µg/kg	µg/kg	µg/kg
A. murale	Reference	$0.6 \pm 0.1 bB$	$6 \pm 3bA$	$18 \pm 14b$	$198 \pm 94 bA$	$84 \pm 34b$
	Soil+DG	$2.8 \pm 2.1 bA$	$22 \pm 5aA$	92 ± 54aA	858± 376aA	$280 \pm 122a$
	Soil+SS	$10 \pm 6aA$	$8\pm4b$	$45 \pm 27 bA$	$378\pm265 bA$	$152\pm 61ab$
	p-value	<0.01	<0.01	0.04	0.02	0.02
F. esculentum	Reference	$1.1 \pm 0.3 \text{bBC}$	<1 B	$7 \pm 3b$	$237 \pm 151 A$	$93 \pm 65 A$
	Soil+DG	$0.8\pm0.6bB$	<1B	$6\pm4bB$	$204\pm78B$	$82\pm 38B$
	Soil+SS	7.1 ± 1.4aAB	<1	$14 \pm 4aB$	281 ± 139A	$104 \pm 57 A$
	p-value	<0.001	n.a.	< 0.01	0.68	0.84
C. tinctorius	Reference	4.7 ± 1.4A	$12 \pm 7aA$	11 ± 8	$207 \pm 152 aA$	$79 \pm 48a$
	Soil+DG	3.6 ± 1.0A	<1	$4\pm 2B$	$96 \pm 20 abB$	44 ± 12ab
	Soil+SS	$4.3 \pm 1.0B$	$2\pm 1b$	$8\pm 2B$	$70\pm22bB$	35 ±10b
	p-value	0.33	0.02	0.11	0.03	0.05
L. albus	Reference	$0.09 \pm 0.03 bC$	$7\pm4A$	$9 \pm 1ab$	$39 \pm 13 bB$	$18\pm4b$
	Soil+DG	$0.16 \pm 0.05 bB$	$4\pm 1B$	$16\pm 6aB$	$65 \pm 22aB$	$19\pm 5b$
	Soil+SS	$0.24\pm0.07aC$	8 ± 7	$8\pm 3bB$	$31\pm10 bB$	$26\pm5a$
	p-value	< 0.01	0.70	0.05	0.01	0.04

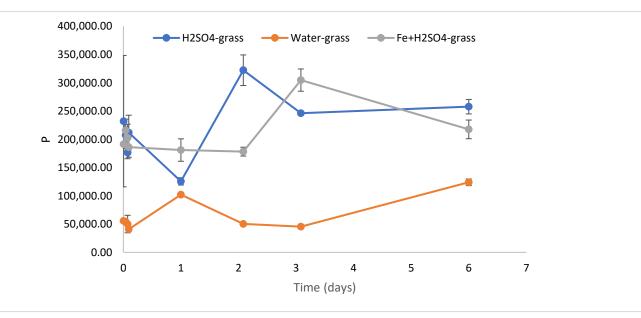
Cd: High mobility and bioavailability with sewage sludge; NH4-acetate extraction reliably predicts plant uptake.
Ga & REEs: Uptake not directly linked to soil extractability; influenced by plant traits:

- *Lupinus albus*: carboxylate release
- Fagopyrum esculentum: rhizosphere acidification
 Ge: Minimal uptake across all plant species.

Conclusions

- Thermophilic digestion significantly enhances the enrichment of valuable elements like germanium (Ge) and rare earth elements (REEs) in the digestate compared to mesophilic conditions.
- Alongside valuable elements, toxic elements like arsenic (As), cadmium (Cd), and lead (Pb) are also enriched—posing potential risks if the digestate is used as fertilizer.
- Chemical fractionation revealed that most toxic As became more mobile under thermophilic conditions, while Ge and REEs remained largely in the stable residual fraction (>94%).
- Temperature plays a critical role in both element enrichment and speciation—highlighting the potential for process optimization to enhance selective recovery and reduce environmental risks.
- Fe-H₂SO₄ is the most effective extractant across all sample types, especially for Fe and REE, showing extremely high recovery (up to ~3200% for Fe and ~1800% for REE). This suggests that Fe addition improves the acid solubilization of metals, possibly due to enhanced redox-driven solubilization or complexation.
- > P and Zn recovery is relatively efficient across all digestate ash types, with acid treatments (H₂SO₄ and Fe–H₂SO₄) achieving near or over 100% recovery.
- This suggests P is highly leachable, especially under acidic conditions. Mn recovery is also enhanced in thermophilic and grass digestates ash, with acidic extractants performing better than water. Water alone results in poor recovery of all elements, especially REE and Ge, highlighting the need for chemical treatment for efficient element recovery.
- Digestate and sewage sludge application affect nutrient mobility and the availability of Ge, Ga, and REEs in soils, but this effect is element- and plant-specific.
- Cd mobility and plant uptake increase significantly with sewage sludge, showing that NH₄-acetate-extractable Cd is a reliable proxy for plant uptake.
- Ga and REE uptake are not directly correlated with their extractable (mobile) soil fractions, implying that physiological plant traits and nutrient interactions play a key role.
- Soil-plant transfer of Ga is likely driven by specific uptake mechanisms, while REE uptake is also influenced by phosphorus-related root traits and the plant's nutritional status.


Thank You For Your Attention!


Any Questions

Future research

- 1. Explore how thermophilic conditions alter chemical speciation and binding of Ge, REE, and toxic elements (As, Cd).
- 2. Conduct long-term studies on element accumulation in thermophilic digestate from various feedstocks, including hyperaccumulator plants and waste streams.
- 3. Develop optimized protocols using eco-friendly and cost-effective reagents for selective leaching of valuable vs. toxic elements.
- 4. Examine the fate of enriched elements (especially toxic ones like As, Cd) when digestate is applied to soil.
- 5. Study plant uptake mechanisms, especially for Ga and REE, under different soil amendments and plant species, integrating physiological and rhizospheric traits.

