

Bildquelle: www.pinterest.com

Studienmöglichkeiten an der Fakultät Maschinenwesen:

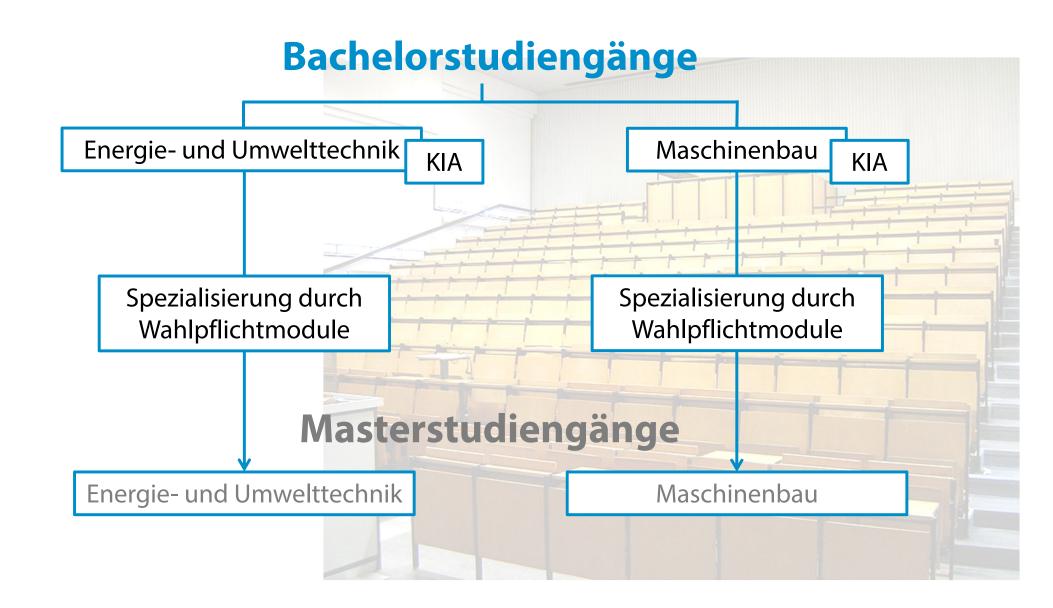
Studium an der Fakultät Maschinenwesen Studiengänge Maschinenbau Energie- und Umwelttechnik Sem. Grundlagenstudium 3 gemeinsame Semester 3 Externes Bachelor-Diplom-Bachelor-Bachelor-Diplom-Studium 5 Studium Studium Studium Studium (180 ECTS) 6 (240 ECTS) (210 ECTS) (210 ECTS) (240 ECTS) PPS* (30 ECTS) 8 Masterstudium Masterstudium Master-Studium Maschinenbau oder Energie- und 9 Maschinenbau Energie- und Umwelt-Umwelttechnik (90 ECTS) technik (90 ECTS) (90 ECTS)

IHK-Abschlussprüfung

1. – 3. Semester: Grundlagenstudium

4. – 8. Semester: Fachstudium

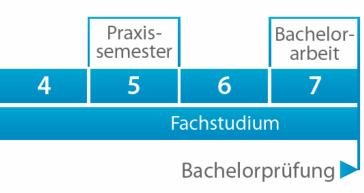
5. Semester: Praxissemester


8. Semester: Diplomarbeit und deren Verteidigung

Die Teilzeitsemester 2.1 – 3.2 werden im 4-wöchigen Rhythmus Hochschule/Unternehmen absolviert.

Dieser Studienabschnitt wird mit dem 1. Berufsabschluss (Kammerprüfung IHK) abgeschlossen.

KIA



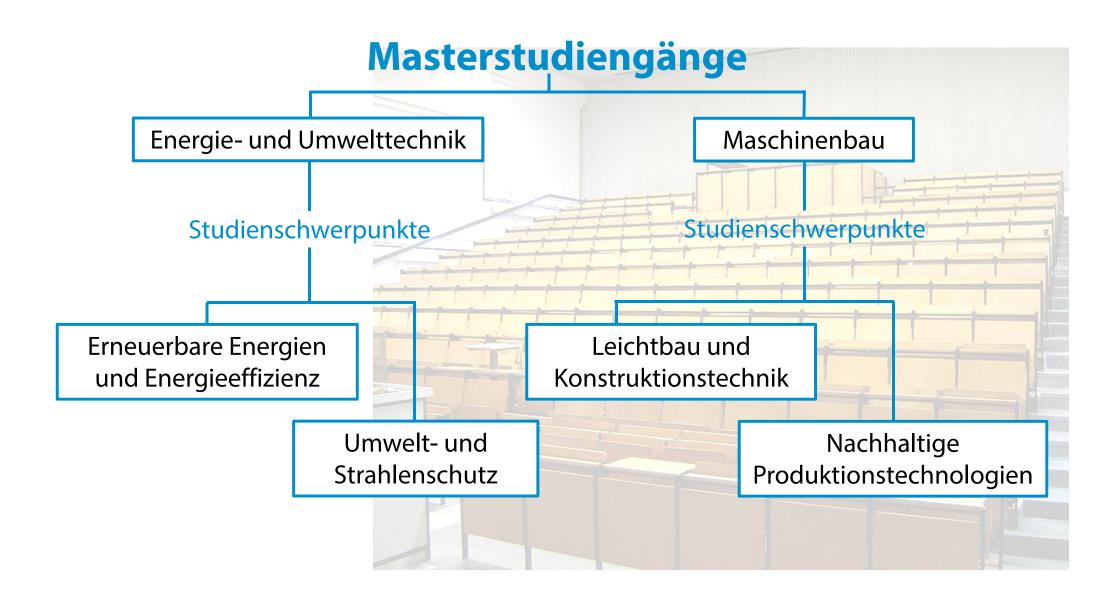
Bachelor-Studium:

1. – 3. Semester: Grundlagenstudium

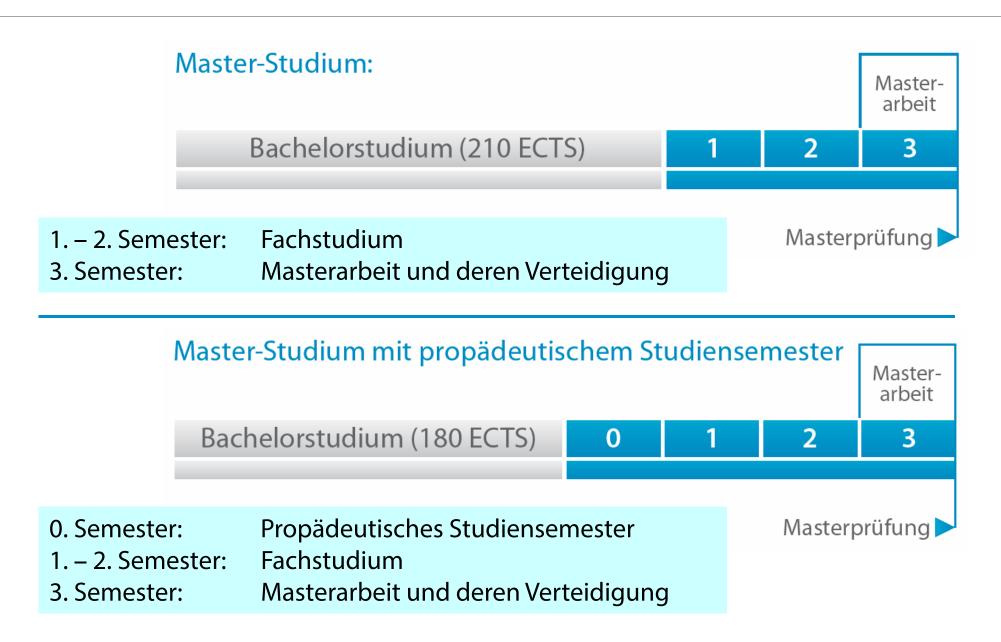
4. – 7. Semester: Fachstudium

5. Semester: Praxissemester

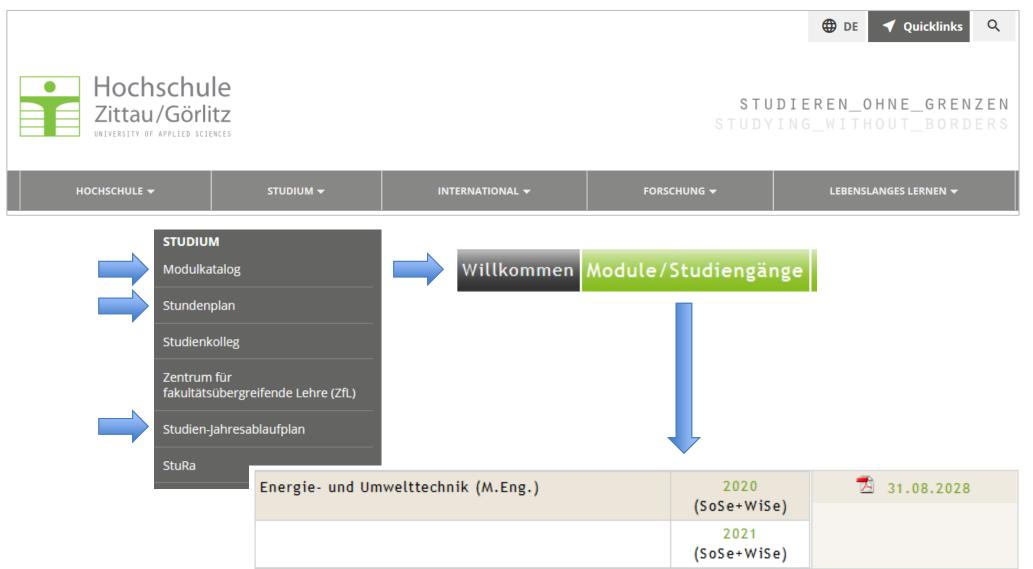
7. Semester: Fachstudium bzw. Wissenschaftliches


Projekt sowie Bachelorarbeit (+ Verteid.)

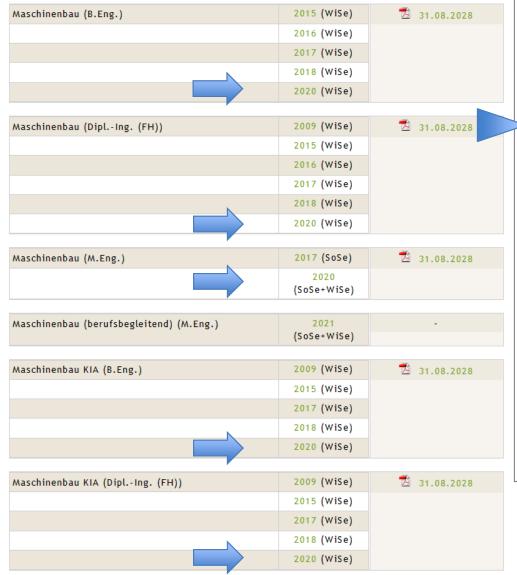
Die Teilzeitsemester 2.1 – 3.2 werden im 4-wöchigen Rhythmus Hochschule/Unternehmen absolviert.


Dieser Studienabschnitt wird mit dem 1. Berufsabschluss (Kammerprüfung IHK) abgeschlossen.

KIA



Informationen zum Studienablauf/Studieninhalten:


Informationen zum Studienablauf/Studieninhalten:

Informationen zum Studienablauf/Studieninhalten:

Studienablauf für einen Studiengang: → Beispiel: Bachelor Maschinenbau

Studiengänge >> Maschinenbau 2020 B.Eng.

Werkstofftechnik und -chemie

	1341134 · · · maseriffe														
Studien	gang:	Maschinenbau (2020)													
Fakultä	t:	Maschinenwesen													
Abschlu	ss:	Bachelor of Engineering	Bachelor of Engineering												
Regelst	udienzeit:	7 Semester	7 Semester												
ECTS-P	unkte:	210													
Studien	beginn:	WiSe (Wintersemester)													
Lehrspr	ache:	Deutsch													
Studien	dokumente:	Studienordnung: 7 Akkreditierung bis: 7	gültig ab Matrikel 2020 gültig ab Matrikel 2020 31.08.2028												
		weitere Dokumente: p	raxisordnu	ıng gül	tig ab	2007/20	08 🔼			1 S\	NS =				
Nr.	Module		ECTS-				SWS*	* pro Se	mester						
			Punkte*	ungen	1	2	3	4	5	6	7				
M01	256100 Technische The	rmodynamik I - Energielehre	5	PK150 VL	4										
M02	101720 Grundlagen der	Informatik	5	VT VB VT	4										
M03	100950 Betriebswirtsch	aftslehre	5	PK120	4										
M04	103400 Ingenieurmathe	matik I	5	PK120	6										
M05	256200 Physik und Grui	ndlagen der Elektrotechnik	5	PK150	6										
M06	256250 Technische Mec	hanik I - Statik	5	PK180	4										
M07	256300		5	PK150	2	4									

Studienablauf für einen KIA-Studiengang: → Beispiel: Bachelor Energie- und Umwelttechnik

Studiengänge >> Energie- und Umwelttechnik 2020 B.Eng.

Werkstofftechnik und -chemie

												_		
Studie	ngang:	Energie- und Umwelttec	hnik (2020))										
Fakult	ät:	Maschinenwesen												
Abschl	uss:	Bachelor of Engineering												
Regels	tudienzeit:	7 Semester												
ECTS-F	Punkte:	210	210											
Studienbeginn:		WiSe (Wintersemester)												
Lehrsp	rache:	Deutsch	` ,											
Studiendokumente:		Prüfungsordnung: Studienordnung: Akkreditierung bis:	tudienordnung: gültig ab Matrikel 2020											
		weitere Dokumente:	Praxisordn	ung gü	iltig ab	2007/2	008			1 S	WS =	45 m		
Nr.	Module		ECTS-	Prüf-			SWS*	* pro Se	mester					
			Punkte*	ungen	1	2	3	4	5	6	7			
M01	256100 Technische The	rmodynamik I - Energielehre	5	PK150 VL	4									
M02	101720 Grundlagen der	Informatik	5	VT VB VT	4									
M03	100950 Betriebswirtsch	aftslehre	5	PK120	4									
M04	103400 Ingenieurmathe	matik I	5	PK120	6									
M05	256200 Physik und Gru	ndlagen der Elektrotechnik	5	PK150	6									
M06	256250 Technische Mec	hanik I - Statik	5	PK180	4									
M07	256300		5	PK150	2	4								

Studieninhalte für einen Studiengang (Modulbeschreibung):

→ Beispiel: Modul Technische Thermodynamik I - Energielehre

Code:	256100
Modul:	Technische Thermodynamik I - Energielehre
Module title:	Technical Thermodynamics I - Fundamentals
Version:	2.01 (10/2019)
letzte Änderung:	27.07.2020
Modulverantwortliche/r:	Prof. DrIng. Meinert, Jens J.Meinert@hszg.de
angeboten in den 8	Energie- und Umwelttechnik (B.Eng.) gültig ab Matrikel 2020
Studiengängen:	Energie- und Umwelttechnik (DiplIng. (FH)) gültig ab Matrikel 2020
	Energie- und Umwelttechnik KIA (B.Eng.) gültig ab Matrikel 2020
	Energie- und Umwelttechnik KIA (DiplIng. (FH)) gültig ab Matrikel 2020
	Maschinenbau (B.Eng.) gültig ab Matrikel 2020
	Maschinenbau (DiplIng. (FH)) gültig ab Matrikel 2020
	Maschinenbau KIA (B.Eng.) gültig ab Matrikel 2020
	Maschinenbau KIA (DiplIng. (FH)) gültig ab Matrikel 2020

Studieninhalte für einen Studiengang (Modulbeschreibung):

Modul läuft im:	WiSe (Wintersemester)
Niveaustufe:	Bachelor/Diplom
Dauer des Moduls:	1 Semester
Status:	Pflichtmodul
Lehrort:	Zittau
Lehrsprache:	Deutsch

Workloa		SWS																(1	eil/)Se	eme	ste	r															
Zeit- std.	ECTS- Pkte			•	1			2	.1			2	.2			3	3.1			3.	. 2			4	ļ				5			(6			7	7	
			٧	S	P	W	٧	S	P	W	٧	S	P	W	٧	S	P	W	٧	S	P	W	٧	S	P	W	٧	S	P	W	٧	S	P	W	٧	S	P	w
150	5	4.0	2	1.5	0.5	0																																

^{*} Gesamtarbeitsaufwand pro Modul (1 ECTS-Punkt entspricht einem studentischen Arbeitsaufwand von 30 Zeitstunden)

^{**} eine Semesterwochenstunde (SWS) entspricht 45 Minuten pro Woche

Selbststudienzeit in h	Angabe gesamt	
	105	

Lehr- und Lernformen:	 Wissensvermittlung im Rahmen von Vorlesungen Eigenständiges Lösen von Aufgaben in Seminaren/Übungen Durchführung von Praktika
-----------------------	---

Prüfung(en)			
Prüfungsvorleistung	Prüfungsvorleistung Laborarbeit (VL)		
Prüfung	Prüfungsleistung als Klausur (PK)	150 min	100.0%

Studieninhalte für einen Studiengang (Modulbeschreibung):

Lerninhalt:	Thermodynamik I (Energielehre): 1. Thermodynamisches System, Zustands-/Prozessgrößen 2. Masse- und Stoffmengenbilanzen 3. Energie-/Energiestrombilanzen - Der 1. Hauptsatz der Thermodynamik 4. Entropie-/Entropiestrombilanzen - Der 2. Hauptsatz der Thermodynamik 5. Thermisches und energetisches Zustandsverhalten realer Stoffe 5.1 Inkompressible Flüssigkeiten 5.2 Nassdampfgebiet und überhitzter Dampf 5.3 Ideale Gase und Gasgemische 6. Einfache reversible Prozesse 7. Ausgewählte einfache irreversible Prozesse	
-------------	--	--

Lernergebnisse/Kompetenzen:	
Fachkompetenzen:	Nach Absolvieren des Moduls sind die Studierenden in der Lage • grundlegende Bilanzierungsmethoden für energietechnische Komponenten zu verstehen, anzuwenden und die Ergebnisse kritisch zu hinterfragen • sich thermophysikalische Stoffdaten aus Datenbanken und anderen Informationsquellen zu beschaffen und zu nutzen • passende Analyse- und Modellierungsmethoden für energietechnische Komponenten auszuwählen und anzuwenden • geeignete Experimente der Energie- und Umwelttechnik durchzuführen und die Messdaten auszuwerten und zu interpretieren
Fachübergreifende Kompetenzen:	Nach Absolvieren des Moduls sind die Studierenden in der Lage • Aufgabenstellungen selbstständig zu analysieren und daraus Lösungsansätze zu entwickeln und umzusetzen • Berechnungsmethoden mit anderen Studierenden zu diskutieren und optimieren • das eigene Leistungsvermögen besser einzuschätzen
notwendige Voraussetzungen:	Mathematik, Physik (Abiturstufe)
Literatur:	ELSNER, N. / DITTMANN, A.: Grundlagen der Technischen Thermodynamik; Band 1: Energielehre und Stoffverhalten; Akademie Verlag Berlin 1993 HERWIG, H. / KAUTZ, C.H.: Technische Thermodynamik; Pearson Studium 2007 CERBE, G. / WILHELMS, G.: Technische Thermodynamik - Theoretische Grundlagen und praktische Anwendungen; Carl Hanser Verlag München 2008 DITTMANN, A. / FISCHER, S. / KLINGER, J. / HUHN, J.: Repetitorium der Technischen Thermodynamik; Teubner Studienbücher 1995
	WAGNER, W. / KRETZSCHMAR, HJ.: International Steam Tables; Springer Verlag Berlin Heidelberg 2008

Erklärung der Abkürzungen (Prüfungsformen):

Legende zur Tabelle:

WiSe = Wintersemester

SoSe = Sommersemester

ECTS = European Credit Transfer System - (Punkte)

1 ECTS = 30 Zeit-Stunden Arbeitsaufwand

1 Semester = 30 ECTS

→ B. Eng. 210 ECTS

→ Dipl.-Ing. (FH) 240 ECTS

 \rightarrow M. Eng. 300 ECTS

PA = Prüfungsleistung in Form der Abschlussarbeit gemäß § 21

PB = Alternative Prüfungsleistung in Form des Belegs gemäß § 22 Absatz 1 Nr.1, Absatz 2

PK = Schriftliche Prüfungsleistung in Form der Klausur gemäß §§ 19 Absatz 1 Nr.1; 20

PL = Alternative Prüfungsleistung in Form der Laborleistung gemäß § 22 Abs.1 Nr.3, Absatz 4

PM = Mündliche Prüfungsleistung gemäß § 18

PP = Prüfungsleistung in Form des Praxisbelegs

P = Prüfungsleistung/en entsprechend den Wahlpflichtkomponenten

Benotung

1,0 ... 1,3 ... 1,7 ... 2,0 ...

VB = Prüfungsvorleistung in Form des Belegs gemäß § 17 Abs.2 i.V.m. § 22 Absatz 1 Nr.1, Abs.2

VL = Prüfungsvorleistung in Form der Laborleistung gemäß § 17 Abs.2 i.V.m. § 22 Abs.1 Nr.3, Absatz 4

VT = Prüfungsvorleistung in Form des Testats gemäß § 17 Abs. 2

(Die Zahlenangabe hinter der Prüfungsart gibt die Dauer der Prüfungsleistung in Minuten an.)

Prüfungsform und Dauer [min] → z. B. PK150, PM20

bestanden bzw.

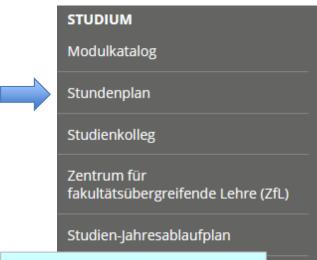
Bestehen ist Voraussetzung für Prüfungszulassung

Studienjahresablauf

Ablauf des Studienjahres:

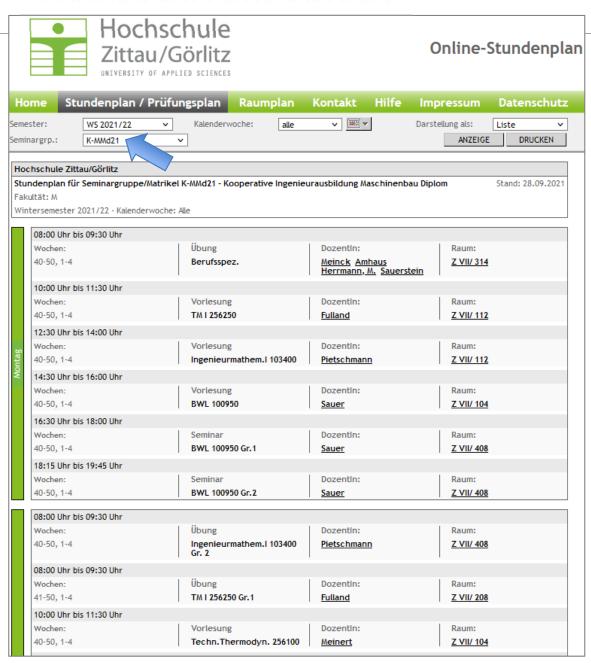
STUDIUM Modulkatalog Stundenplan Studienkolleg Zentrum für fakultätsübergreifende Lehre (ZfL) Studien-Jahresablaufplan StuRa

- L Lehrveranstaltung
- P Prüfungen
- F Feiertage
- U Unterrichtsfreie Tage
- E Einführungstage


Studienjahr 2021/2022

			Мо	Di	Mi	Do	Fr	Sa	So
5	39	27.09. – 03.10.	E ⁽⁰	E ⁽⁰	Е	E ⁽¹	Е		F
Wintersemester 2021 / 2022 (Kalenderwochen)	40	04.10. – 10.10.	L	L	L/WJ ⁽²	L	L		
Wo	41	11.10. – 17.10.	L	L	L	L	L		
ge	42	18.10. – 24.10.	L	L	L	L	L		
aler	43	25.10. – 31.10.	L	L	L	L	L		F
8	44	01.11. – 07.11.	L	L	L/TdU [®]	L	L		
- 22	45	08.11. – 14.11.	L	L	L	L	L		
20	46	15.11. – 21.11.	L	L	F	L	L		
2	47	22.11. – 28.11.	L	L	L/JB ⁽⁴	L	L		
62	48	29.11. – 05.12.	L	L	L	L	L		
Ž	49	06.12. – 12.12.	L	L	L	L	L		
ē	50	13.12. – 19.12.	L	L	L	L	L		
je s	51	20.12. – 26.12.	U	U	U	U	U	F	F
en	52	27.12. – 02.01.	U	U	U	U	U	F	
ers	01	03.01. – 09.01.	U	L	L	L	L		
Ĕ	02	10.01. – 16.01.	L	L	L	L/IT ⁽⁵	L		
3	03	17.01. – 23.01.	L	L	L	L	L		
	04	24.01. – 30.01.	L	L	L	L	L		
	05	31.01. – 06.02.	U	U	Р	Р	Р	Р	
	06	07.02. – 13.02.	Р	Р	Р	Р	Р	Р	
	07	14.02. – 20.02.	Р	Р	Р	Р	Р	Р	

Lehryeranstaltungsplan


Plan der Lehrveranstaltungen:

Bitte ab und zu einen Blick in den Stundenplan werfen!

Es können jederzeit Anpassungen erfolgen, z.B. bei den Räumen!

Studienorganisation – Akademische Verwaltung

Prüfungsamt:

Verantwortungsbereich

- Erfassung und Verwaltung von Noten
- Erstellung von Zeugnissen und Urkunden
- Nachweise für BAföG-Bezieher
- Prüfungsorganisation

Sprechzeiten in Zittau (in der Vorlesungs- und Prüfungszeit)

- Montag: nach Terminvereinbarung (per Mail)
- Dienstag: 09:30 11:30 Uhr & 13:00 15:30 Uhr
- Donnerstag: 09:30 11:30 Uhr
- Freitag: nach Terminvereinbarung (per Mail)

Ilona Hörger

i.hoerger(at)hszg.de

Standort 02763 Zittau Schwenninger Weg 1 Gebäude Z VII, Raum 126

+49 3583 612 4813

(Studierenden-)Sekretariat:

- Ansprechpartnerin auch für studentische Angelegenheiten aller Art
- Verwaltung von Praxissemester-, Diplom-, Bachelor-, Masterarbeiten
- Öffnungszeiten
 - → Bitte am Raum 126 nachsehen.

Ansprechpartner an der Fakultät:

Prof. Dr.-Ing.

Markus Fulland

 \sim

m.fulland(at)hszg.de

Fakultät Maschinenwesen

Standort 02763 Zittau
Schwenninger Weg 1
Gebäude Z VII, Raum 135

+49 3583 612-4831

Studiendekan der Fakultät Maschinenwesen

Fachstudienberater für den Master-Studiengang Maschinenbau

Sprechzeiten

Bitte semesteraktuelle Sprechzeiten

Bitte semesteraktuelle Sprechzeiten!

Bitte semesteraktuelle Sprechzeit nach Vereinbarung

Ansprechpartner an der Fakultät:

Prof. Dr. rer. nat.

Thomas Schönmuth

<u>t.schoenmuth(at)hszg.de</u>

Fakultät Maschinenwesen

Standort 02763 Zittau Schwenninger Weg 1 Gebäude Z VII, Raum 121

+49 3583 612-4882

Vorsitzender des Prüfungsausschusses

Fachstudienberater für den Master-Studiengang Energie- und Umwelttechnik

Bitte semesteraktuelle Sprechzeiten auf Webseite nachsehen!

Ansprechpartner an der Fakultät:

Prof. Dr.-Ing.

Jens Meinert

i.meinert(at)hszg.de

Fakultät Maschinenwesen

- Standort 02763 Zittau

 Schwenninger Weg 1

 Gebäude Z VII, Raum 119
- +49 3583 612-4849

Fachstudienberater für die Bachelorund Diplom-Studiengänge Energie- und Umwelttechnik

Sprechzeiten:
Bitte semesteraktuelle Sprechzeiten
auf Webseite nachsehen!

Ansprechpartner an der Fakultät:

Prof. Dr.-Ing.

Bernd Bellair

b.bellair(at)hszg.de

Fakultät Maschinenwesen

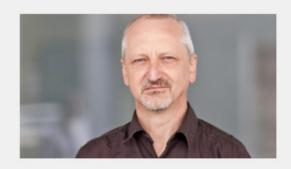
- Standort 02763 Zittau

 Schwenninger Weg 1

 Gebäude Z VII, Raum 137
- +49 3583 612-4852

Fachstudienberater für die Bachelorund Diplom-Studiengänge Maschinenbau

Sprechzeiten


Bitte semesteraktuelle Sprechzeiten

Bitte semesteraktuelle Sprechzeiten

auf Webseite nachsehen!

Ansprechpartner an der Fakultät:

Dipl.-Ing.

Thomas Amhaus

<u>t.amhaus(at)hszg.de</u>

Fakultät Maschinenwesen

Standort 02763 Zittau
Schwenninger Weg 1
Gebäude Z VII, Raum 133

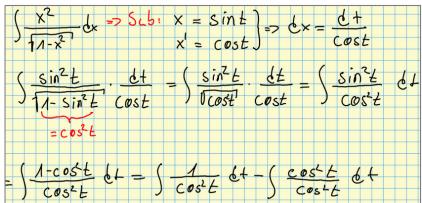
+49 3583 612-4826

Studienberatung zum Dualen Studium (KIA-Studiengänge)

Vorlesungen:

- Hauptakteur = Professor/-in, LbA, Lehrbeauftragte/-r
- Individuelle Gestaltung = "Freiheit in der Lehre"
 - → Präsentation des Lehrstoffes, Beispiele
- Nutzung unterschiedlicher Medien
 - → Tafel, PowerPoint, Skripte, Lehrunterlagen (OPAL)
 - → ggf. Videos, Online-Vorlesungen (Big Blue Button), ...
- Empfehlung: Anfertigen eines eigenen Vorlesungsskriptes
 - → "durch die Hand in den Kopf"
- Verhaltensregeln
 - → Prinzipiell keine Anwesenheitspflicht.
 - → Nicht stören! Zwischenfragen → Handzeichen!
 - → <u>Wertung:</u> Anerkennung = Klopfen, Ablehnung = Zischen
 - Wünsche und Kritik bitte direkt an die Lehrenden!
 - → Evaluierung ausgewählter Module (ab Mitte des Semesters)

Bildquelle: www.vbe-bw.de


Ziel: Präsenzlehrveranstaltungen für alle!

Seminare und Übungen:

- Hauptakteure = (meist) Studierende
 - → in den Ingenieurwissenschaften meist eigenständige Bearbeitung von Übungsaufgaben
 - → Problemdiskussion
 - → Nachfrage beim Seminar-/Übungsleiter
- Mitzubringende Utensilien
 - → Übungsaufgaben (ggf. OPAL)
 - → Formelsammlungen, Stoffwerttabellen
 - → Taschenrechner, Notebook
- Jedes Modul beinhaltet einen nicht unerheblichen Arbeitsanteil für zu Hause!
 - Vertiefen des Verständnisses bezüglich des Vorlesungsstoffes
 - → Fertigstellen der Übungs-, Belegaufgaben

Bildquellen: www.freepik.com, www.gutefrage.net

Praktika:

- Hauptakteure = Praktikumsbetreuer & Studierende
- Bei Praktika ist Anwesenheit i. d. R. Pflicht!
- Durchführung in speziellen Praktikumslaboren, in Forschungslaboren oder extern
- Organisation von Praktikumsgruppen (Ziel: max. 5 Studierende)
- Ablauf:
 - → Durchführung eines Eingangstests (optional)
 - → Einweisung in den Praktikumsversuch
 - → Durchführung des Praktikums
 - → Erstellen eines Protokolls (einzeln oder als Gruppe) bis zum Abgabetermin
 - → VL: Prüfungszulassung
 - → PL: Anteil an Modulnote (x %)

Prüfungen:

- Hauptakteure = dürfte klar sein ... ☺
- Prüfungsperiode ~3 Wochen im Anschluss an Semester (PK, PM, ...)
 - → i. d. R. ab letzter Januar-/Juniwoche (Prüfungsplan)
 - → Anmeldung zur Prüfung erfolgt automatisch (Bitte prüfen!) → wird geprüft!
 - → Abmeldung ist durch Studierende möglich → Prüfungsamt
 - → Notenmeldung bis 4 Wochen nach Prüfungsperiode im Serviceportal
- Belege (PB), Hausarbeiten (PH) → Abgabe bis letzter Tag der Prüfungsperiode
- Abschlussarbeiten (PA), Praktikumsarbeiten (PP) werden mit Abgabedatum

ausgegeben → Bitte einhalten!

- Nicht bestandene Prüfungen können <u>zweimal</u> wiederholt werden!
 - → 1. "W" automatisch, 2. "W" auf Antrag
- Bitte Unregelmäßigkeiten vermeiden!

Bildquelle: www.aparte-karte.de

Akademischer Umgang:

Anrede

Frau Professorin ...

Herr Professor ...

Schriftliche Anrede

Sehr geehrte Frau Professorin ...

Sehr geehrter Herr Professor ...

HÖFLICHKEIT IST HEUTZUTAGE SO SELTEN GEWORDEN, DASS SIE OFT MIT FLIRTEN VERWECHSELT WIRD.

apartekarte

Abkürzungen:

MMb21	Maschinenwesen – Maschinenbau – Bachelor – Beginn 20 20
MMd21	M aschinenwesen – M aschinenbau – D iplom – Beginn 20 20
K-MMb21	KIA – Maschinenwesen – Maschinenbau – Bachelor – Beginn 2020
K-MMd21	KIA – Maschinenwesen – Maschinenbau – Diplom – Beginn 20 20
MMm21	Maschinenwesen – Maschinenbau – Master – Beginn 20 20
MEb21	Maschinenwesen – Energie- und Umwelttechnik – Bachelor – Beginn 20 20
MEd21	Maschinenwesen – Energie- und Umwelttechnik – Diplom – Beginn 2020
K-MEb21	KIA – Maschinenwesen – Energie- und Umwelttechnik – Bachelor – Beginn 20 20
K-MEd21	KIA – Maschinenwesen – Energie- und Umwelttechnik – Diplom – Beginn 2020
MEm21	Maschinenwesen – Energie- und Umwelttechnik – Master – Beginn 20 20

Einführungstage 2021

Einführungsveranstaltung der Fakultät Maschinenwesen 29./30. September 2021 in Zittau, Haus Z VII (Schwenninger Weg 1)

Energie- und Umwelttechnik

Bachelor (MEb21) und KIA-Bachelor (K-MEb21) Diplom (MEd21) und KIA- Diplom (K-MEd21) Master (MEm21)

Maschinenbau

Bachelor (MMb21) und KIA-Bachelor (K-MMb21) Diplom (MMd21) und KIA- Diplom (K-MMd21) Master (MMm21)

29. September 2021	10:00 Uhr	Alle Studierenden (K-)MM und (K-)ME Begrüßung der Studierenden der Matrikel 2021	V: Herr Prof. Bellair (Dekan) Ort: ZVII/104
	11:00 Uhr	Alle Studierenden (K-)MM und (K-)ME Einführungsveranstaltung der Studiengänge	V: Herr Prof. Meinert, Herr Prof. Schönmuth Ort: ZVII/104
	12:30 Uhr	Grillen im Innenhof ZVII	V: Fachschaft
	13:30 Uhr bis ca. 15:30 Uhr	Alle Studierenden (K-)MM, (K-)ME gemeinsam mit F-N, W, El - Einweisung HS-Rechenzentrum + HS-Bibliothek - Informationen zur Lernplattform OPAL - Informationen zum Qualitätsmanagement der HS	V: Herr Funke Ort: Z IV/0.01

30. September 2021	10:00 Uhr	Alle Studierenden (K-)MM und (K-)ME Arbeitsschutz- und PC-Pool-Belehrung	V: Herr Heidrich, Herr Zahn Ort: ZVII/104
	11:00 Uhr	K-MEb21, K-MEd21, K-MMb21, K-MMd21 Einweisung ins duale Studium	V: Herr Amhaus Ort: Z VII/104
		Laborrundgang: MEb21, MEd21, MEm2 Laborrundgang: MMb21, MMd21, MMm21	V: Herr Kammler Ort: Z VII/104
	14:30 Uhr	Alle Studierenden (K-)MM und (K-)ME Feierliche Immatrikulation	Ort: Campus Zittau

Fakultätswebseite

Fakultät Maschinenwesen

Die Fakultät Maschinenwesen ist die traditionelle Säule der ingenieurwissenschaftlichen Ausbildung auf den Gebieten Maschinenbau und Energietechnik in Zittau. Der Maschinenbau nutzt und fördert die sich weltweit rasant entwickelnden Hochtechnologien. Auf seinem Produktivitätszuwachs begründet sich unser Wohlstand und hilft diesen weiterhin zu sichern. Die effektive, zuverlässige und umweltschonende Versorgung mit Energie stellt eine der wesentlichen Voraussetzungen für das Funktionieren eines Gemeinwesens und besonders seiner Wirtschaft dar. Ein Schwerpunkt des Studiums ist die Energiewende.

Einführungstage 2021

Hochschulen

Jeder vierte Student klagt über überfüllte Hörsäle

Glückwunsch ... das passiert Ihnen nicht! SIE studieren in Zittau! Viel Erfolg dabei!

Einführungstage 2021

Wintersemester wird Mix aus Digitalund Präsenzlehre

Süddeutsche Zeitung
SZ.de Zeitung Magazin

Nochmal Glückwunsch ... wir bemühen uns, Ihnen 100 % Präsenzlehre anzubieten! Danke für Ihre Aufmerksamkeit!