

Faculty of MECHANICAL ENGINEERING

Department of TECHNICAL THERMODYNAMICS

Property Library for Humid Air Calculated as Ideal Mixture of Real Fluids

FluidEXL^{Graphics}
with LibHuAir
for Excel®

Prof. Hans-Joachim Kretzschmar

Dr. Ines Stoecker

Ines Jaehne

K. Knobloch

M. Kunick

T. Hellriegel

L. Kleemann

D. Seibt

Property Software for Humid Air Calculated as Ideal Mixture of Real Fluids

LibHuAir FluidEXL^{Graphics}

Contents

- 0. Package Contents
 - 0.1 Zip-files for 32-bit Office®
 - 0.2 Zip-files for 64-bit Office ®
- 1. Property Functions
 - 1.1 Calculation Programs
 - 1.2 Thermodynamic Diagrams
- 2. Application of FluidEXLGraphics in Excel®
 - 2.1 Installing FluidEXLGraphics
 - 2.2 Registering FluidEXL^{Graphics} as Add-In in Excel
 - 2.3 The FluidEXLGraphics Help System
 - 2.4 Licensing the LibHuAir Property Library
 - 2.5 Example: Calculation of $h_{\parallel} = f(p,t,x_{\rm W})$
 - 2.6 Representation of Calculated Properties in Thermodynamic Diagrams
 - 2.7 Removing FluidEXLGraphics
- 3. Program Documentation
- 4. Property Libraries for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators
- 5. References
- 6. Satisfied Customers
- © Zittau/Goerlitz University of Applied Sciences, Germany

Faculty of Mechanical Engineering

Department of Technical Thermodynamics

Professor Hans-Joachim Kretzschmar

Dr. Ines Stoecker

Phone: +49-3583-61-1846 or -1881

Fax: +49-3583-61-1846

E-mail: hj.kretzschmar@hs-zigr.de Internet: www.thermodynamics-zittau.de

0. Package Contents

0.1 Zip files for 32-bit Office®

The following zip files are delivered for your computer running a 32-bit Office® version.

English zip-file "CD_FluidEXL_Graphics_LibHuAir_Eng.zip" including the following files:

FluidEXL_Graphics_Eng_Setup.exe - English installation program for the Add-In

FluidEXLGraphics for use in Excel®

FluidEXL_Graphics_Eng.xla - English Add-In for FluidEXL^{Graphics}

LibHuAir.dll - Dynamic link library for application in

Windows[®] programs

LibHuAir_Eng.hlp - English help file for the LibHuAir library

FluidEXL_Graphics_LibHuAir_Docu_Eng.pdf - User's Guide

German zip-file "CD_FluidEXL_Graphics_LibHuAir.zip" including the following files:

FluidEXL_Graphics_Setup.exe - German installation program for the Add-In

FluidEXLGraphics for use in Excel®

FluidEXL_Graphics.xla - German Add-In for FluidEXLGraphics

LibHuAir.dll - Dynamic link library for application in

Windows® programs

LibHuAir.hlp - German help file for the LibHuAir library

FluidEXL_Graphics_LibHuAir_Docu_Eng.pdf - User's Guide

0.2 Zip files for 64-bit Office®

The following zip files are delivered for your computer running a 64-bit Office® version.

English zip file "CD_FluidEXL_Graphics_LibHuAir_x64_Eng.zip" including the following files and folders:

Files:

FluidEXL_Graphics_LibHuAir_Docu_Eng.pdf - User's Guide

FluidEXL_Graphics_Eng.xla - FluidEXLGraphics Add-In

FluidEXL_Graphics_Eng_64_Setup.msi - Self-extracting and self-installing

program

LibHuAir.dll - Dynamic link library for use in

Windows[®] programs

LibHuAir_Eng.hlp - English help file for the LibHuAir

library

Setup.exe - Self-extracting and self-installing

program for FluidEXL $^{\it Graphics}$

Folders:

vcredist_x64 - Folder containing the "Microsoft

Visual C++ 2010 x64 Redistributable Pack"

WindowsInstaller3_1 - Folder containing the "Microsoft

Windows Installer"

German zip file "CD_FluidEXL_Graphics_LibHuAir_x64.zip" including the following files and folders:

Files:

FluidEXL_Graphics_LibHuAir_Docu_Eng.pdf - User's Guide

FluidEXL_Graphics.xla - FluidEXLGraphics Add-In

FluidEXL_Graphics_64_Setup.msi - Self-extracting and self-installing

program

LibHuAir.dll - Dynamic link library for use in

Windows[®] programs

LibHuAir.hlp - German help file for the LibHuAir

library

Setup.exe - Self-extracting and self-installing

program for FluidEXL Graphics

Folders:

vcredist x64 - Folder containing the "Microsoft

Visual C++ 2010 x64 Redistributable Pack"

WindowsInstaller3_1 - Folder containing the "Microsoft

Windows Installer"

1. Property Functions

1.1 Calculation Programs

Functional Dependence	Function Name	Call as Fortran Program	Property or Function	Unit of the Result	Source or Algorithm	Site Info
$a = f(p, t, x_{w})$	a_ptxw_HuAir	= a_ptxw_HuAir(p,t,xw) or = C_a_ptxw_HuAir(a,p,t,xw)	Thermal diffusivity	m ² /s	[1-4], [6], [12], [14], [15]	3/1
$c_p = f(p, t, x_w)$	cp_ptxw_HuAir	= cp_ptxw_HuAir(p,t,xw), or = C_cp_ptxw_HuAir(cp,p,t,xw)	Specific isobaric heat capacity	kJ/(kg·K)	[1-4], [13], [14]	3/2
$\eta = f(p,t,x_{w})$	Eta_ptxw_HuAir	= Eta_ptxw_HuAir(p,t,xw), or = C_Eta_ptxw_HuAir(Eta,p,t,xw)	Dynamic viscosity	Pa·s	[7], [12], [15]	3/3
$h = f(p, t, x_w)$	hl_ptxw_HuAir	= hl_ptxw_HuAir(p,t,xw), or = C_hl_ptxw_HuAir(h,p,t,xw)	Air-specific enthalpy	kJ/kg _{Air}	[1-4], [13], [14], [18], [19]	3/4
$\lambda = f(p, t, x_{w})$	Lambda_ptxw_HuAir	= Lambda_ptxw_HuAir(p,t,xw), or = C_Lambda_ptxw_HuAir(Lambda,p,t,xw)	Thermal conductivity	W/(m⋅K)	[6], [12], [15]	3/5
$v = f(p, t, x_{w})$	Ny_ptxw_HuAir	= Ny_ptxw_HuAir(p,t,xw), or = C_Ny_ptxw_HuAir(Ny,p,t,xw)	Kinematic viscosity	m ² /s	[1-4], [7], [12], [14], [15]	3/6
$p_{d} = f(p, t, x_{w})$	pd_ptxw_HuAir	= pd_ptxw_HuAir(p,t,xw), or = C_pd_ptxw_HuAir(pd,p,t,xw)	Partial pressure of steam	bar	[1-4], [16], [17], [25], [26]	3/7
$p_{ds} = f(p, t)$	pds_pt_HuAir	= pds_pt_HuAir(p,t), or = C_pds_pt_HuAir(pd,p,t)	Saturation pressure of water	bar	[1-4], [16], [17], [25], [26]	3/8
$\varphi = f(p,t,x_{_{W}})$	Phi_ptxw_HuAir	= Phi_ptxw_HuAir(p,t,xw), or = C_Phi_ptxw_HuAir(Phi,p,t,xw)	Relative humidity	%	[1-4], [16], [17], [25], [26]	3/9
$p_{l} = f(p, t, x_{w})$	pl_ptxw_HuAir	= pl_ptxw_HuAir(p,t,xw), or = C_pl_ptxw_HuAir(pl,p,t,xw)	Partial pressure of air	bar	[1-4], [16], [17], [25], [26]	3/10
$Pr = f(p, t, x_w)$	Pr_ptxw_HuAir	= Pr_ptxw_HuAir(p,t,xw), or = C_Pr_ptxw_HuAir(Pr,p,t,xw)	PRANDTL-number	-	[1-4], [6], [7], [12-15]	3/11
$\psi_{I} = f(x_{w})$	Psil_xw_HuAir	= Psil_xw_HuAir(xw), or = C_Psil_xw_HuAir(Psil,xw)	Mole fraction of air	kmol/kmol	-	3/12

Functional Dependence	Function Name	Call as Fortran Program	Property or Function	Unit of the Result	Source or Algorithm	Site Info
$\psi_{w} = f(x_{w})$	Psiw_xw_HuAir	= Psiw_xw_HuAir(xw), or = C_Psiw_xw_HuAir(Psiw,xw)	Mole fraction of water	kmol/kmol	-	3/13
$\rho = f(p, t, x_{w})$	Rho_ptxw_HuAir	= Rho_ptxw_HuAir(p,t,xw), or = C_Rho_ptxw_HuAir(Rho,p,t,xw)	Density	kg/m ³	[1-4], [14], [18], [19]	3/14
$s_l = f(\rho,t,x_w)$	sl_ptxw_HuAir	= sl_ptxw_HuAir(p,t,xw), or = C_sl_ptxw_HuAir(Rho,p,t,xw)	Air-specific entropy	kJ/(kg _{Air} K)	[1-4], [13], [14], [18], [19]	3/15
$t = f(p, h_l, x_w)$	t_phlxw_HuAir	= t_phlxw_HuAir(p,hl,xw), or = C_t_phlxw_HuAir(t,p,hl,xw)	Backward function: temperature from air-specific enthalpy and humidity ratio (absolute humidity)	°C	[1-4], [13], [14], [18], [19]	3/16
$t = f(p, S_1, X_w)$	t_pslxw_HuAir	= t_pslxw_HuAir(p,hl,xw), or = C_t_pslxw_HuAir(t,p,sl,xw)	Backward function: temperature from air-specific entropy and humidity ratio (absolute humidity)	°C	[1-4], [13], [14], [18], [19]	3/17
$t_{f}=f(p,t,x_{w})$	tf_ptxw_HuAir	= tf_ptxw_HuAir(p,t,xw), or = C_tf_ptxw_HuAir(tf,p,t,xw)	Wet bulb temperature	°C	[1-4], [13], [14]	3/18
$t_{\tau} = f(\boldsymbol{p}, \boldsymbol{x}_{w})$	tTau_pxw_HuAir	= tTau_pxw_HuAir(p,xw), or = C_tTau_pxw_HuAir(tTau,p,xw)	Dew point temperature	°C	[1-4], [16], [17]	3/19
$u_{\rm l}={\sf f}(p,t,x_{\rm w})$	ul_ptxw_HuAir	= ul_ptxw_HuAir(p,t,xw), or = C_ul_ptxw_HuAir(ul,p,t,xw)	Air-specific internal energy	kJ/kg _{Air}	[1-4], [13], [14], [18], [19]	3/20
$V_{ } = f(p, t, x_{ _{W}})$	vl_ptxw_HuAir	= vl_ptxw_HuAir(p,t,xw), or = C_vl_ptxw_HuAir(vl,p,t,xw)	Air-specific volume	m ³ /kg _{Air}	[1-4], [14], [18], [19]	3/21
$\xi_{\rm I}={\sf f}(x_{\rm w})$	Xil_xw_HuAir	= Xil_xw_HuAir(xw), or = C_Xil_xw_HuAir(Xil,xw)	Mass fraction of air	kg/kg	-	3/22
$\xi_{\rm w}={\sf f}(x_{\rm w})$	Xiw_xw_HuAir	= Xiw_xw_HuAir(xw), or = C_Xiw_xw_HuAir(Xiw,xw)	Mass fraction of water	kg/kg	-	3/23
$x_{\rm w}={\sf f}(p,t,p_{\rm d})$	xw_ptpd_HuAir	= xw_ptpd_HuAir(p,t,pd), or = C_xw_ptpd_HuAir(xw,p,t,pd)	Humidity ratio (Absolute humidity) from partial pressure of steam	9water/kg _{Air}	[1-4], [16], [17], [25], [26]	3/25
$X_{W} = f(p, t, \varphi)$	xw_ptPhi_HuAir	= xw_ptPhi_HuAir(p,t,Phi), or = C_xw_ptPhi_HuAir(xw,p,t,Phi)	Humidity ratio (Absolute humidity) from temperature and relative humidity	9water/kg _{Air}	[1-4], [16], [17], [25], [26]	3/24

Functional Dependence	Function Name	Cal as Fortran Program	Property or Function	Unit of the Result	Source or Algorithm	Site Info
$X_{W} = f(p, t_{\tau})$	xw_ptTau_HuAir	= xw_ptTau_HuAir(p,tTau), or = C_xw_ptTau_HuAir(xw,p,tTau)	Humidity ratio (Absolute humidity) from dew point temperature	9water/kg _{Air}	[1-4], [16], [17], [25], [26]	3/26
$x_{\rm w}={\sf f}(p,t,t_{\sf f})$	xw_pttf_HuAir	= xw_pttf_HuAir(p,t,tf), or = C_xw_pttf_HuAir(xw,p,t,tf)	Humidity ratio (Absolute humidity) from temperature and wet bulb temperature	9water/kg _{Air}	[1-4], [13], [14]	3/27
$x_{\rm w} = f(p,t,v_{\rm l})$	xw_ptvl_HuAir	= xw_ptvl_HuAir(p,t,vl), or = C_xw_ptvl_HuAir(xw,p,t,vl)	Backward function: Humidity ratio (Absolute humidity) from temperature and air-specific volume	9water ^{/kg} Air	[1-4], [16], [17], [25], [26]	3/28
$x_{\text{ws}} = f(p, t)$	xws_pt_HuAir	= xws_pt_HuAir(p,t), or = C_xws_pt_HuAir(xws,p,t)	Humidity ratio (Absolute humidity) of saturated humid air	9water/kg _{Air}	[1-4], [16], [17], [25], [26]	3/29

Variable Types for Function Call

All functions <u>not</u> starting with C_:	REAL*8
All functions starting with C_ :	INTEGER*4
All variables:	REAL*8

Composition of Dry Air (from *Lemmon* et al. [14], [15]):

Component		Mole Fraction
Nitrogen	N ₂	0.7812
Oxygen	O ₂	0.2096
Argon	Ar	0.0092

Reference States

Property	Dry air	Water	
Pressure	1.01325 bar	6.11657 mbar	
Temperature	0 °C	0.01 °C	
Enthalpy	0 kJ/ kg _{Air}	0.000611783 kJ/ kg _{Air}	
Internal energy	- 78.37885533 kJ/ kg _{Air}	0 kJ/ kg _{Air}	
Entropy	0.161802887 kJ/(kg _{Air} K)	0 kJ/ (kg _{Air} K)	

Units

- p Mixture pressure in bar
- t Temperature in °C
- x_w Humidity ratio (Absolute humidity) in g steam(water, ice)/kg dry air
- φ Relative humidity in % (only defined for unsaturated and saturated humid air)

Range of Validity

Temperature: $t = -143.15 \,^{\circ}\text{C} \dots 1726.85 \,^{\circ}\text{C}$ Mixture pressure: $p = 6.112 \,\text{mbar} \dots 1000 \,\text{bar}$

Calculation Algorithm

Saturated and unsaturated air $(0 < x_w \le x_{ws})$:

Ideal mixture of dry air and steam

- Dry air:
 - v_{\parallel} , h_{\parallel} , u_{\parallel} , s_{\parallel} c_{D} from Lemmon et al. [14]
 - λ , η from Lemmon et al. [15]
- Steam:
 - v, h, u, s_p c_p of steam from IAPWS-IF97 [1], [2], [3], [4]
 - λ , η for $0 ^{\circ}$ C \leq t \leq 800 $^{\circ}$ C from IAPWS-85 [6], [7] for t < 0 $^{\circ}$ C and t > 800 $^{\circ}$ C from *Brandt* [12]

Supersaturated humid air (liquid fog or ice fog)

- Liquid fog $(x_w > x_{ws})$ and $t \ge 0.01$ °C

Ideal mixture of saturated humid air and water

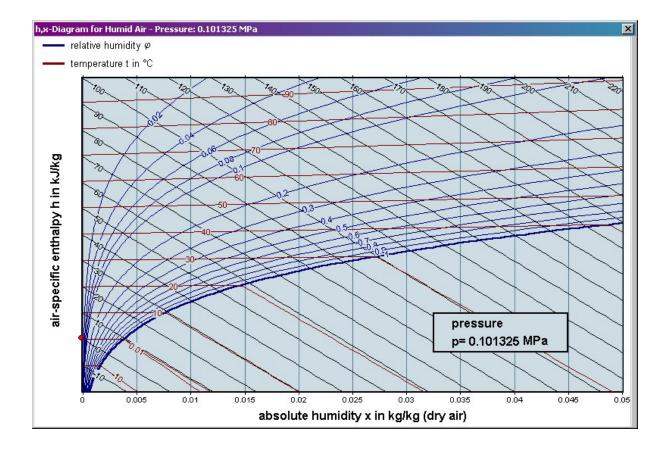
- Saturated humid air (see above)
- v, h, u, s, c_p of liquid droplets from IAPWS-IF97 [1], [2], [3], [4]
- λ , η of liquid droplets from IAPWS-85 [6], [7]
- Ice fog $(x_w > x_{ws})$ and t < 0.01°C

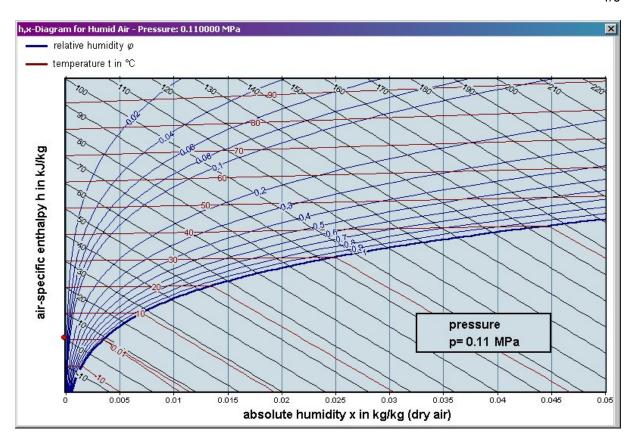
Ideal mixture of saturated humid air and ice

- Saturated humid air (see above)
- *v*, *h*, s of ice crystals from IAPWS-06 [18], [19]
- λ , c_p of ice crystals as constant value
- η , κ , w of saturated humid air

 $x_{ws}(p,t)$ from saturation pressure $p_{ds}(p,t)$ of water in gas mixtures

 $p_{ds}(p,t)$ is the saturation vapor pressure from $p_{ds}(p,t) = f(p,t) \cdot p_{s}(t)$


- f(p,T) from Herrmann et al. [25], [26],
- $p_s(t)$ for $t \ge 273.16$ K from IAPWS IF97 [1], [2], [3], [4],
- $p_s(t)$ for t < 273.15 K from IAPWS-08 [16], [17].


1.2 Thermodynamic Diagrams

FluidEXLGraphics enables representation of the calculated property values in the following thermodynamic diagrams:

- h,x-Diagram p = 0.101325 MPa
- h,x-Diagram p = 0.11 MPa

The diagrams, in which the calculated state point will be represented are shown below.

2. Application of FluidEXLGraphics in Excel®

The FluidEXL^{Graphics} Add-In has been developed to calculate thermophysical properties in Excel[®] more conveniently. Within Excel[®], it enables the direct call of functions relating to humid air from the LibHuAir property library. Furthermore, the program enables representation of the calculated values in various thermodynamic diagrams.

2.1 Installing FluidEXL^{Graphics}

If FluidEXL^{Graphics} has not yet been installed or if there is a version installed which has been delivered before June 2010, please complete the initial installation procedure described below.

If FluidEXL^{Graphics} has already been installed in a version which has been delivered after June 2010, you simply need to copy the files which belong to the LibHuAir library. In this case, follow the subsection "Adding the LibHuAir Library."

Installing FluidEXL Graphics for 32-bit Office®

Complete the following steps for initial installation of FluidEXL Graphics.

Before you begin, it is best to uninstall any trial version or full version of FluidEXL*Graphics* delivered before April 2010.

After you have downloaded and extracted the zip-file

```
"CD_FluidEXL_Graphics_LibHuAir_Eng.zip" (for English version of Windows),

"CD_FluidEXL_Graphics_LibHuAir.zip" (for German version of Windows)
you will see the folder
```

```
CD_FluidEXL_Graphics_LibHuAir_Eng (for English version of Windows)
CD_FluidEXL_Graphics_LibHuAir (for German version of Windows)
```

in your Windows Explorer[®], Norton Commander[®] or any other similar program you may be using.

Now, open this folder by double-clicking on it.

Within this folder you will see the following files:

```
FluidEXL_Graphics_LibHuAir_Docu_Eng.pdf
```

FluidEXL_Graphics_LibHuAir_Setup.exe (for German version of Windows)
FluidEXL_Graphics_LibHuAir_Eng_Setup.exe (for German version of Windows)

FluidEXL_Graphics.xla (for German version of Windows)
FluidEXL_Graphics_Eng.xla (for English version of Windows)

LibHuAir.dll

LibHuAir.hlp (for German version of Windows)
LibHuAir_Eng.hlp (for English version of Windows).

In order to run the installation of FluidEXL^{Graphics} including the LibHuAir property library double-click the file

```
FluidEXL_Graphics_LibHuAir_Eng_Setup.exe (for English version of Windows)
FluidEXL_Graphics_LibHuAir_Setup.exe (for German version of Windows)
```

Installation may start with a window noting that all Windows[®] programs should be closed. When this is the case, the installation can be continued. Click the "Next >" button.

In the following dialog box, "Choose Destination Location", the default path offered automatically for the installation of FluidEXL*Graphics* is

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL_Graphics (for German version of Windows)

By clicking the "Browse..." button, you can change the installation directory before installation (see figure below).

Figure 2.1: Choose Destination Location

Finally, click on "Next >" to continue installation; click "Next >" again in the "Start Installation" window which follows in order to start the installation of FluidEXL^{Graphics}.

After FluidEXL^{Graphics} has been installed, the sentence "FluidEXL Graphics LibHuAir has been successfully installed." will be shown. Confirm this by clicking the "Finish" button.

The installation of FluidEXLGraphics has been completed.

During the installation process the following files

advapi32.dll UNWISE.EXE

Dformd.dll LC.dll
Dforrt.dll msvcrt.dll
INSTALL_EXL.LOG msvcp60.dll

FluidEXL_Graphics_Eng.xla (for English version of Windows)
FluidEXL_Graphics.xla (for German version of Windows)

have been copied into the chosen destination folder, in the standard case

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL_Graphics (for German version of Windows)

In the next step, the following files from the extracted folder

CD_FluidEXL_Graphics_LibHuAir_Eng (for English version of Windows)
CD_FluidEXL_Graphics_LibHuAir (for German version of Windows)

must be copied into the chosen destination folder (the standard being

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL_Graphics (for German version of Windows)

using an appropriate program such as Explorer or Norton Commander:

FluidEXL_Graphics_Eng.xla (for English version of Windows)
FluidEXL Graphics.xla (for German version of Windows)

LibHuAir.dll

LibHuAir_Eng.hlp (for English version of Windows)
LibHuAir.hlp (for German version of Windows).

Installing FluidEXL^{Graphics} for 64-bit Office®

Complete the following steps for initial installation of FluidEXLGraphics.

Before you begin, it is best to uninstall any trial version or full version of FluidEXL^{Graphics} delivered before June 2010.

After you have downloaded and extracted the zip-file

"CD_FluidEXL_Graphics_LibHuAir_x64_Eng.zip" (for English version of Windows)

"CD_FluidEXL_Graphics_LibHuAir_x64.zip" (for German version of Windows)

you will see the folder

CD_FluidEXL_Graphics_LibHuAir_Eng (for English version of Windows)
CD_FluidEXL_Graphics_LibHuAir (for German version of Windows)

in your Windows Explorer, Norton Commander etc.

Now, open this folder by double-clicking on it.

Within this folder you will see the following files

FluidEXL_Graphics_LibHuAir_Docu_Eng

FluidEXL_Graphics_Eng.xla (for English version of Windows)
FluidEXL_Graphics_Eng.xla (for German version of Windows)
FluidEXL_Graphics_Eng_Setup_64.msi (for English version of Windows)
FluidEXL_Graphics_Setup_64.msi (for German version of Windows)

LibHuAir.dll

LibHuAir_Eng.hlp (for English version of Windows)
LibHuAir.hlp (for German version of Windows)

Setup.exe

and the folders

vcredist x64

WindowsInstaller3 1.

In order to run the installation of FluidEXL*Graphics* double-click the file Setup.exe.

If the "Microsoft Visual C++ 2010 x64 Redistributable Pack" is not running on your computer yet, installation will start with a window noting that the "Visual C++ 2010 runtime library (x64)" will be installed on your machine (see figure below).

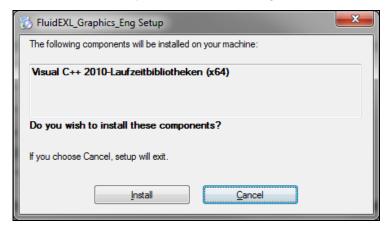


Figure 2.2: Installing the "Visual C++ 2010 runtime library (x64)"

Click on "Install" to continue.

In the following window you are required to accept the Microsoft[®] license terms to install the "Microsoft Visual C++ 2010 x64 Redistributable Pack" by ticking the box next to "I have read and accept the license terms" (see figure below).

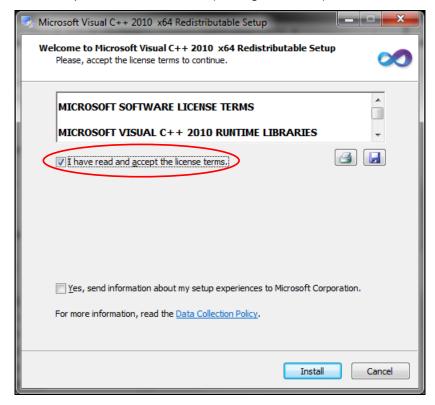


Figure 2.3: Accepting the license terms

Now click on "Install" to continue installation.

After the "Microsoft Visual C++ 2010 x64 Redistributable Pack" has been installed, you will see the sentence "Microsoft Visual C++ 2010 x64 Redistributable has been installed." Confirm this by clicking "Finish."

Now the installation of FluidEXL_Graphics_Eng_64 starts with a window noting that the installer will guide you through the installation. Click the "Next >" button to continue.

In the following dialog box, "Select Installation Folder," the default path offered automatically for the installation of FluidEXL^{Graphics} is

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL_Graphics (for German version of Windows).

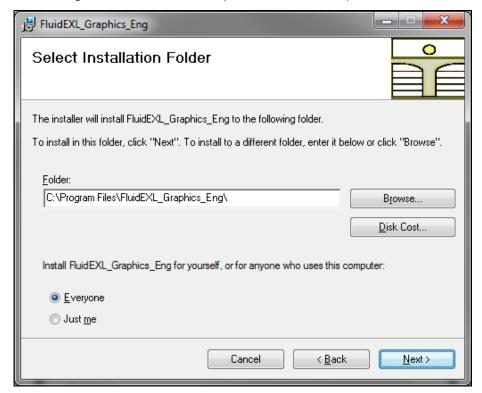


Figure 2.4: Choosing the Installation Folder of FluidEXL^{Graphics}

Finally, click on "Next >" to continue installation; click "Next >" again in the "Confirm Installation" window which follows in order to start the installation of FluidEXL *Graphics*.

After FluidEXL^{Graphics} has been installed, you will see the sentence "FluidEXL_Graphics_Eng has been successfully installed." Confirm this by clicking the "Close" button.

During the installation process the following files will have been copied into the destination folder chosen, the standard being C:\Program Files\FluidEXL_Graphics_Eng:

capt_ico_big.ico libmmd.dll libifcoremd.dll LC.dll libiomp5md.dll.

In addition, the two subdirectories \FORMULATION97 and \FLuft were created in the destination folder.

In the next step, the files below, found on your CD, must be copied into the chosen destination folder (the standard being C:\Program Files\FluidEXL_Graphics_Eng) using an appropriate program such as Explorer or Norton Commander:

FluidEXL_Graphics_Eng.xla (for English version of Windows)
FluidEXL_Graphics.xla (for German version of Windows)

LibHuAir.dll
LibHuAir_Eng.hlp (for English version of Windows).
LibHuAir.hlp (for German version of Windows).

2.2 Registering FluidEXL^{Graphics} as Add-In in Excel[®]

Registering FluidEXL^{Graphics} as Add-In in Excel[®], versions 2003 or earlier

After the installation of FluidEXL*Graphics*, the program must be registered as an Add-In in Excel[®]. In order to do so, start Excel and carry out the following steps:

- Click "Tools" in the upper Menu bar in Excel
- Here, click the "Add-Ins..." menu item

After a short delay, the dialog box "Add-Ins" will appear

- Click "Browse..."
- In the following dialog box, click your chosen destination folder (the standard being C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows) C:\Programme\FluidEXL_Graphics (for German version of Windows))
- Here click the file

```
"FluidEXL_Graphics_Eng.xla" (for English version of Windows) or 
"FluidEXL_Graphics.xla" (for German version of Windows)
```

and afterwards click "OK".

Now, the entry

```
"FluidEXL Graphics Eng" (for English version of Windows)
"FluidEXL Graphics" (for German version of Windows)
```

occurs in the Add-Ins list.

Note:

As long as the check box next to the file name

```
"FluidEXL Graphics Eng" (for English version of Windows) or 
"FluidEXL Graphics" (for German version of Windows),
```

is ticked, this Add-In will be loaded automatically every time you start Excel until you untick the box by clicking on it again.

- In order to register FluidEXL Graphics as an Add-In click "OK" in the "Add-Ins" dialog box.

Now, the new FluidEXL^{Graphics} menu bar will appear in the upper menu area of your Excel screen, marked with a red circle in the next figure.

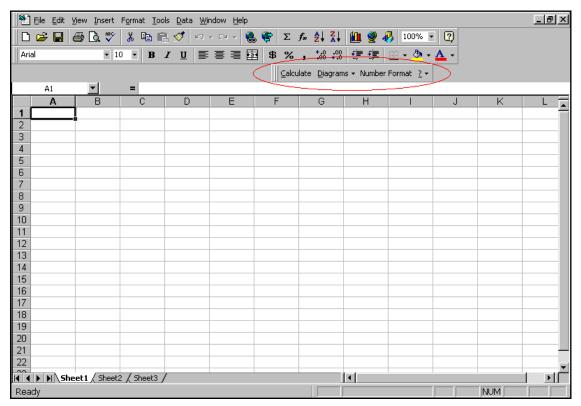


Figure 2.5: Menu bar of FluidEXLGraphics

Registering FluidEXL^{Graphics} as Add-In in Excel[®] 2007 (or later versions)

After installation in Windows[®], FluidEXL^{Graphics} must be registered in Excel[®] as from version 2007 as an Add-In. For this, start Excel and carry out the following steps:

- Click the Windows Office button in the upper left corner of Excel
- Click on the "Excel Options" button in the menu which appears (see figure below)

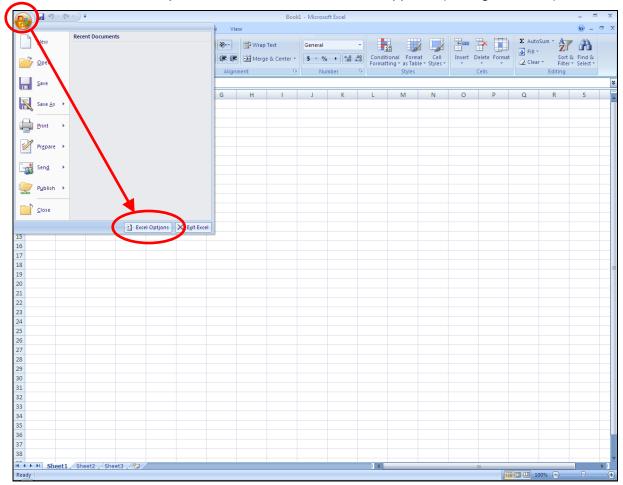


Figure 2.6: Registering FluidEXL Graphics as Add-In in Excel® 2007

Click on "Add-Ins" in the next menu

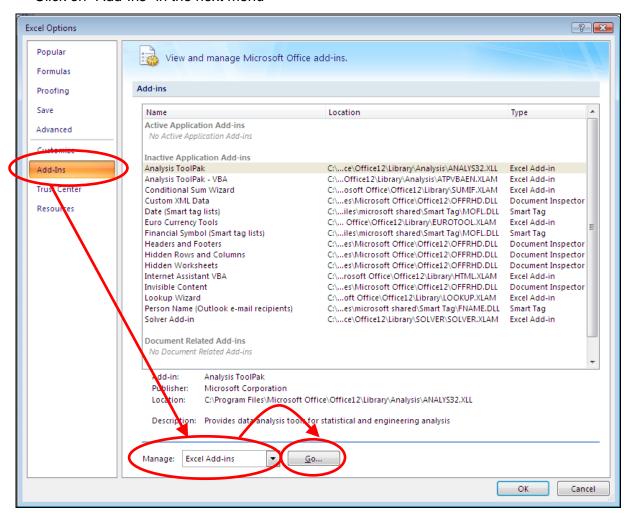


Figure 2.7: Dialog window "Excel Options"

- Should it not be shown in the list automatically, choose and click on "Excel Add-ins" (found next to "Manage:" in the lower area of the menu)
- Then click the "Go..." button
- Click "Browse" in the following window and locate the destination folder, in the standard case C:\Program Files\FluidEXL_Graphics_Eng; within that folder click on the file named

"FluidEXL_Graphics_Eng.xla" (for English version of Windows)
"FluidEXL_Graphics.xla" (for German version of Windows)

and then click the "OK" button.

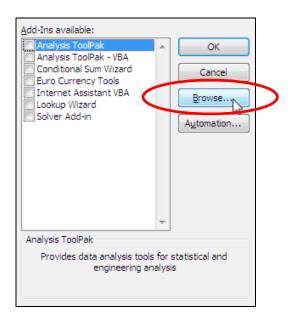


Figure 2.8: Dialog window "Add-Ins available"

Now, "FluidEXL Graphics Eng" is shown in the Add-Ins list.
 (If a check-mark is situated in the box next to the name "FluidEXL Graphics", this Add-In will automatically be loaded whenever Excel starts. This will continue to occur unless the check-mark is removed from the box by clicking on it.)

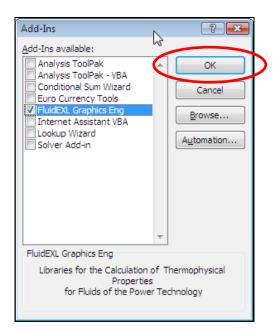


Figure 2.9: Dialog window "Add-Ins"

- In order to register the Add-In click the "OK" button in the "Add-Ins" window. In order to use FluidEXL*Graphics* in the following example, click on the menu item "Add-Ins" which is shown in the next image.

Figure 2.10: Menu item "Add-Ins"

In the upper menu region of Excel, the FluidEXL^{Graphics} menu bar will appear as marked with the red circle in the next image.

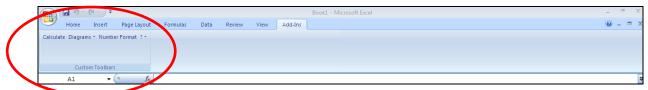


Figure 2.11: FluidEXL Graphics menu bar

Installation of FluidEXL Graphics in Excel as from version 2007 is now finished. FluidEXL Graphics can be used analogous to the description of Excel until version 2007.

Adding the LibHuAir Library (FluidEXL^{Graphics} is already installed)

If FluidEXL^{Graphics} has already been installed in the June 2010 version you only have to copy the following files provided in the extracted folder you only have to copy the following files provided in the extracted folder

```
CD_FluidEXL_Graphics_LibHuAir (for German version of Windows)
CD_FluidEXL_Graphics_LibHuAir_Eng (for English version of Windows)
```

into the folder you have chosen for the installation of FluidEXL *Graphics* (the standard being

```
C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows®) or C:\Programme\FluidEXL_Graphics (for German version of Windows)),
```

using an appropriate program such as Explorer, Windows or Norton Commander:

```
FluidEXL_Graphics_Eng.xla (for English version of Windows)
FluidEXL_Graphics.xla (for German version of Windows)
LibHuAir.dll
LibHuAir_Eng.hlp (for English version of Windows)
LibHuAir.hlp (for German version of Windows)
```

From within Excel you can now select the "Humid Air LibHuAir" DLL library property functions via the FluidEXL^{Graphics} menu bar (the example calculation can be found in chapter 2.5 on page 2/20).

2.3 The FluidEXL^{Graphics} Help System

As mentioned earlier, FluidEXL^{Graphics} also provides detailed online help functions. If you are running Windows Vista or Windows 7, please note the paragraph "Using the FluidEXL^{Graphics} Online-Help in Windows Vista or Windows 7." For general information in Excel[®]:

- Click on "?" and then "Help" in the FluidEXL^{Graphics} menu bar. Information on individual property functions may be accessed via the following steps:
- Click "Calculate" in the FluidEXL Graphics menu bar.
- Click on the "Humid Air LibHuAir" library under "Or select a <u>category:</u>" in the "Insert Function" window which will appear.
- Click the "Help on this function" button in the lower left-hand edge of the "Insert Function" window.
- If the "Office Assistant" is active, first double-click "Help on this feature" and in the next

menu click "Help on selected function".

If the

"LibHuAir_Eng.hlp" (for English version of Windows)
"LibHuAir.hlp" (for German version of Windows)

function help cannot be found, confirm the question whether you want to look for it yourself with "Yes". Search and click on the "LibHuAir_Eng.hlp"/"LibHuAir.hlp" file in the installation menu of FluidEXL^{Graphics} in the window which is opened, in the standard case

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows) or C:\Programme\FluidEXL_Graphics (for English version of Windows),

and click "Yes" in order to complete the search.

Using the FluidEXL Graphics Online Help in Windows Vista or Windows 7

If you are running Windows Vista or Windows 7 on your computer, you might not be able to open Help files. To view these files you have to install the Microsoft[®] Windows Help program which is provided by Microsoft[®]. Please carry out the following steps in order to download and install the Windows Help program.

Open Microsoft Internet Explorer® and go to the following address:

http://support.microsoft.com/kb/917607/

You will see the following web page:

Figure 2.9: Microsoft® Support web page

Scroll down until you see the headline "Resolution." Here you can see the bold hint:

"Download the appropriate version of Windows Help program (WinHlp32.exe), depending on the operating system that you are using:"

The following description relates to Windows[®] 7. The procedure is analogous for Windows[®] Vista.

Click on the link "Windows Help program (WinHlp32.exe) for Windows 7" (see Figure 2.10).

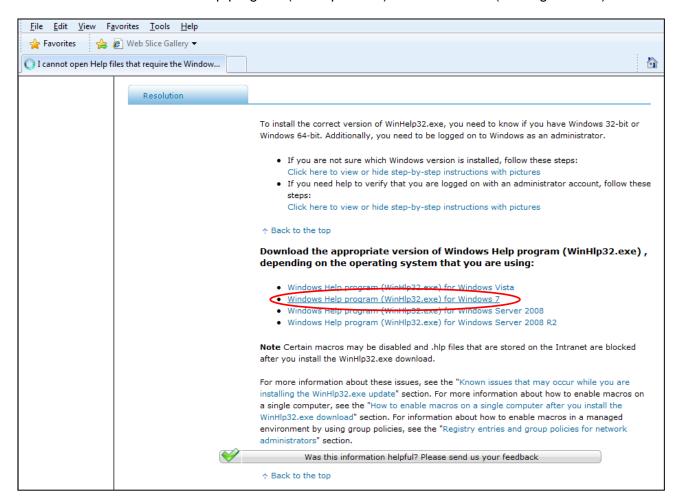


Figure 2.10: Selecting your Windows version

You will be forwarded to the Microsoft Download Center where you can download the Microsoft Windows Help program.

First, a validation of your Windows License is required.

To do this click on the "Continue" button (see Figure 2.11).

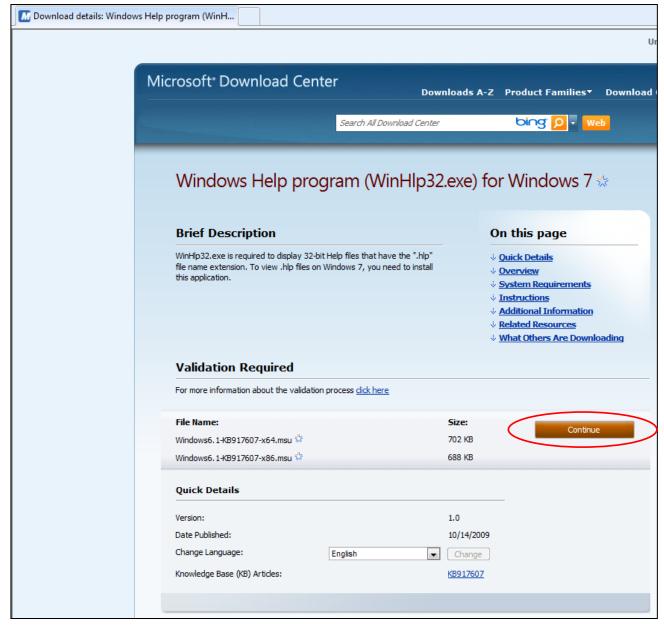


Figure 2.11: Microsoft® Download Center

You will be forwarded to a web page with instructions on how to install the Genuine Windows Validation Component.

At the top of your Windows Internet Explorer you will see a yellow information bar. Right-click this bar and select "Install ActiveX Control" in the context menu (see Figure 2.12).

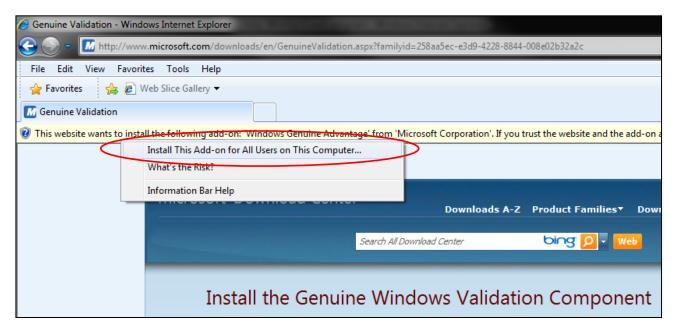


Figure 2.12: Installing the Genuine Windows Validation Component

A dialog window appears in which you will be asked if you want to install the software. Click the "Install" button to continue (see Figure 2.13).

Figure 2.13: Internet Explorer – Security Warning

After the validation has been carried out you will be able to download the appropriate version of Windows Help program (see Figure 2.14).

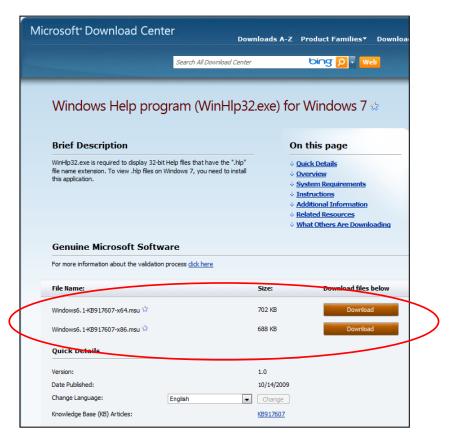


Figure 2.14: Downloading the Windows Help program

To download and install the correct file you need to know which Windows version (32-bit or 64-bit) you are running on your computer.

If you are running a 64-bit operating system, please download the file Windows6.1-KB917607-x64.msu.

If you are running a 32-bit operating system, please download the file Windows6.1-KB917607-x86.msu.

In order to run the installation of the Windows Help program double-click the file you have just downloaded on your computer:

Windows6.1-KB917607-x64.msu (for 64-bit operating system) Windows6.1-KB917607-x86.msu. (for 32-bit operating system).

Installation starts with a window searching for updates on your computer. After the program has finished searching you may see the following window.



Figure 2.15: Windows Update Standalone Installer

In this case, the installation can be continued by clicking the "Yes" button. (If you have already installed this update, you will see the message "Update for Windows (KB917607) is already installed on this computer.")

In the next window you have to accept the Microsoft license terms before installing the update by clicking on "I Accept" (see Figure 2.16)

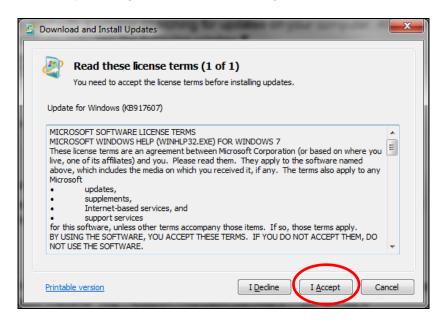


Figure 2.16: Windows License Terms

Installation starts once you have clicked the "I Accept" button (see Figure 2.17).

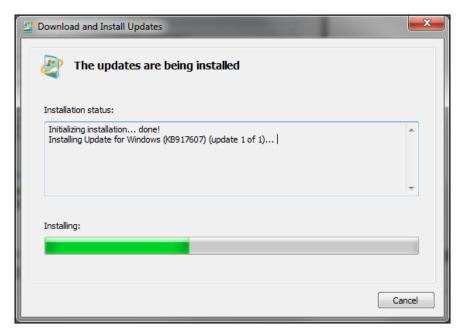


Figure 2.17: Installation process

After the Windows Help program has been installed, the notification "Installation complete" will appear. Confirm this by clicking the "Close" button.

The installation of the Windows Help program has been completed and you will now be able to open the Help files.

2.4 Licensing the LibHuAir Property Library

The licensing procedure must be carried out when Excel[®] starts up and a FluidEXL^{Graphics} prompt message appears. In this case, you will see the "License Information" window for LibHuAir (see figure below).

Figure 2.18: "License Information" window

Here you are asked to type in the license key which you have obtained from Zittau/Goerlitz University of Applied Sciences. If you do not have this, or have any questions, you will find contact information on the "Content" page of this User's Guide or by clicking the yellow question mark in the "License Information" window. Then the following window will appear:

Figure 2.19: "Help" window

If you do not enter a valid license it is still possible to start Excel[®] by clicking "Cancel". In this case, the LibHuAir property library will display the result "–11111111" for every calculation. The "License Information" window will appear every time you start Excel[®] unless you uninstall FluidEXL^{Graphics} according to the description in section 2.3 of this User's Guide. Should you not wish to license the LibHuAir property library, you have to delete the files

LibHuAir.dll

LibHuAir.hlp (for German version of Windows) LibHuAir_Eng.hlp (for English version of Windows)

in the installation folder of FluidEXLGraphics (the standard being

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Program Files\FluidEXL_Graphics (for German version of Windows))

using an appropriate program such as Explorer® or Norton Commander®.

With this procedure the LibHuAir property library has been licensed.

2.5 Example: Calculation of $h_l = f(p,t,x_w)$

Now we will calculate, step by step, the air-specific enthalpy $h_{\rm l}$ as a function of mixture pressure p, temperature t and absolute humidity $x_{\rm w}$, using FluidEXL Graphics . The following description relates to Excel 97. The procedure is analogous for Excel 2000 and XP.

Carry out the following steps:

- Start Excel®
- Enter the value for *p* in bar into a cell (Range of validity: p = 6.112 mbar ... 1000 bar)
 - ⇒ e.g.: Enter the value 1.01325 into cell A1
- Enter the value for t in °C into cell (Range of validity: t = -143.15°C ... 1726.85°C)
 - ⇒ e.g.: Enter the value 20 into cell B1
- Enter the value for x_W in g_{Water}/kg_{Air} (dry Air) into a cell (Range of validity: x_W ≥ 0 g/kg_{Air})
 - ⇒ e.g.: Enter the value 10 into cell C1
- Click the cell in which the air specific enthalpy h_l in kJ/kg_{Air} is to be displayed
 - ⇒ e.g.: click on the cell D1
- Click "Calculate" in the menu bar of FluidEXL^{Graphics}.
 The "Insert Function" window appears as shown in the next figure

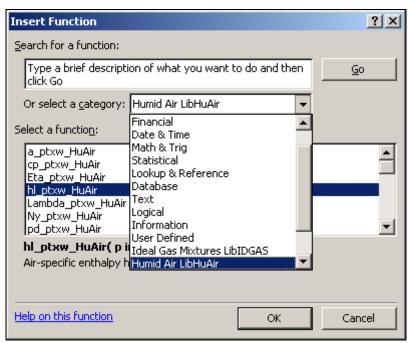


Figure 2.20: Choice of library and function name

- Search and click the "Humid Air LibHuAir" library next to "Or select a category:" in the upper part of the window.

- Search and click the "hl_ptxw_HuAir" function under "Select a function:" right below.
- Click the "OK" button
 The "Function Arguments" menu for the "hl_ptxw_HuAir" function, as shown in figure 2.21, appears.

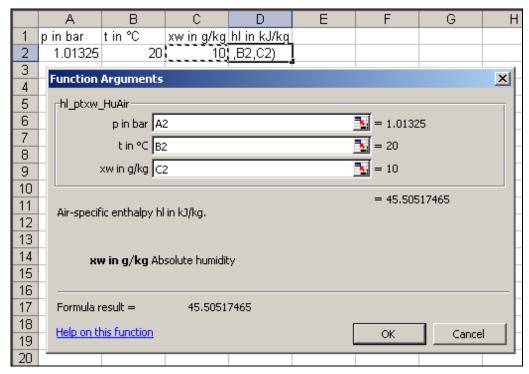


Figure 2.21: Input menu for the function

- The cursor is now situated on the line next to "p in bar". You can now enter the value for the mixture pressure p either by clicking the cell which contains the value for p or by typing the number of the cell or by entering the value for p directly into the window.
 - ⇒ e. g.: Click the cell A1
- Situate the cursor on the line next to "t in °C". You can now enter the value for the temperature either by clicking the cell which contains the value for *t* or by typing the number of the cell or by entering the value for *t* directly into the window.
 - ⇒ e. g.: Type B1 into the line next to "t in °C"
- Situate the cursor on the line next to " x_w in g/kg". You can now enter the value for the absolute humidity x_w either by clicking the cell which contains the value for x_w or by typing the number of the cell or by entering the value for x_w directly into the window.
 - ⇒ e. g.: Click the cell C1
- Click the "Finish" button

The result for h_l in kJ/kg_{Air} appears in the cell selected above.

 \Rightarrow The result in our sample calculation here is: $h_1 = 45.50517465$.

The calculation of $h_1 = f(p,t,x_w)$ has thus been completed.

You can now arbitrarily change the values for p, t or x_w in the appropriate cells. The enthalpy h_{\parallel} is recalculated and updated every time you change the data. This shows that the Excel[®] data flow and the DLL calculations are working together successfully.

Hint

If the input values entered are located outside the range of validity or if they do not fit together the result for the calculated function will always be -1 or -1000.

For further property functions calculable in FluidEXL^{Graphics} see the function table in Chapter 1.

Number Formats

When using FluidEXL^{Graphics} you have the option of choosing special number formats in advance.

Changes can be made as follows:

- Click the cell or select and click on the cells you wish to format.

 (In empty cells the new format will be applied once a value has been entered.)
- Click "Number Format" in the FluidEXL Graphics menu bar.
- Select the desired number format in the dialog box which appears:

"STD – Standard": Insignificant zeros behind the decimal point are not

shown.

"FIX – Fixed Number of Digits": All set decimal places are shown, including insignificant

zeros.

"SCI – Scientific Format": Numbers are always shown in the exponential form with

the set number of decimal places.

- Set the "Number of decimal places" by entering the number into the appropriate window.
- Confirm this by clicking the "OK" button.

As an example, the table below shows the three formats for the number 1.230 adjusted for three decimal places:

STD	1.23
FIX	1.230
SCI	1.230E+00

This formatting can also be applied to cells which have already been calculated.

2.6 Representation of Calculated Properties in Thermodynamic Diagrams

In the following section, the calculated state point is to be represented in thermodynamic diagrams with the help of FluidEXL *Graphics*. Calculations can be represented in the following diagrams:

- h-x Diagram p = 0.101325 MPa
- h-x Diagram p = 0.11 MPa

In order to represent the calculated values in a h-x diagram for p = 0.101325 MPa, for example, the absolute humidity and specific entropy values for the point to be represented must be marked.

- Click on the cell with the value for *h* (as *h* is the ordinate in the diagram)
 - ⇒ e. g.: Click the cell D1
- Hold down the "Ctrl" key and simultaneously click the cell with the value for x_w (as x_w is the abscissa in the diagram)
 - ⇒ e. g.: Hold down the "Ctrl" key and click the cell C1

Note:

The value pairs to be depicted (Y,X) here (h, x_w) must always be located in the same row or column.

- As displayed in the next figure, click "Diagrams" in the FluidEXL^{Graphics} menu bar and choose "h-x Diagram 0.101325 MPa" in the drop-down menu

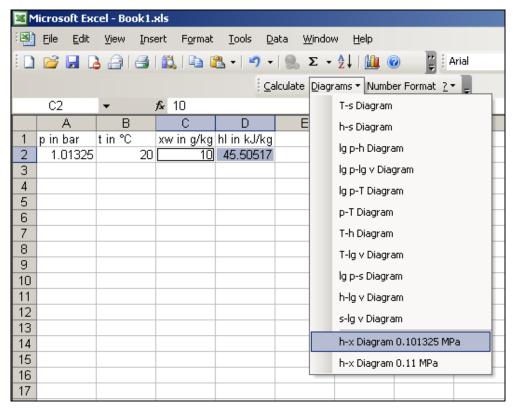


Figure 2.22: Marking the values and choosing the diagram

The *h-x* diagram shown in the figure below will appear. The calculated state point is marked as a red point.

| h,x-Diagram for Humid Air - Pressure: 0.101325 MPa

Figure 2.23: *h-x* Diagram including the state point

Note:

If the coloring is distorted you need to increase the amount of colors displayed on the screen by Windows[®] to more than 256 colors. The preferences can be set within Windows by going to "Control Panel" and then under "Screen".

To close the h-x diagram, click on the "x" in the upper-right hand corner of the h-x Diagram window.

Note - Diagrams with various state points:

If you calculate various state points, they can be represented in <u>one</u> selected diagram. To do this, first mark with the cursor those values which are to represent the values of y in the diagram. Afterwards, hold down the "Ctrl" key and mark the corresponding values which are to represent the values of x in the diagram. Note once more that all value pairs which should be represented (Y,X) must be located in one row in Excel[®]. Proceed as described above.

Note - Diagrams without any state points:

If you wish to have a look at a diagram without performing a calculation, mark two empty cells located in one row and select a diagram.

Printing the Diagrams

The state diagrams can be printed with the help of Word[®], which also belongs to the Office suite[®].

- When the selected diagram is on the screen, hold down the "Alt" key and press the "Print" key briefly.
 - (This keyboard shortcut copies the current window, e.g., the diagram, into the Windows clipboard where it is ready to be pasted into other Windows[®] application programs.)
- Start Word by clicking "Start" in the Windows task bar, then "Programs", and then "Microsoft Word".
- As the diagram is to be printed in landscape format, change the (now loaded) Word application window into the landscape format.

 In order to do so, click "File" in the upper menu bar of Word, and then "Page Setup". Click "Margins" in the window which now appears, then "Landscape". Confirm this change by clicking "OK".
- In order to paste the diagram out of the Windows clipboard, click "Edit" in the upper menubar of Word, and then "Paste".
 - The diagram out of FluidEXL*Graphics* appears in the Word application window and is ready to save and/or print.
- Start the printing process by clicking "File" in the upper menu bar of Word, and then "Print". Proceed as usual in the "Print" window which appears.

The diagram will be printed in the A4 landscape format, if you do not change the preferences.

In order to continue working in Excel, click "Microsoft Excel - ..." in the Windows task bar.

Proceed in the same way to print further diagrams.

2.6 Removing FluidEXL Graphics

Should you wish to remove only the LibHuAir library, delete the files

LibHuAir.dll

LibHuAir_Eng.hlp (for English version of Windows)
LibHuAir.hlp (for German version of Windows)

in the directory selected for the installation of FluidEXL Graphics (in the standard case

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows) (for German version of Windows),

by using an appropriate program such as Explorer®, Windows, or Norton Commander.

Unregistering FluidEXL^{Graphics} as Add-In in Excel[®], versions 2003 or earlier

To remove FluidEXL Graphics completely, proceed as follows: First, the registration of

FluidEXL_Graphics_Eng.xla (for English version of Windows®) or FluidEXL_Graphics.xla (for German version of Windows)

has to be canceled in Excel.

In order to do that, click "Tools" in the upper menu bar of Excel and here "Add-Ins...". Untick the box on the left-hand side of

"FluidEXL Graphics Eng" (for English version of Windows) or "FluidEXL Graphics" (for German version of Windows)

in the window that appears and click the "OK" button. The additional menu bar of FluidEXL *Graphics* disappears from the upper part of the Excel window. Afterwards, we recommend closing Excel.

Click "View" in the upper menu bar of Excel, then "Toolbars" and then "Customize..." in the list box which appears.

"FluidEXL Graphics Eng" (for English version of Windows) or "FluidEXL Graphics" (for German version of Windows)

is situated at the bottom of the "Toolbars" entries, which must be selected by clicking on it. Delete the entry by clicking "Delete". You will be asked whether you really want to delete the toolbar – click "OK". Afterwards, we recommend closing Excel.

Within the next step delete the files

LibHuGas.dll

LibHuGas_Eng.hlp (for English version of Windows®)
LibHuGas.hlp (for German version of Windows)

in the directory selected for the installation of FluidEXL Graphics (in the standard case

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL Graphics (for German version of Windows)).

using an appropriate program such as Explorer® or Norton Commander.

In order to remove FluidEXL^{Graphics} from Windows and the hard disk drive, click "Start" in the Windows task bar, select "Settings" and click "Control Panel". Now double-click on "Add or Remove Programs". In the list box of the "Add/Remove Programs" window that appears select

"FluidEXL Graphics Eng" (for English version of Windows) or

"FluidEXL Graphics" (for German version of Windows)

by clicking on it and click the "Add/Remove..." button. In the following dialog box click "Automatic" and thereafter "Next >". Click "Finish" in the "Perform Uninstall" window. Answer the question whether all shared components shall be removed with "Yes to All". Finally, close the "Add/Remove Programs" and "Control Panel" windows.

Now FluidEXLGraphics has been removed.

Unregistering FluidEXL^{Graphics} as Add-In in Excel[®] 2007 (or later versions)

In order to unregister the FluidEXL^{Graphics} Add-In in Excel[®] 2007 start Excel and carry out the following commands:

- Click the Windows Office® button in the upper left corner of Excel
- Click on the "Excel Options" button in the menu which appears

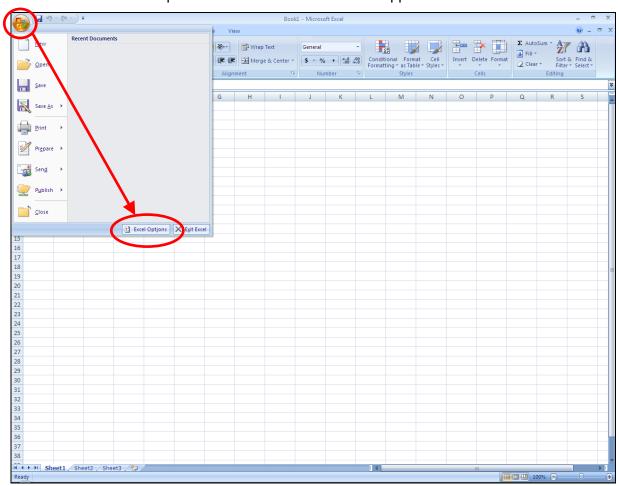


Figure 2.24: Unregistering FluidEXL Graphics as Add-In in Excel® 2007

Click on "Add-Ins" in the next menu

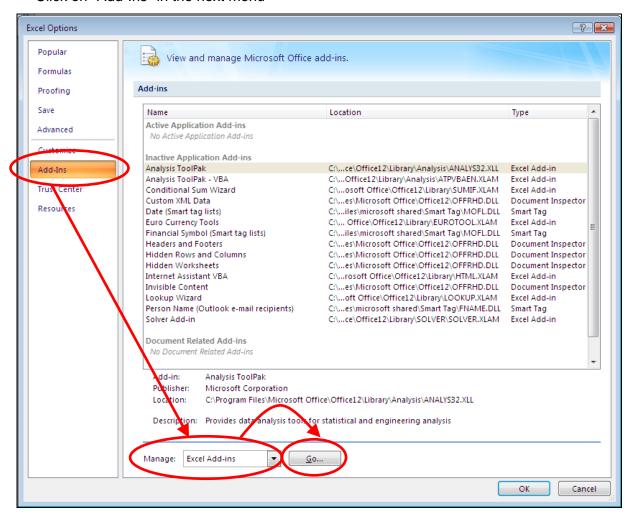


Figure 2.25: Dialog window "Add-Ins"

- If it is not shown in the list automatically, choose and click "Excel Add-ins" next to "Manage:" in the lower area of the menu
- Afterwards click the "Go..." button
- Remove the checkmark in front of

"FluidEXL Graphics Eng" (for English version of Windows)
"FluidEXL Graphics" (for German version of Windows)

in the window which now appears. Click the "OK" button to confirm your entry.

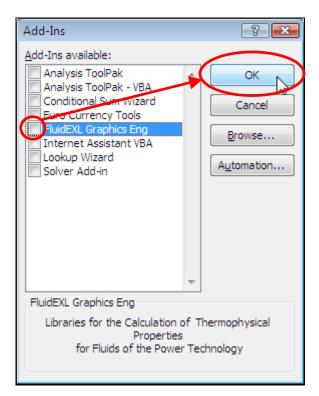


Figure 2.26: Dialog window "Add-Ins"

In order to remove FluidEXL^{Graphics} from Windows and the hard drive, click "Start" in the Windows task bar, select "Settings" and click "Control Panel."

Now, double click on "Add or Remove Programs."

In the list box of the "Add or Remove Programs" window that appears, select

"FluidEXL Graphics Eng" (for English version of Windows)
"FluidEXL Graphics" (for German version of Windows)

by clicking on it and then clicking the "Add/Remove..." button.

Click "Automatic" in the following dialog box and then the "Next >" button.

Click "Finish" in the "Perform Uninstall" window.

Answer the question of whether all shared components should be removed with "Yes to All." Finally, close the "Add or Remove Programs" and "Control Panel" windows.

Now FluidEXL *Graphics* has been completely removed from your computer.

3. Program Documentation

Thermal Diffusivity $a = f(p,t,x_w)$

Function Name:

a_ptxw_HuAir

Fortran Programs:

REAL*8 FUNCTION a_ptxw_HuAir(p,t,xw), REAL*8 p,t,xw
INTEGER*4 FUNCTION C_a_ptxw_HuAir(a,p,t,xw), REAL*8 a,p,t,xw

Input Values:

p - Mixture pressure p in bar

t - Temperature t in °C

 x_w - Absolute humidity x_w in g/kg_{Air}

Result:

a_ptxw_HuAir, a - Thermal diffusivity in m²/s

Range of Validity:

Temperature t: from -73.15°C to 1726.85°C

Mixture pressure p : from 6.112 mbar to 165.29 bar

Absolute humidity x_w : $ \geq 0$ g/kg_{Air}

Comments:

- Thermal diffusivity $a = \frac{\lambda}{\rho \cdot c_p}$

- Model of ideal mixture of real fluids

Results for wrong input values:

$$a_ptxw_HuAir$$
, $a = -1$

References:

Dry Air:

 λ from *Lemmon* et al. [15]

c_p from *Lemmon* et al. [14]

ρ from *Lemmon* et al. [14]

Steam in humid air and liquid droplets in fog:

 λ for 0°C \leq t \leq 800°C from IAPWS-85 [6] for t < 0°C and t > 800°C from *Brandt* [12]

 c_p from IAPWS-IF97 [1], [2], [3], [4]

ρ from IAPWS-IF97 [1], [2], [3], [4]

for t < 0.01 °C from IAPWS-06 [18], [19]

Specific Isobaric Heat Capacity $c_p = f(p,t,x_w)$

Function Name:

cp_ptxw_HuAir

Fortran Programs:

REAL*8 FUNCTION cp_ptxw_HuAir(p,t,xw), REAL*8 p,t,xw
INTEGER*4 FUNCTION C_cp_ptxw_HuAir(cp,p,t,xw), REAL*8 cp,p,t,xw

Input Values:

p - Mixture pressure p in bar

t - Temperature t in °C

x_w - Absolute humidity x_w in g/kg_{Air}

Result:

cp_ptxw_HuAir, cp - Specific isobaric heat capacity in kJ/(kg K)

Range of Validity:

Temperature t: from -143.15°C to 1726.85°C

Mixture pressure p: from 6.112 mbar to 165.29 bar

Absolute humidity $x_w : \ge 0 \text{ g/kg}_{Air}$

Comments:

- For unsaturated and saturated humid air $(x_w \le x_{ws})$, calculation as ideal mixture of real gases (dry air and steam)
- For supersaturated humid air $(x_w \ge x_{ws})$, calculation is not possible
- For temperatures greater than 500°C, the dissociation is taken into consideration

Results for wrong input values:

```
cp_ptxw_HuAir, cp = -1
```

References:

Dry Air:

from Lemmon et al. [14]

Steam in humid air and liquid droplets in fog:

from IAPWS-IF97 [1], [2], [3], [4]

Dissociation:

Dynamic Viscosity $\eta = f(p,t,x_w)$

Function Name:

Eta_ptxw_HuAir

Fortran Programs:

REAL*8 FUNCTION Eta_ptxw_HuAir(p,t,xw), REAL*8 p,t,xw
INTEGER*4 FUNCTION C_Eta_ptxw_HuAir(Eta,p,t,xw), REAL*8 Eta,p,t,xw

Input values:

p - Mixture pressure p in bar

t - Temperature t in °C

 x_w - Absolute humidity x_w in g/kg_{Air}

Result:

Eta_ptxw_HuAir, Eta - Dynamic viscosity in Pa s

Range of Validity:

Temperature t: from -73.15°C to 1726.85°C

Mixture pressure p: from 6.112 mbar to 165.29 bar

Absolute humidity $x_w : \ge 0 \text{ g/kg}_{Air}$

Comments:

- Model of ideal mixture of real fluids
- Neglect of ice crystals in ice fog (t < 0.01° C and $x_w > x_{ws}$)

Results for wrong input values:

Eta ptxw HuAir, Eta = -1

References:

Dry Air:

from Lemmon et al. [15]

Steam in humid air and liquid droplets in fog:

for $0^{\circ}C \le t \le 800^{\circ}C$ from IAPWS-85 [7]

for t < 0°C and t > 800°C from *Brandt* [12]

Air-Specific Enthalpy $h_l = f(p,t,x_w)$

Function Name:

hl_ptxw_HuAir

Fortran Programs:

REAL*8 FUNCTION hl_ptxw_HuAir(p,t,xw), REAL*8 p,t,xw
INTEGER*4 FUNCTION C_hl_ptxw_HuAir(hl,p,t,xw), REAL*8 hl,p,t,xw

Input values:

p - Mixture pressure p in bar

Temperature t in °C

 x_w - Absolute humidity x_w in g/kg_{Air}

Result:

hl_ptxw_HuAir, hl - Air-specific enthalpy in kJ/kgAir

Range of Validity:

Temperature t: from -143.15°C to 1726.85°C

Mixture pressure p: from 6.112 mbar to 165.29 bar

Absolute humidity $x_w : \ge 0 \text{ g/kg}_{Air}$

Comments:

- For unsaturated and saturated humid air $(x_w \le x_{ws})$, calculation as ideal mixture of real gases (dry air and steam)
- For fog $(x_w > x_{ws})$, calculation as ideal mixture of saturated humid air and water, ice
- For temperatures greater than 500°C, the dissociation is taken into consideration

Result for wrong input values:

 hl_ptxw_HuAir , hl = -1000

References:

Dry Air:

from Lemmon et al. [14]

Steam in humid air and liquid droplets in fog:

from IAPWS-IF97 [1], [2], [3], [4]

Ice crystals in fog:

according to IAPWS-06 [18], [19]

Dissociation:

Thermal Conductivity $\lambda = f(p,t,x_w)$

Function Name:

Lambda_ptxw_HuAir

Fortran Programs:

Input values:

p - Mixture pressure p in bar

t - Temperature t in °C

 x_w - Absolute humidity x_w in g/kg_{Air}

Result:

Lambda_ptxw_HuAir, Lambda - Heat conductivity in W/(m K)

Range of Validity:

Temperature t: from -73.15°C to 1726.85°C

Mixture pressure p: from 6.112 mbar to 165.29 bar

Absolute humidity $x_w : \ge 0 \text{ g/kg}_{Air}$

Comments:

- Model of ideal mixture of real fluids

Result for wrong input values:

Lambda_ptxw_HuAir, Lambda = -1

References:

Dry Air:

from Lemmon et al. [15]

Steam in humid air and humid droplets in fog:

for $0^{\circ}C \le t \le 800^{\circ}C$ from IAPWS-85 [6]

for $t < 0^{\circ}C$ and $t > 800^{\circ}C$ from *Brandt* [12]

Kinematic Viscosity $v = f(p,t,x_w)$

Function Name:

Ny_ptxw_HuAir

Fortran Programs:

REAL*8 FUNCTION Ny_ptxw_HuAir(p,t,xw), REAL*8 p,t,xw
INTEGER*4 FUNCTION C_Ny_ptxw_HuAir(Ny,p,t,xw), REAL*8 Ny,p,t,xw

Input values:

p - Mixture pressure p in bar

t - Temperature t in °C

 x_w - Absolute humidity x_w in g/kg_{Air}

Result:

Ny_ptxw_HuAir, Ny - Kinematic viscosity in m²/s

Range of Validity:

Temperature t: from -73.15°C to 1726.85°C

Mixture pressure p: from 6.112 mbar to 165.29 bar

Absolute humidity $x_w : \ge 0 \text{ g/kg}_{Air}$

Comments:

- Kinematic viscosity $v = \frac{\eta}{\rho} = \eta \cdot v$
- Model of ideal mixture of real fluid

Result for wrong input values:

$$Ny_ptxw_HuAir, Ny = -1$$

References:

Dry Air:

η from *Lemmon* et al. [15]

ρ from *Lemmon* et al. [14]

Steam in humid air and liquid droplets in fog:

 η for 0° C \leq t \leq 800 $^{\circ}$ C from IAPWS-85 [7]

for $t < 0^{\circ}C$ and $t > 800^{\circ}C$ from *Brandt* [12]

ρ from IAPWS-IF97 [1], [2], [3], [4]

for t < 0.01 °C from IAPWS-06 [18], [19]

Partial Pressure of Steam $p_d = f(p,t,x_w)$

Function Name:

pd_ptxw_HuAir

Fortran Programs:

REAL*8 FUNCTION pd_ptxw_HuAir(p,t,xw), REAL*8 p,t,xw
INTEGER*4 FUNCTION C_pd_ptxw_HuAir(pd,p,t,xw), REAL*8 pd,p,t,xw

Input values:

p - Mixture pressure p in bar

t - Temperature t in °C

 x_w - Absolute humidity x_w in g/kg_{Air}

Result:

pd_ptxw_HuAir, pd - Partial pressure of steam in bar

Range of Validity:

Temperature t: from -143.15°C to 1726.85°C

Mixture pressure p: from 6.112 mbar to 165.29 bar

Absolute humidity x_w : from 0 g/kg_{Air} to $x_{ws}(p,t)$

Comments:

- Partial pressure of steam $p_d = \frac{x_w}{\frac{R_l}{R_w} + x_w} \cdot p$ for $x_w \le x_{ws}(p,t)$
- For $x_w > x_{ws}(p,t)$ result $p_d = p_{ds}(p,t)$
- Saturation vapor pressure at saturation $p_{ds} = f \cdot p_s(t)$

with $p_{ds}(p,t)$ for $t \ge 0.01$ °C - vapor pressure of water

for t < 0.01°C - sublimation pressure of water

- Result for pure steam, liquid water and water ice: $p_d = 0$

Result for wrong input values:

$$pd_ptxw_HuAir, pd = -1$$

References:

f(p,t) Herrmann et al. [25], [26]

 $p_s(t)$ if $t \ge 0.01$ °C from IAPWS-IF97 [1], [2], [3], [4]

Saturation Pressure of Water $p_{ds} = f(p,t)$

Function Name:

pds_pt_HuAir

Fortran Programs:

REAL*8 FUNCTION pds_pt_HuAir(p,t), REAL*8 p,t
INTEGER*4 FUNCTION C_pds_pt_HuAir(pds,p,t), REAL*8 pds,p,t

Input values:

p - Mixture pressure p in bar

t - Temperature t in °C

Result:

pds_pt_HuAir, pds - Saturation vapor pressure of water in humid air in bar

Range of Validity:

Temperature t : from -143.15°C to $t_s(p,p_d)$

(boiling temperature of water in gas mixtures)

Mixture pressure p: from 6.112 mbar to 165.29 bar

Comments:

Saturation pressure at saturation $p_{ds} = f \cdot p_s(t)$

 $p_{ds}(p,t)$ for $t \ge 0.01^{\circ}C$ - vapor pressure of water

for t < 0.01°C - sublimation pressure of water

Result for wrong input values:

 $pds_pt_HuAir, pds = -1$

References:

f(p,t) Herrmann et al. [25], [26]

 $p_s(t)$ if $t \ge 0.01$ °C from IAPWS-IF97 [1], [2], [3], [4]

Relative Humidity $\varphi = f(p,t,x_w)$

Function Name:

Phi_ptxw_HuAir

Fortran Programs:

REAL*8 FUNCTION Phi_ptxw_HuAir(p,t,xw), REAL*8 p,t,xw
INTEGER*4 FUNCTION C_Phi_ptxw_HuAir(Phi,p,t,xw), REAL*8 Phi,p,t,xw

Input values:

p - Mixture pressure p in bar

t - Temperature t in °C

x_w - Absolute humidity x_w in g/kg_{Air}

Result:

Phi_ptxw_HuAir, Phi - Relative humidity in %

Range of Validity:

Temperature t: from -143.15°C to t_{critical} = 373,946°C (critical temperature of

water)

Mixture pressure p: from 6.112 mbar to 165.29 bar

Absolute humidity $x_w : \ge 0 \text{ g/kg}_{Air}$

Comments:

Relative humidity
$$\varphi = \frac{x_w}{\frac{R_l}{R_w} + x_w} \frac{p}{p_{ds}(p,t)} \cdot 100\%$$

Saturation vapor pressure at saturation $\textbf{p}_{ds} = \textbf{f} \cdot \textbf{p}_s(t)$

with $p_{ds}(p,t)$ for $t \ge 0.01^{\circ}C$ - vapor pressure of water for $t < 0.01^{\circ}C$ - sublimation pressure of water

Result for wrong input values:

Phi_ptxw_HuAir, Phi = - 1

References:

f(p,t) Herrmann et al. [25], [26]

 $p_s(t)$ if $t \ge 0.01$ °C from IAPWS-IF97 [1], [2], [3], [4]

Partial Pressure of Air $p_l = f(p,t,x_w)$

Function Name:

pl_ptxw_HuAir

Fortran Programs:

REAL*8 FUNCTION pl_ptxw_HuAir(p,t,xw), REAL*8 p,t,xw
INTEGER*4 FUNCTION C_pl_ptxw_HuAir(pl,p,t,xw), REAL*8 pl,p,t,xw

Input values:

p - Mixture pressure p in bar

t - Temperature t in °C

 x_w - Absolute humidity x_w in g/kg_{Air}

Result:

pl_ptxw_HuAir, pl - Partial pressure of air in bar

Range of Validity:

Temperature t: from -143.15°C to 1726.85°C

Mixture pressure p: from 6.112 mbar to 165.29 bar

Absolute humidity x_w : from 0 g/kg_{Air} to $x_{ws}(p,t)$

Comments:

Partial pressure of air
$$p_l = p \left(1 - \frac{x_w}{\frac{R_l}{R_w} + x_w} \right)$$

when $x_w > x_{ws}(p,t)$ result $p_l = p - p_{ds}(p,t)$

Saturation vapor pressure at saturation $p_{ds} = f \cdot p_s(t)$

with $p_{ds}(p,t)$ for $t \ge 0.01^{\circ}C$ - vapor pressure of water in gas mixtures

for t < 0.01°C - sublimation pressure of water in gas mixtures

Result for wrong input values:

$$pl_ptxw_HuAir, pl = -1$$

References:

f(p,t) Herrmann et al. [25], [26]

 $p_s(t)$ if $t \ge 0.01$ °C from IAPWS-IF97 [1], [2], [3], [4]

Prandtl-Number $Pr = f(p,t,x_w)$

Function Name:

Pr_ptxw_HuAir

Fortran Programs:

REAL*8 FUNCTION Pr_ptxw_HuAir(p,t,xw), REAL*8 p,t,xw
INTEGER*4 FUNCTION C_Pr_ptxw_HuAir(Pr,p,t,xw), REAL*8 Pr,p,t,xw

Input values:

p - Mixture pressure p in bar

t - Temperature t in °C

x_w - Absolute humidity x_w in g/kg_{Air}

Result:

Pr_ptxw_HuAir, Pr - Prandtl-number

Range of Validity:

Temperature t: from -73.15°C to 1726.85°C

Mixture pressure p: from 6.112 mbar to 165.29 bar

Absolute humidity $x_w : \ge 0 \text{ g/kg}_{Air}$

Comments:

- Prandtl-number $Pr = \frac{v}{a} = \frac{\eta \cdot c_p}{\lambda}$
- Model of ideal mixture of real fluids

Result for wrong input values:

$$Pr_ptxw_HuAir$$
, $Pr = -1$

References:

Dry Air:

 λ from *Lemmon* et al. [15]

 η from *Lemmon* et al. [15]

c_p from *Lemmon* et al. [14]

Steam in humid air and liquid droplets in fog:

 $\lambda \qquad \quad \text{for } 0\,^{\circ}\text{C} \leq t \leq 800\,^{\circ}\text{C from IAPWS-85 [6]}$

for $t < 0^{\circ}C$ and $t > 800^{\circ}C$ from *Brandt* [12]

 η for 0° C \leq t \leq 800 $^{\circ}$ C from IAPWS-85 [7]

for t < 0°C and t > 800°C from *Brandt* [12]

c_p from IAPWS-IF97 [1], [2], [3], [4]

Dissociation:

Mole Fraction of Air $\psi_I = f(x_w)$

Function Name:

Psil_xw_HuAir

Fortran Programs:

REAL*8 FUNCTION Psil_xw_HuAir(xw), REAL*8 xw
INTEGER*4 FUNCTION C_Psil_xw_HuAir(Psil, xw), REAL*8 Psil, xw

Input values:

 x_w - Absolute humidity x_w in g/kg_{Air}

Result:

Psil_xw_HuAir, Psil - Mole fraction of air in kmol / kmol

Range of Validity:

Absolute humidity $x_w : \ge 0 \text{ g/kg}_{Air}$

Comments:

Mole fraction of dry air
$$\psi_I = 1 - \frac{R_w \cdot x_w}{R(1 + x_w)}$$

Result for wrong input values:

Mole Fraction of Water $\psi_{W} = f(x_{W})$

Function Name:

Psiw_xw_HuAir

Fortran Programs:

REAL*8 FUNCTION Psiw_xw_HuAir(xw), REAL*8 xw
INTEGER*4 FUNCTION C_Psiw_xw_HuAir(Psiw,xw), REAL*8 Psiw, xw

Input values:

 x_w - Absolute humidity x_w in g/kg_{Air}

Result:

Psiw_xw_HuAir, Psiw - Mole fraction of water in kmol / kmol

Range of Validity:

Absolute humidity $x_w : \ge 0 \text{ g/kg}_{Air}$

Comments:

Mole fraction of water
$$\psi_w = \frac{R_w \cdot x_w}{R(1 + x_w)}$$

Result for wrong input values:

 $Psiw_xw_HuAir$, Psiw = -1

Density $\rho = f(p,t,x_w)$

Function Name:

Rho_ptxw_HuAir

Fortran Programs:

REAL*8 FUNCTION Rho_ptxw_HuAir(p,t,xw), REAL*8 p,t,xw
INTEGER*4 FUNCTION C_Rho_ptxw_HuAir(Rho,p,t,xw), REAL*8 Rho,p,t,xw

Input values:

p - Mixture pressure p in bar

t - Temperature t in °C

x_w - Absolute humidity x_w in g/kg_{Air}

Result:

Rho_ptxw_HuAir, Rho - Density in kg/m³

Range of Validity:

Temperature t: from -143.15°C to 1726.85°C

Mixture pressure p: from 6.112 mbar to 165.29 bar

Absolute humidity $x_w : \ge 0 \text{ g/kg}_{Air}$

Comments:

- For unsaturated and saturated humid air $(x_w \le x_{ws})$, calculation as ideal mixture of real gases (dry air and steam)
- For fog $(x_w > x_{ws})$, calculation as ideal mixture of saturated humid air and water, ice

Result for wrong input values:

 Rho_ptxw_HuAir , Rho = -1

References:

```
Dry Air:
```

from Lemmon et al. [14]

Steam in humid air and liquid droplets in fog:

from IAPWS-IF97 [1], [2], [3], [4]

Ice crystals in fog:

from IAPWS-06 [18], [19]

Air-Specific Entropy $s_l = f(p,t,x_w)$

Function Name:

sl_ptxw_HuAir

Fortran Programs:

REAL*8 FUNCTION sl_ptxw_HuAir(p,t,xw), REAL*8 p,t,xw
INTEGER*4 FUNCTION C_sl_ptxw_HuAir(sl,p,t,xw), REAL*8 sl,p,t,xw

Input values:

p - Mixture pressure p in bar

t - Temperature t in °C

x_w - Absolute humidity x_w in g/kg_{Air}

Result:

sl_ptxw_HuAir, sl - Air-specific entropy in kJ/(kg_{Air} K)

Range of Validity:

Temperature t: from -143.15°C to 1726.85°C

Mixture pressure p: from 6.112 mbar to 165.29 bar

Absolute humidity $x_w : \ge 0 \text{ g/kg}_{Air}$

Comments:

- For unsaturated and saturated humid air $(x_w \le x_{ws})$, calculation as ideal mixture of real gases (dry air and steam)
- For fog $(x_w > x_{ws})$, calculation as ideal mixture of saturated humid air and water, ice
- For temperatures greater than 500°C, the dissociation is taken into consideration

Result for wrong input values:

```
sl_ptxw_HuAir, sl = - 1000
```

References:

Dry Air:

from Lemmon et al. [14]

Steam in humid air and liquid droplets in fog:

from IAPWS-IF97 [1], [2], [3], [4]

Ice crystals in fog:

from to IAPWS-06 [18], [19]

Dissociation:

Backward Function: $t = f(p,h_l,x_w)$

Function Name:

t_phlxw_HuAir

Fortran Programs:

REAL*8 FUNCTION t_phlxw_HuAir(p,hl,xw), REAL*8 p,hl,xw
INTEGER*4 FUNCTION C_t_phlxw_HuAir(t,p,hl,xw), REAL*8 t,p,hl,xw

Input values:

p - Mixture pressure p in bar

h_I - Air-specific enthalpy in kJ/kg_{Air}

 x_w - Absolute humidity x_w in g/kg_{Air}

Result:

t_phlxw_HuAir, t - Temperature in °C

Range of Validity:

Temperature t: from -143.15°C to 1726.85°C

Mixture pressure p: from 6.112 mbar to 165.29 bar

Absolute humidity $x_w : \ge 0 \text{ g/kg}_{Air}$

Comments:

Iteration from t of $h_1(p,t,x_w)$

Calculation of $h_I(p,t,x_w)$:

- For unsaturated and saturated humid air $(x_w \le x_{ws})$, calculation as ideal mixture of real gases (dry air and steam)
- For fog $(x_w > x_{ws})$, calculation as ideal mixture of saturated humid air and water, ice
- For temperatures greater than 500°C, the dissociation is taken into consideration

Result for wrong input values:

 t_phlxw_HuAir , t = -1000

References:

Dry Air:

from Lemmon et al. [14]

Steam in humid air and liquid droplets in fog:

from IAPWS-IF97 [1], [2], [3], [4]

Ice crystals in fog:

from to IAPWS-06 [18], [19]

Dissociation:

Backward Function: $t = f(p,s_l,x_w)$

Function Name:

t_pslxw_HuAir

Fortran Programs:

REAL*8 FUNCTION t_pslxw_HuAir(p,sl,xw), REAL*8 p,sl,xw
INTEGER*4 FUNCTION C_t_pslxw_HuAir(t,p,sl,xw), REAL*8 t,p,sl,xw

Input values:

p - Mixture pressure p in bar

s_l - Air-specific entropy in kJ/(kg_{Air} K)

 x_w - Absolute humidity x_w in g/kg_{Air}

Result:

t_pslxw_HuAir, t - Temperature in °C

Range of Validity:

Temperature t: from -143.15°C to 1726.85°C

Mixture pressure p: from 6.112 mbar to 165.29 bar

Absolute humidity $x_w : \ge 0 \text{ g/kg}_{Air}$

Comments:

Iteration from t of $s_l(p,t,x_w)$

Calculation of $s_l(p,t,x_w)$:

- For unsaturated and saturated humid air $(x_w \le x_{ws})$, calculation as ideal mixture of real gases (dry air and steam)
- For fog $(x_w > x_{ws})$, calculation as ideal mixture of saturated humid air and water, ice

From 500°C influence because of dissociation taken into consideration.

Result for wrong input values:

 t_pslxw_HuAir , t = -1000

References:

Dry Air:

from Lemmon et al. [22]

Steam in humid air and liquid droplets in fog:

from IAPWS-IF97 [1], [2], [3], [4]

Ice crystals in fog:

from IAPWS-06 [18], [19]

Dissociation:

Wet Bulb Temperature $t_f = f(p,t,x_w)$

Function Name:

tf_ptxw_HuAir

Fortran Programs:

REAL*8 FUNCTION tf_ptxw_HuAir(p,t,xw), REAL*8 p,t,xw
INTEGER*4 FUNCTION C_tf_ptxw_HuAir(tf,p,t,xw), REAL*8 tf,p,t,xw

Input values:

p - Mixture pressure p in bar

t - Temperature t in °C

 x_w - Absolute humidity x_w in g/kg_{Air}

Result:

tf_ptxw_HuAir, tf - Wet bulb temperature in °C

Range of Validity:

Temperature t: from 0.01°C to 1726,85 °C

Mixture pressure p: from 6.112 mbar to 165.29 bar

Absolute humidity x_w : from 0 g/kg to $x_{ws}(p,t)$

Comments:

- Iteration from t_f of $h_l^{unsaturated}(p, t, x_w) = h_l^{fog}(p, t_f, x_w)$
- For temperatures greater than 500°C, the dissociation is taken into consideration

Result for wrong input values:

tf_ptxw_HuAir, tf = - 1000

References:

Dry Air:

from Lemmon et al. [22]

Steam in humid air and liquid droplets in fog:

from IAPWS-IF97 [1], [2], [3], [4]

Dissociation:

Dew Point Temperature $t_{\tau} = f(p,x_{W})$

Function Name:

tTau_pxw_HuAir

Fortran Programs:

REAL*8 FUNCTION tTau_pxw_HuAir(p,xw), REAL*8 p,xw
INTEGER*4 FUNCTION C_tTau_pxw_HuAir(tTau,p,xw), REAL*8 tTau,p,xw

Input values:

p - Mixture pressure p in bar

x_w - Absolute humidity x_w in g/kg_{Air}

Result:

tdew_pxw_HuAir, tdew - Dew point temperature in °C

Range of Validity:

Mixture pressure p: from 6.112 mbar to 165.29 bar

Absolute humidity $x_w : \ge x_{ws}(p, -30^{\circ}C)$

Comments:

Dew point temperature $t_{\tau} = t_{s}(p,p_{d})$ for $t \ge 0.01^{\circ}C$

(boiling temperature of water in gas mixtures)

 $t_{\tau} = t_{sub}(p,p_d)$ for t < 0.01°C

(sublimation temperature from water in gas mixtures)

with
$$p_d = \frac{x_w}{\frac{R_l}{R_w} + x_w} p$$

Result for wrong input values:

tdew_pxw_HuAir, tdew = - 1000

References:

 $t_{ds}(p,p_d)$ for $t_{\tau} \ge 0.01^{\circ}C$ from IAPWS-IF97 [1], [2], [3], [4]

 $t_{sub}(p,p_d)$ for $t_{\tau} < 0.01$ °C from IAPWS-08 [16], [17]

t_s(p) from IAPWS-IF97 [1], [2], [3], [4]

Air-Specific Internal Energy $u_l = f(p,t,x_w)$

Function Name:

ul_ptxw_HuAir

Fortran Programs:

REAL*8 FUNCTION ul_ptxw_HuAir(p,t,xw), REAL*8 p,t,xw
INTEGER*4 FUNCTION C_ul_ptxw_HuAir(ul,p,t,xw), REAL*8 ul,p,t,xw

Input values:

- p Mixture pressure p in bar
- t Temperature t in °C
- x_w Absolute humidity x_w in g/kg_{Air}

Result:

ul_ptxw_HuAir, ul - Air-specific internal energy in kJ/kgAir

Range of Validity:

Temperature t: from -143.15°C to 1726.85°C

Mixture pressure p: from 6.112 mbar to 165.29 bar

Absolute humidity $x_w : \ge 0 \text{ g/kg}_{Air}$

Comments:

Calculation: $u_1 = h_1 - p \cdot v_1$

- For unsaturated and saturated humid air $(x_w \le x_{ws})$, calculation as ideal mixture of real gases (dry air and steam)
- For fog $(x_w > x_{ws})$, calculation as ideal mixture of saturated humid air and water, ice
- For temperatures greater than 500°C, the dissociation is taken into consideration

Result for wrong input values:

References:

Dry Air:

h, v from Lemmon et al. [14]

Steam in humid air and liquid droplets in fog:

h, v from IAPWS-IF97 [1], [2], [3], [4]

Ice crystals in fog:

h, v according to IAPWS-06 [18], [19]

Dissociation:

Air-specific Volume $v_l = f(p,t,x_w)$

Function Name:

vl_ptxw_HuAir

Fortran Programs:

REAL*8 FUNCTION vl_ptxw_HuAir(p,t,xw), REAL*8 p,t,xw
INTEGER*4 FUNCTION C_vl_ptxw_HuAir(vl, p, t ,xw), REAL*8 vl,p,t,xw

Input values:

p - Mixture pressure p in bar

Temperature t in °C

x_w - Absolute humidity x_w in g/kg_{Air}

Result:

vl_ptxw_HuAir, vl - Air-specific volume in m³/kg_{Air}

Range of Validity:

Temperature t: from -143.15°C to 1726.85°C

Mixture pressure p: from 6.112 mbar to 165.29 bar

Absolute humidity $x_w : \ge 0 \text{ g/kg}_{Air}$

Comments:

- For unsaturated and saturated humid air $(x_w \le x_{ws})$, calculation as ideal mixture of real gases (dry air and steam)
- For fog $(x_w > x_{ws})$, calculation as ideal mixture of saturated humid air and water, ice

Result for wrong input values:

```
vl_ptxw_HuAir, vl = -1
```

References:

Dry Air:
from Lemmon et al. [14]
Steam in humid air and liquid droplets in fog:
from IAPWS-IF97 [1], [2], [3], [4]
Ice crystals in fog:
from IAPWS-06 [18], [19]

Mass Fraction of Air $\xi_l = f(x_w)$

Function Name:

Xil_xw_HuAir

Fortran Programs:

REAL*8 FUNCTION Xil_xw_HuAir(xw), REAL*8 xw
INTEGER*4 FUNCTION C_Xil_xw_HuAir(Xil,xw), REAL*8 Xil,xw

Input values:

 x_w - Absolute humidity x_w in g/kg_{Air}

Result:

Xil_xw_HuAir, Xil - Mass fraction of air

Range of Validity:

Absolute humidity $x_w : \ge 0 \text{ g/kg}_{Air}$

Comments:

Mass fraction of dry air $\xi_l = 1 - \frac{x_w}{1 + x_w}$

Result for wrong input values:

$$Xil_xw_HuAir$$
 , $Xil = -1$

Mass Fraction of Water $\xi_W = f(x_w)$

Function Name:

Xiw_xw_HuAir

Fortran Programs:

REAL*8 FUNCTION Xiw_xw_HuAir(xw), REAL*8 xw
INTEGER*4 FUNCTION C_Xiw_xw_HuAir(Xiw,xw), REAL*8 Xiw,xw

Input values:

 x_w - Absolute humidity x_w in g/kg_{Air}

Result:

Xiw_xw_HuAir, Xiw - Mass fraction of water

Range of Validity:

Absolute humidity $x_w : \ge 0 \text{ g/kg}_{Air}$

Comments:

Mass fraction of water $\xi_w = \frac{x_w}{1 + x_w}$

Result for wrong input values:

 Xiw_xw_HuAir , Xiw = -1

Absolute Humidity from Relative Humidity $x_w = f(p,t,\phi)$

Function Name:

xw_ptPhi_HuAir

Fortran Programs:

REAL*8 FUNCTION xw_ptPhi_HuAir(p,t,Phi), REAL*8 p,t,Phi
INTEGER*4 FUNCTION C_xw_ptPhi_HuAir(xw,p,t,Phi), REAL*8 xw,p,t,Phi

Input values:

p - Mixture pressure p in bar

t - Temperature t in °C

Phi - Relative humidity in %

Result:

xw_ptPhi_HuAir, x_w - Absolute humidity from temperature and relative humidity in g/kg_{Air}

Range of Validity:

Temperature t : from -143.15°C to t_{critical} = 373,946°C (critical temperature of water)

Mixture pressure p: from 6.112 mbar to 165.29 bar

Relative Humidity φ: from 0 % to 100 %

Comments:

Absolute humidity:
$$x_w = \frac{R_1}{R_w} \frac{\phi \cdot p_{ds}(p,t)}{p - \phi \cdot p_{ds}(p,t)}$$

Saturation vapor pressure at saturation $p_{ds} = f \cdot p_s(t)$

with $p_{ds}(p,t)$ for $t \ge 0.01^{\circ}C$ - Vapor pressure of water

for t < 0.01°C - Sublimation pressure of water

Result for wrong input values:

$$xw_ptPhi_HuAir$$
, $xw = -1$

References:

f(p,t) Herrmann et al. [25], [26]

 $p_{ds}(p,t)$ if $t \ge 0.01$ °C from IAPWS-IF97 [1], [2], [3], [4]

Absolute Humidity from Partial Pressure of Steam $x_w = f(p,t,p_d)$

Function Name:

xw_ptpd_HuAir

Fortran Programs:

REAL*8 FUNCTION xw_ptpd_HuAir(p,t,pd), REAL*8 p,t,pd
INTEGER*4 FUNCTION C_xw_ptpd_HuAir(xw,p,t,pd), REAL*8 xw,p,t,pd

Input values:

p - Mixture pressure p in bar

t - Temperature t in °C

p_d - Partial pressure of steam in bar

Result:

xw_ptpd_HuAir, x_w - Absolute humidity from partial pressure in g/kg_{Air}

Range of Validity:

Temperature t: from -143.15°C to 1726.85°C

Mixture pressure p : from 6.112 mbar to 165.29 bar

Partial pressure of steam p_d : from 6.112 mbar to $p_{ds}(p,t)$ for $t \le 373,946$ °C,

to 165.29 bar for t > 373,946°C

Comments:

Absolute humidity
$$x_w = \frac{R_I}{R_w} \frac{p_{ds}(p,t)}{p - p_{ds}(p,t)}$$

Saturation vapor pressure at saturation $p_{ds} = f \cdot p_s(t)$

with $p_{ds}(p,t)$ for $t \ge 0.01^{\circ}C$ - Vapor pressure of water

for t < 0.01°C - Sublimation pressure of water

Result for wrong input values:

$$xw_ptpd_HuAir$$
, $xw = -1$

References:

f(p,t) Herrmann et al. [25], [26]

 $p_{ds}(p,t)$ if $t \ge 0.01$ °C from IAPWS-IF97 [1], [2], [3], [4]

Absolute Humidity from Dew Point Temperature $x_w = f(p,t_\tau)$

Function Name:

xw_ptTau_HuAir

Fortran Programs:

REAL*8 FUNCTION xw_ptTau_HuAir(p,tTau), REAL*8 p,tTau INTEGER*4 FUNCTION C_xw_ptTau_HuAir(xw,p,tTau), REAL*8 xw, p,tTau

Input values:

p - Mixture pressure p in bar

 t_{τ} - Dew point temperature in °C

Result:

xw_ptTau_HuAir, x_w - Absolute humidity from temperature and dew point temperature in g/kg_{Air}

Range of Validity:

Dew point temperature t_{τ} : from -143.15°C to $t_{ds}(p,p_d)$

(boiling temperature of water in gas mixtures)

Mixture pressure p: from 6.112 mbar to 165.29 bar

Comments:

Absolute humidity $x_w = \frac{R_I}{R_w} \frac{p_{ds}(p,t)}{p - p_{ds}(p,t)}$

Saturation vapor pressure at saturation $p_{ds} = f \cdot p_s(t)$

with $p_{ds}(p,t)$ for $t \ge 0.01^{\circ}C$ - Vapor pressure of water

for t < 0.01°C - Sublimation pressure of water

Result for wrong input values:

xw_ptTau_HuAir, xw = - 1

References:

f(p,t) Herrmann et al. [25], [26]

 $p_{ds}(p,t)$ if $t \ge 0.01$ °C from IAPWS-IF97 [1], [2], [3], [4]

Absolute Humidity from Wet Bulb Temperature $x_w = f(p,t,t_f)$

Function Name:

xw_pttf_HuAir

Fortran Programs:

REAL*8 FUNCTION xw_pttf_HuAir(p,t,tf), REAL*8 p,t,tf
INTEGER*4 FUNCTION C_xw_pttf_HuAir(xw,p,t,tf), REAL*8 xw,p,t,tf

Input values:

p - Mixture pressure p in bar

t - Temperature t in °C

t_f - Wet bulb temperature in °C

Result:

 xw_{pttf}_{HuAir} , x_{w} - Absolute humidity from temperature and wet bulb temperature in g/kg_{Air}

Range of Validity:

Temperature t: from 0.01°C to 1726.85°C

Wet bulb temperature t_f : from 0.01°C to the given temperature t_f

to $t_s(p,p_d)$ (boiling temp. of water in gas mixtures)

Mixture pressure p: from 6.112 mbar to 165.29 bar

Comments:

Iteration of x_w from $h_i^{unsaturated}(p, t, x_w) = h_i^{fog}(p, t_f, x_w)$

- For temperatures greater than 500°C, the dissociation is taken into consideration

Result for wrong input values:

$$xw_pttf_HuAir, xw = -1$$

References:

Dry Air:

from Lemmon et al. [14]

Steam in humid air and liquid droplets in fog:

from IAPWS-IF97 [1], [2], [3], [4]

Dissociation:

Backward Function: $x_w = f(p,t,v_l)$

Function Name:

xw_ptvl_HuAir

Fortran Programs:

REAL*8 FUNCTION xw_ptvl_HuAir(p,t,vl), REAL*8 p,t,vl
INTEGER*4 FUNCTION C_xw_ptvl_HuAir(xw, p,t,vl), REAL*8 xw,p,t,vl

Input values:

p - Mixture pressure p in bar

t - Temperature t in °C

v_I - Air-specific volume in m³/kg_{Air}

Result:

xw_ptvl_HuAir, x_w - Absolute humidity in g/kg_{Air}

Range of Validity:

Temperature t: from -143.15°C to 1726.85°C

Mixture pressure p: from 6.112 mbar to 165.29 bar

Comments:

Iteration of x_w from $v_I(p,t,x_w)$

Calculation from $v_1(p,t,x_w)$:

- For unsaturated and saturated humid air $(x_w \le x_{ws})$, calculation as ideal mixture of real gases (dry air and steam)
- For fog $(x_w > x_{ws})$, calculation as ideal mixture of saturated humid air and water, ice

Result for wrong input values:

```
xw_ptvl_HuAir, xw = -1
```

References:

Dry Air:

from Lemmon et al. [14]

Steam in humid air and liquid droplets in fog:

from IAPWS-IF97 [1], [2], [3], [4]

Ice crystals in fog:

according to IAPWS-06 [18], [19]

Dissociation:

Absolute Humidity of Saturated Humid Air $x_{ws} = f(p,t)$

Function Name:

xws_pt_HuAir

Fortran Programs:

REAL*8 FUNCTION xws_pt_HuAir(p,t), REAL*8 p,t
INTEGER*4 FUNCTION C_xws_pt_HuAir(xws,p,t), REAL*8 xws,p,t

Input values:

p - Mixture pressure p in bar

t - Temperature t in °C

Result:

xws_pt_HuAir, xws - Absolute humidity of saturated air in g/kgAir

Range of Validity:

Temperature t : from -143.15°C to $t_s(p,p_d)$ (boiling temp. from water in gas

mixtures)

Mixture pressure p: from 6.112 mbar to 165.29 bar

Comments:

Absolute humidity
$$x_w = \frac{R_I}{R_w} \frac{p_{ds}(p,t)}{p - p_{ds}(p,t)}$$

with $p_{ds}(p,t)$ for $t \ge 0.01^{\circ}C$ - Vapor pressure of water

for t < 0.01°C - Sublimation pressure of water

Result for wrong input values:

$$xws_pt_HuAir$$
, $x_{ws} = -1$

References:

f(p,t) Herrmann et al. [25], [26]

 $p_{ds}(p,t) \quad \ \ \text{if } t \, \geq \, 0.01 \, ^{\circ} C \qquad \qquad \text{from IAPWS-IF97 [1], [2], [3], [4]}$

ZITTAU/GOERLITZ UNIVERSITY OF APPLIED SCIENCES

Department of Technical Thermodynamics www.thermodynamics-zittau.de

4. Property Libraries for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators

Water and Steam

Library LibIF97

- Industrial Formulation IAPWS-IF97 (Revision 2007)
- Supplementary Standards
- IAPWS-IF97-S01
- IAPWS-IF97-S03rev
- IAPWS-IF97-S04
- IAPWS-IF97-S05
- IAPWS Revised Advisory Note No. 3 on Thermodynamic Derivatives (2008)

Humid Combustion Gas Mixtures

Library LibHuGas

Model: Ideal mixture of the real fluids:

CO₂ - Span and Wagner O₂ - Schmidt and Wagner

H₂O - IAPWS-95

Ar - Tegeler et al.

N₂ - Span et al.

and of the ideal gases:

SO₂, CO, Ne (Scientific Formulation of Bücker et al.)

Consideration of:

Dissociation from VDI 4670 and Poynting effect

Humid Air

Library LibHuAir

Model: Ideal mixture of the real fluids:

- Dry Air from Lemmon et al.
- Steam, water and ice from IAPWS-IF97 and IAPWS-06

Consideration of:

- Condensation and freezing of steam
- Dissociation from the VDI 4670
- Poynting effect from ASHRAE RP-1485

Carbon Dioxide including Dry Ice Library LibCO2

Formulation of Span and Wagner (1994)

Seawater

Library LibSeaWa

IAPWS Formulation 2008 of Feistel and IAPWS-IF97

Ice

Library LibICE

Ice from IAPWS-06, Melting and sublimation pressures from IAPWS-08, Water from IAPWS-IF97, Steam from IAPWS-95 and -IF97

Ideal Gas Mixtures

Library LibIdGasMix

Model: Ideal mixture of the ideal gases:

Ar	NO	He	Propylene
Ne	H ₂ O	F_2	Propane
N_2	SO ₂	NH ₃	Iso-Butane
O ₂	H ₂	Methane	n-Butane
CO	H ₂ S	Ethane	Benzene
CO ₂	OH	Ethylene	Methanol
Air			

Consideration of:

Dissociation from the VDI Guideline 4670

Library LibIDGAS

Model: Ideal gas mixture from VDI Guideline 4670

Consideration of:

Dissociation from the VDI Guideline 4670

Dry Air including Liquid Air Library LibRealAir

Formulation of Lemmon et al. (2000)

Nitrogen

Library LibN2

Formulation of Span et al. (2000)

Hydrogen

Library LibH2

Formulation of Leachman et al. (2007)

Refrigerants

Ammonia

Library LibNH3

Formulation of Tillner-Roth (1995)

R134a

Library LibR134a

Formulation of Tillner-Roth and Baehr (1994)

Iso-Butane

Library LibButane_Iso

Formulation of Bücker et al. (2003)

n-Butane

Library LibButane n

Formulation of Bücker et al. (2003)

Mixtures for Absorption Processes

Ammonia/Water Mixtures Library LibAmWa

IAPWS Guideline 2001 of Tillner-Roth and Friend (1998)

Helmholtz energy equation for the mixing term
(also useable for calculating Kalina Cycle)

Water/Lithium Bromide Mixtures

Library LibWaLi

Formulation of Kim and Infante Ferreira (2004)
Gibbs energy equation for the mixing term

Liquid Coolants

Liquid Secondary Refrigerants

Library LibSecRef

Liquid solutions of water with

 $\begin{array}{lll} \textbf{C}_2\textbf{H}_6\textbf{O}_2 & \textbf{Ethylene glycol} \\ \textbf{C}_3\textbf{H}_8\textbf{O}_2 & \textbf{Propylene glycol} \\ \textbf{C}_2\textbf{H}_5\textbf{OH} & \textbf{Ethyl alcohol} \\ \textbf{CH}_3\textbf{OH} & \textbf{Methyl alcohol} \\ \textbf{C}_3\textbf{H}_8\textbf{O}_3 & \textbf{Glycerol} \end{array}$

K2CO3Potassium carbonateCaCl2Calcium chlorideMgCl2Magnesium chlorideNaClSodium chlorideC2H3KO2Potassium acetate

Formulation of the International Institute of Refrigeration (1997)

Siloxanes as ORC Working Fluids

Octamethylcyclotetrasiloxane C₈H₂₄O₄Si₄ Library LibD4

Decamethylcyclopentasiloxane C₁₀H₃₀O₅Si₅ Library LibD5

Tetradecamethylhexasiloxane C₁₄H₄₂O₅Si₆ Library LibMD4M

Hexamethyldisiloxane C₆H₁₈OSi₂ Library LibMM

Formulation of Colonna et al. (2006)

Dodecamethylcyclohexasiloxane C₁₂H₃₆O₆Si₆ Library LibD6

Decamethyltetrasiloxane C₁₀H₃₀O₃Si₄ Library LibMD2M

Dodecamethylpentasiloxane C₁₂H₃₆O₄Si₅ Library LibMD3M

Octamethyltrisiloxane C₈H₂₄O₂Si₃ Library LibMDM

Formulation of Colonna et al. (2008)

Propane

Library LibPropane

Formulation of Lemmon et al. (2007)

Methanol

Library LibCH3OH

Formulation of de Reuck and Craven (1993)

Ethanol

Library LibC2H5OH

Formulation of Schroeder et al. (2012)

Helium Library LibHe

Formulation of Arp et al. (1998)

Hydrocarbons

Decane C₁₀H₂₂ Library LibC10H22

Isopentane C₅H₁₂ Library LibC5H12_ISO

Neopentane C₅H₁₂ Library LibC5H12_NEO

Isohexane C₅H₁₄ Library LibC5H14

Toluene C₇H₈ Library LibC7H8

Formulation of Lemmon and Span (2006)

Further Fluids

Carbon monoxide CO Library LibCO

Carbonyl sulfide COS Library LibCOS

Hydrogen sulfide H₂S Library LibH2S

Dinitrogen monooxide N₂O Library LibN2O

Sulfur dioxide SO₂ Library LibSO2

Acetone C₃H₆O Library LibC3H6O

Formulation of Lemmon and Span (2006)

For more information please contact:

Zittau/Goerlitz University of Applied Sciences Department of Technical Thermodynamics

Professor Hans-Joachim Kretzschmar

Dr. Ines Stoecker

Theodor-Koerner-Allee 16

02763 Zittau, Germany

Internet: www.thermodynamics-zittau.de

E-mail: hj.kretzschmar@hs-zigr.de

Phone: +49-3583-61-1846 Fax.: +49-3583-61-1846

The following thermodynamic and transport properties can be calculated^a:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature T_s
- ullet Density ho
- Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_{p}
- Isochoric heat capacity c_v
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Transport Properties

- \bullet Dynamic viscosity η
- ullet Kinematic viscosity u
- Thermal conductivity λ
- Prandtl-number Pr

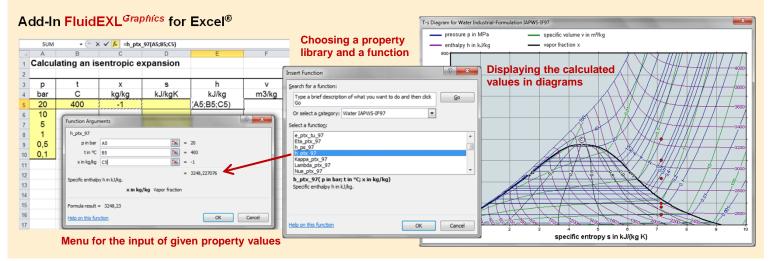
Backward Functions

- T, v, s (p,h)
- T, v, h (p,s)p, T, v (h,s)
- p, T (v,h)
- p, T (v,u)

Thermodynamic Derivatives

Partial derivatives can be calculated.

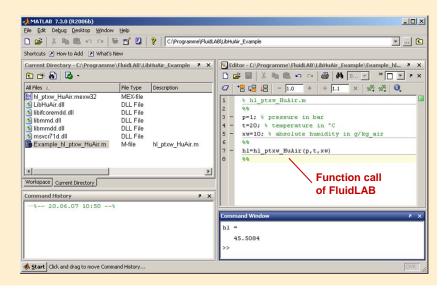
^a Not all of these property functions are available in all property libraries.



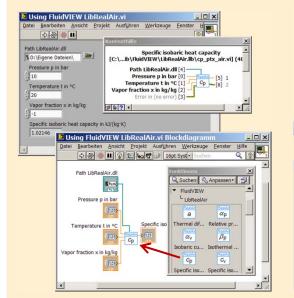
ZITTAU/GOERLITZ UNIVERSITY OF APPLIED SCIENCES

Department of Technical Thermodynamics www.thermodynamics-zittau.de

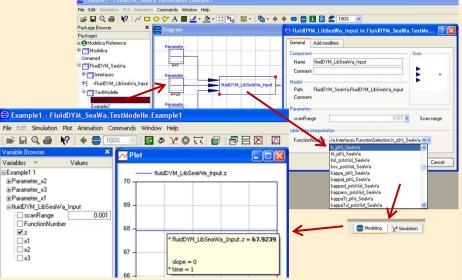
Property Software for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators


Add-In FluidMAT for Mathcad®

The property libraries can be used in Mathcad[®].


Add-In FluidLAB for MATLAB®

Using the Add-In FluidLAB the property functions can be called in MATLAB®.


Add-On FluidVIEW for LabVIEW®

The property functions can be calculated in LabVIEW®.



Add-In FluidDYM for DYMOLA® (Modelica) and SimulationX®

The property functions can be called in DYMOLA® and SimulationX®


Add-In FluidEES for **Engineering Equation Solver®**

App International Steam Tables for iPhone, iPad, iPod touch, Android smart phones and tablets

Online Property Calculator at www.thermodynamics-zittau.de

Property Software for Pocket Calculators

For more information please contact:

Zittau/Goerlitz University of Applied Sciences **Department of Technical Thermodynamics** Professor Hans-Joachim Kretzschmar Dr. Ines Stoecker Theodor-Koerner-Allee 16 02763 Zittau, Germany

E-mail: hj.kretzschmar@hs-zigr.de Internet: www.thermodynamics-zittau.de

Phone: +49-3583-61-1846 Fax.: +49-3583-61-1846

The following thermodynamic and transport properties a can be calculated in Excel®, MATLAB®, Mathcad®, Engineering Equation Solver® EES, DYMOLA® (Modelica), SimulationX®, and LabVIEW®:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature T_s
- Density ρ
- · Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_p
- Isochoric heat capacity c_v
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Transport Properties

- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl-number Pr

Backward Functions

- T, v, s (p,h)
- T, v, h (p,s)
- p, T, v (h,s)
- p, T (v,h)
- p, T (v,u)

Thermodynamic Derivatives

· Partial derivatives can be calculated.

^a Not all of these property functions are available in all property libraries.

5. References

- [1] Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam IAPWS-IF97.

 IAPWS Executive Secretariat (2007), available at www.iapws.org
- [2] Wagner, W.; Kretzschmar, H.-J.: International Steam Tables.Springer-Verlag, Berlin (2008), <u>www.international-steam-tables.com</u>
- [3] Wagner, W.; Cooper, J. R.; Dittmann, A.; Kijima, J.; Kretzschmar, H.-J.; Kruse, A.; Mares, R.; Oguchi, K.; Sato, H.; Stöcker, I.; Sifner, O.; Takaishi, Y.; Tanishita, I.; Trübenbach, J.; Willkommen, Th.: The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam.
 J. Eng. Gas Turbines Power 122 (2000), S. 150-182.
- [4] Wagner, W.; Rukes, B.:
 IAPWS-IF97: Die neue Industrie-Formulation.
 BWK 50 (1998) Nr. 3, S. 42-97.
- [5] Kretzschmar, H.-J.:Mollier h,s-Diagramm.Springer-Verlag, Berlin (2008).
- [6] Revised Release on the IAPS Formulation 1985 for the Thermal Conductivity of Ordinary Water Substance.
 IAPWS Executive Secretariat (2008), available at www.iapws.org
- [7] Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance.
 IAPWS Executive Secretariat (2008), available at www.iapws.org
- [8] IAPWS Release on Surface Tension of Ordinary Water Substance 1994. IAPWS Executive Secretariat (1994), available at www.iapws.org
- [9] Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. IAPWS Executive Secretariat (1995), available at www.iapws.org
- [10] Wagner, W.; Pruß, A.:
 The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use.
 J. Phys. Chem. Ref. Data 31 (2002), S. 387-535-
- [11] Kretzschmar, H.-J.: Zur Aufbereitung und Darbietung thermophysikalischer Stoffdaten für die Energietechnik. Habilitation, TU Dresden, Fakultät Maschinenwesen (1990).
- [12] Brandt, F.:
 Wärmeübertragung in Dampferzeugern und Wärmetauschern.
 FDBR-Fachbuchreihe, Bd. 2, Vulkan Verlag Essen (1985).
- [13] VDI Richtlinie 4670
 Thermodynamische Stoffwerte von feuchter Luft und Verbrennungsgasen. (2003).

- [14] Lemmon, E. W.; Jacobsen, R. T.; Penoncello, S. G.; Friend, D. G.:
 Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon, and Oxygen from 60 to 2000 K at Pressures to 2000 MPa.
 J. Phys. Chem. Ref. Data 29 (2000), S. 331-385.
- [15] Lemmon, E. W.; Jacobsen, R. T.: Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air. Int. J. Thermophys. 25 (2004), S. 21-69.
- [16] Revised Release on the Pressure along the Melting and Sublimation Curves of Ordinary Water Substance.
 IAPWS Executive Secretariat (2008), available at www.iapws.org
- [17] Wagner, W.; Feistel, R.; Riethmann, T.:

 New Equations for the Melting Pressure and Sublimation Pressure of H2O Ice Ih.

 To be submitted to J. Phys. Chem. Ref. Data.
- [18] Revised Release on the Equation of State 2006 for H₂O Ice Ih. IAPWS Executive Secretariat (2009), available at www.iapws.org
- [19] Feistel, R.; Wagner, W.:A New Equation of State for H2O Ice Ih.J. Phys. Chem. Ref. Data 35 (2006), S. 1021-1047.
- [20] Nelson, H. F.; Sauer, H. J.: Formulation of High-Temperature Properties for Moist Air. HVAC&R Research 8 (2002), S. 311-334.
- [21] Gatley, D. P.: Understanding Psychrometrics, 2nd ed. ASHRAE, Atlanta (2005).
- [22] Gatley, D.; Herrmann, S.; Kretzschmar, H.-J.: A Twenty-First Century Molar Mass for Dry Air. HVAC&R Research 14 (2008), S. 655-662.
- [23] Herrmann, S.; Kretzschmar, H.-J.; Teske, V.; Vogel, E.; Ulbig, P.; Span, R.; Gatley, D. P.: Determination of Thermodynamic and Transport Properties for Humid Air for Power-Cycle Calculations.
 - Bericht PTB-CP-3, Physikalisch-Technische Bundesanstalt Braunschweig und Berlin (Hrsg.), Wirtschaftsverlag NW, Verlag für neue Wissenschaft GmbH, Bremerhaven (2009). ISBN: 978-3-86509-917-4.
- [24] Herrmann, S.; Kretzschmar, H.-J.; Teske, V.; Vogel, E.; Ulbig, P.; Span, R.; Gatley, D. P.:
 Properties of Humid Air for Calculating Power Cycles.
 J. Eng. Gas Turbines Power 132 (2010), S. 093001-1 093001-8 (published online).
- [25] Herrmann, S.; Kretzschmar, H.-J.; Gatley, D. P.: Thermodynamic Properties of Real Moist Air, Dry Air, Steam, Water, and Ice (RP-1485). HVAC&R Research 15 (2009), S. 961-986.

[26] Herrmann, S.; Kretzschmar, H.-J.; Gatley, D. P.:
Thermodynamic Properties of Real Moist Air, Dry Air, Steam, Water, and Ice.
Final Report ASHRAE RP-1485, American Society of Heating, Refrigeration, and Air-Conditioning Engineers, Inc., Atlanta, GA (2009).

6. Satisfied Customers

Date: 10/2011

The following companies and institutions use the property libraries

- FluidEXL^{Graphics} for Excel[®]
- FluidLAB for MATLAB®
- FluidMAT for Mathcad®
- FluidEES for Engineering Equation Solver[®] EES
- FluidDYM for Dymola[®] (Modelica)
- FluidVIEW for LabVIEW®:

2011

Lopez, Munguia, Spain	10/2011
University of KwaZulu-Natal, Westville, South Africa	10/2011
Voith, Heidenheim	09/2011
SpgBe Montreal, Canada	09/2011
SPG TECH, Montreuil Cedex, France	09/2011
Voith, Heidenheim-Mergelstetten	09/2011
MTU Aero Engines, Munich	08/2011
MIBRAG, Zeitz	08/2011
RWE, Essen	07/2011
Fels, Elingerode	07/2011
Weihenstephan University of Applied Sciences	07/2011, 09/2011, 10/2011
Forschungszentrum Juelich	07/2011
RWTH Aachen University	07/2011, 08/2011
Voith, Zschopau	07/2011
INNEO Solutions, Ellwangen	06/2011
Caliqua, Basel, Switzerland	06/2011
Technical University of Freiberg	06/2011
Fichtner IT Consulting, Stuttgart	05/2011, 06/2011, 08/2011
Salzgitter Flachstahl, Salzgitter	05/2011
Helbling Beratung & Bauplanung, Zurich, Switzerland	05/2011
INEOS, Cologne	04/2011
Enseleit Consulting Engineers, Siebigerode	04/2011

	Witt Consulting Engineers, Stade	03/2011
	Helbling, Zurich, Switzerland	03/2011
	MAN Diesel, Copenhagen, Denmark	03/2011
	AGO, Kulmbach	03/2011
	University of Duisburg	03/2011, 06/2011
	CCP, Marburg	03/2011
	BASF, Ludwigshafen	02/2011
	ALSTOM Power, Baden, Switzerland	02/2011
	Universität der Bundeswehr, Munich	02/2011
	Calorifer, Elgg, Switzerland	01/2011
	STRABAG, Vienna, Austria	01/2011
	TUEV Sued, Munich	01/2011
	ILK Dresden	01/2011
	Technical University of Dresden	01/2011, 05/2011,
		06/2011, 08/2011
2	010	
	Umweltinstitut Neumarkt	12/2010
	YIT Austria, Vienna, Austria	12/2010
	MCI Innsbruck, Austria	12/2010
	University of Stuttgart	12/2010
	HS Cooler, Wittenburg	12/2010
	Visteon, Novi Jicin, Czech Republic	12/2010
	CompuWave, Brunntal	12/2010
	Stadtwerke Leipzig	12/2010
	MCI Innsbruck, Austria	12/2010
	EVONIK Energy Services, Zwingenberg	12/2010
	Caliqua, Basel, Switzerland	11/2010
	Shanghai New Energy Resources Science & Technology, China	11/2010
	Energieversorgung Halle	11/2010
	Hochschule für Technik Stuttgart, University of Applied Sciences	11/2010
	Steinmueller, Berlin	11/2010
	Amberg-Weiden University of Applied Sciences	11/2010
	AREVA NP, Erlangen	10/2010
	MAN Diesel, Augsburg	10/2010
	KRONES, Neutraubling	10/2010

Vaillant, Remscheid	10/2010
PC Ware, Leipzig	10/2010
Schubert Consulting Engineers, Weißenberg	10/2010
Fraunhofer Institut UMSICHT, Oberhausen	10/2010
Behringer Consulting Engineers, Tagmersheim	09/2010
Saacke, Bremen	09/2010
WEBASTO, Neubrandenburg	09/2010
Concordia University, Montreal, Canada	09/2010
Compañía Eléctrica de Sochagota, Bogota, Colombia	08/2010
Hannover University of Applied Sciences	08/2010
ERGION, Mannheim	07/2010
Fichtner IT Consulting, Stuttgart	07/2010
TF Design, Matieland, South Africa	07/2010
MCE, Berlin	07/2010, 12/2010
IPM, Zittau/Goerlitz University of Applied Sciences	06/2010
TUEV Sued, Dresden	06/2010
RWE IT, Essen	06/2010
Glen Dimplex, Kulmbach	05/2010, 07/2010 10/2010
Hot Rock, Karlsruhe	05/2010
Darmstadt University of Applied Sciences	05/2010
Voith, Heidenheim	04/2010
CombTec, Zittau	04/2010
University of Glasgow, Great Britain	04/2010
Universitaet der Bundeswehr, Munich	04/2010
Technical University of Hamburg-Harburg	04/2010
Vattenfall Europe, Berlin	04/2010
HUBER Consulting Engineers, Berching	04/2010
VER, Dresden	04/2010
CCP, Marburg	03/2010
Offenburg University of Applied Sciences	03/2010
Technical University of Berlin	03/2010
NIST Boulder CO, USA	03/2010
Technical University of Dresden	02/2010
Siemens Energy, Nuremberg	02/2010

Augsburg University of Applied Sciences	02/2010
ALSTOM Power, Baden, Switzerland	02/2010, 05/2010
MIT Massachusetts Institute of Technology Cambridge MA, USA	02/2010
Wieland Werke, Ulm	01/2010
Siemens Energy, Goerlitz	01/2010, 12/2010
Technical University of Freiberg	01/2010
ILK, Dresden	01/2010, 12/2010
Fischer-Uhrig Consulting Engineers, Berlin	01/2010
2009	
	04/2000 02/2000
ALSTOM Power, Baden, Schweiz	01/2009, 03/2009, 05/2009
Nordostschweizerische Kraftwerke AG, Doettingen, Switzerland	02/2009
RWE, Neurath	02/2009
Brandenburg University of Technology, Cottbus	02/2009
Hamburg University of Applied Sciences	02/2009
Kehrein, Moers	03/2009
EPP Software, Marburg	03/2009
Bernd Münstermann, Telgte	03/2009
Suedzucker, Zeitz	03/2009
CPP, Marburg	03/2009
Gelsenkirchen University of Applied Sciences	04/2009
Regensburg University of Applied Sciences	05/2009
Gatley & Associates, Atlanta, USA	05/2009
BOSCH, Stuttgart	06/2009, 07/2009
Dr. Nickolay, Consulting Engineers, Gommersheim	06/2009
Ferrostal Power, Saarlouis	06/2009
BHR Bilfinger, Essen	06/2009
Intraserv, Wiesbaden	06/2009
Lausitz University of Applied Sciences, Senftenberg	06/2009
Nuernberg University of Applied Sciences	06/2009
Technical University of Berlin	06/2009
Fraunhofer Institut UMSICHT, Oberhausen	07/2009
Bischoff, Aurich	07/2009
Fichtner IT Consulting, Stuttgart	07/2009
Techsoft, Linz, Austria	08/2009

	DLD Stuttgart		08/2009
	DLR, Stuttgart		08/2009
	Wienstrom, Vienna, Austria		09/2009
	RWTH Aachen University		
	Vattenfall, Hamburg		10/2009
	AIC, Chemnitz		10/2009
	Midiplan, Bietigheim-Bissingen		11/2009
	Institute of Air Handling and Refrigeration ILK, Dresden		11/2009
	FZD, Rossendorf		11/2009
	Techgroup, Ratingen		11/2009
	Robert Sack, Heidelberg		11/2009
	EC, Heidelberg		11/2009
	MCI, Innsbruck, Austria		12/2009
	Saacke, Bremen		12/2009
	ENERKO, Aldenhoven		12/2009
20	008		
	Pink, Langenwang		01/2008
	Fischer-Uhrig, Berlin		01/2008
	University of Karlsruhe		01/2008
	MAAG, Kuesnacht, Switzerland		02/2008
	M&M Turbine Technology, Bielefeld		02/2008
	Lentjes, Ratingen		03/2008
	Siemens Power Generation, Goerlitz		04/2008
	Evonik, Zwingenberg (general EBSILON program license)		04/2008
	WEBASTO, Neubrandenburg		04/2008
	CFC Solutions, Munich		04/2008
	RWE IT, Essen		04/2008
	Rerum Cognitio, Zwickau	04/2008,	05/2008
	ARUP, Berlin		05/2008
	Research Center, Karlsruhe		07/2008
	AWECO, Neukirch		07/2008
	Technical University of Dresden, Professorship of Building Services		07/2008
	Technical University of Cottbus, Chair in Power Plant Engineering	07/2008,	10/2008
	Ingersoll-Rand, Unicov, Czech Republic		08/2008
	Technip Benelux BV, Zoetermeer, Netherlands		08/2008

	Fennovoima Oy, Helsinki, Finland	08/2008
	Fichtner Consulting & IT, Stuttgart	09/2008
	PEU, Espenhain	09/2008
	Poyry, Dresden	09/2008
	WINGAS, Kassel	09/2008
	TUEV Sued, Dresden	10/2008
	Technical University of Dresden, Professorship of Thermic Energy Machines and Plants	10/2008, 11/2008
	AWTEC, Zurich, Switzerland	11/2008
	Siemens Power Generation, Erlangen	12/2008
20	007	
	Audi, Ingolstadt	02/2007
	ANO Abfallbehandlung Nord, Bremen	02/2007
	TUEV NORD SysTec, Hamburg	02/2007
	VER, Dresden	02/2007
	Technical University of Dresden, Chair in Jet Propulsion Systems	02/2007
	Redacom, Nidau, Switzerland	02/2007
	Universität der Bundeswehr, Munich	02/2007
	Maxxtec, Sinsheim	03/2007
	University of Rostock, Chair in Technical Thermodynamics	03/2007
	AGO, Kulmbach	03/2007
	University of Stuttgart, Chair in Aviation Propulsions	03/2007
	Siemens Power Generation, Duisburg	03/2007
	ENTHAL Haustechnik, Rees	05/2007
	AWECO, Neukirch	05/2007
	ALSTOM, Rugby, Great Britain	06/2007
	SAAS, Possendorf	06/2007
	Grenzebach BSH, Bad Hersfeld	06/2007
	Reichel Engineering, Haan	06/2007
	Technical University of Cottbus, Chair in Power Plant Engineering	06/2007
	Voith Paper Air Systems, Bayreuth	06/2007
	Egger Holzwerkstoffe, Wismar	06/2007
	Tissue Europe Technologie, Mannheim	06/2007
	Dometic, Siegen	07/2007
	RWTH Aachen University, Institute for Electrophysics	09/2007

National Energy Technology Laboratory, Pittsburg, USA	10/2007
Energieversorgung Halle	10/2007
AL-KO, Jettingen	10/2007
Grenzebach BSH, Bad Hersfeld	10/2007
Wiesbaden University of Applied Sciences, Department of Engineering Sciences	10/2007
Endress+Hauser Messtechnik, Hannover	11/2007
Munich University of Applied Sciences, Department of Mechanical Engineering	11/2007
Rerum Cognitio, Zwickau	12/2007
Siemens Power Generation, Erlangen	11/2007
University of Rostock, Chair in Technical Thermodynamics	11/2007, 12/2007
2006	
STORA ENSO Sachsen, Eilenburg	01/2006
Technical University of Munich, Chair in Energy Systems	01/2006
NUTEC Engineering, Bisikon, Switzerland	01/2006, 04/2006
Conwel eco, Bochov, Czech Republic	01/2006
Offenburg University of Applied Sciences	01/2006
KOCH Transporttechnik, Wadgassen	01/2006
BEG Bremerhavener Entsorgungsgesellschaft	02/2006
Deggendorf University of Applied Sciences, Department of Mechanical Engineering and Mechatronics	02/2006
University of Stuttgart, Department of Thermal Fluid Flow Engines	02/2006
Technical University of Munich, Chair in Apparatus and Plant Engineering	02/2006
Energietechnik Leipzig (company license),	02/2006
Siemens Power Generation, Erlangen	02/2006, 03/2006
RWE Power, Essen	03/2006
WAETAS, Pobershau	04/2006
Siemens Power Generation, Goerlitz	04/2006
Technical University of Braunschweig, Department of Thermodynamics	04/2006
EnviCon & Plant Engineering, Nuremberg	04/2006
Brassel Engineering, Dresden	05/2006
University of Halle-Merseburg, Department of USET Merseburg incorporated society	05/2006

	Technical University of Dresden, Professorship of Thermic Energy Machines and Plants	05/2006
	Fichtner Consulting & IT Stuttgart (company licenses and distribution)	05/2006
	Suedzucker, Ochsenfurt	06/2006
	M&M Turbine Technology, Bielefeld	06/2006
	Feistel Engineering, Volkach	07/2006
	ThyssenKrupp Marine Systems, Kiel	07/2006
	Caliqua, Basel, Switzerland (company license)	09/2006
	Atlas-Stord, Rodovre, Denmark	09/2006
	Konstanz University of Applied Sciences, Course of Studies Construction and Development	10/2006
	Siemens Power Generation, Duisburg	10/2006
	Hannover University of Applied Sciences, Department of Mechanical Engineering	10/2006
	Siemens Power Generation, Berlin	11/2006
	Zikesch Armaturentechnik, Essen	11/2006
	Wismar University of Applied Sciences, Seafaring Department	11/2006
	BASF, Schwarzheide	12/2006
	Enertech Energie und Technik, Radebeul	12/2006
20	005	
	TUEV Nord, Hannover	01/2005
	J.H.K Plant Engineering and Service, Bremerhaven	01/2005
	Electrowatt-EKONO, Zurich, Switzerland	01/2005
	FCIT, Stuttgart	01/2005
	Energietechnik Leipzig (company license)	02/2005, 04/2005, 07/2005
	eta Energieberatung, Pfaffenhofen	02/2005
	FZR Forschungszentrum, Rossendorf/Dresden	04/2005
	University of Saarbruecken	04/2005
	Technical University of Dresden Professorship of Thermic Energy Machines and Plants	04/2005
	Grenzebach BSH, Bad Hersfeld	04/2005
	TUEV Nord, Hamburg	04/2005
	Technical University of Dresden, Waste Management	05/2005
	Siemens Power Generation, Goerlitz	05/2005

	Duesseldorf University of Applied Sciences, Department of Mechanical Engineering and Process Engineering	05/2005
	Redacom, Nidau, Switzerland	06/2005
	Dumas Verfahrenstechnik, Hofheim	06/2005
	Alensys Engineering, Erkner	07/2005
	Stadtwerke Leipzig	07/2005
	SaarEnergie, Saarbruecken	07/2005
	ALSTOM ITC, Rugby, Great Britain	08/2005
	Technical University of Cottbus, Chair in Power Plant Engineering	08/2005
	Vattenfall Europe, Berlin (group license)	08/2005
	Technical University of Berlin	10/2005
	Basel University of Applied Sciences, Department of Mechanical Engineering, Switzerland	10/2005
	Midiplan, Bietigheim-Bissingen	11/2005
	Technical University of Freiberg, Chair in Hydrogeology	11/2005
	STORA ENSO Sachsen, Eilenburg	12/2005
	Energieversorgung Halle (company license)	12/2005
	KEMA IEV, Dresden	12/2005
	KEIWI (TEV, DIEGGET	12/2003
20	004	12/2003
20		01/2004
20	004	
20	004 Vattenfall Europe (group license)	01/2004 01/2004
20	Vattenfall Europe (group license) TUEV Nord, Hamburg	01/2004 01/2004
20	Vattenfall Europe (group license) TUEV Nord, Hamburg University of Stuttgart, Institute of Thermodynamics and Heat Engineeri	01/2004 01/2004 ing 02/2004
20	Vattenfall Europe (group license) TUEV Nord, Hamburg University of Stuttgart, Institute of Thermodynamics and Heat Engineeri MAN B&W Diesel A/S, Copenhagen, Denmark	01/2004 01/2004 ing 02/2004 02/2004
20	Vattenfall Europe (group license) TUEV Nord, Hamburg University of Stuttgart, Institute of Thermodynamics and Heat Engineeri MAN B&W Diesel A/S, Copenhagen, Denmark Siemens AG Power Generation, Erlangen Ulm University of Applied Sciences	01/2004 01/2004 ing 02/2004 02/2004
20	Vattenfall Europe (group license) TUEV Nord, Hamburg University of Stuttgart, Institute of Thermodynamics and Heat Engineeri MAN B&W Diesel A/S, Copenhagen, Denmark Siemens AG Power Generation, Erlangen Ulm University of Applied Sciences	01/2004 01/2004 ing 02/2004 02/2004 02/2004 03/2004
20	Vattenfall Europe (group license) TUEV Nord, Hamburg University of Stuttgart, Institute of Thermodynamics and Heat Engineeri MAN B&W Diesel A/S, Copenhagen, Denmark Siemens AG Power Generation, Erlangen Ulm University of Applied Sciences Visteon, Kerpen Technical University of Dresden,	01/2004 01/2004 ing 02/2004 02/2004 02/2004 03/2004 03/2004, 10/2004
20	Vattenfall Europe (group license) TUEV Nord, Hamburg University of Stuttgart, Institute of Thermodynamics and Heat Engineeri MAN B&W Diesel A/S, Copenhagen, Denmark Siemens AG Power Generation, Erlangen Ulm University of Applied Sciences Visteon, Kerpen Technical University of Dresden, Professorship of Thermic Energy Machines and Plants	01/2004 01/2004 ing 02/2004 02/2004 02/2004 03/2004 03/2004 04/2004
20	Vattenfall Europe (group license) TUEV Nord, Hamburg University of Stuttgart, Institute of Thermodynamics and Heat Engineeri MAN B&W Diesel A/S, Copenhagen, Denmark Siemens AG Power Generation, Erlangen Ulm University of Applied Sciences Visteon, Kerpen Technical University of Dresden, Professorship of Thermic Energy Machines and Plants Rerum Cognitio, Zwickau	01/2004 01/2004 ing 02/2004 02/2004 02/2004 03/2004 03/2004 04/2004
20	Vattenfall Europe (group license) TUEV Nord, Hamburg University of Stuttgart, Institute of Thermodynamics and Heat Engineeri MAN B&W Diesel A/S, Copenhagen, Denmark Siemens AG Power Generation, Erlangen Ulm University of Applied Sciences Visteon, Kerpen Technical University of Dresden, Professorship of Thermic Energy Machines and Plants Rerum Cognitio, Zwickau University of Saarbruecken	01/2004 01/2004 ing 02/2004 02/2004 02/2004 03/2004 03/2004 04/2004 04/2004
20	Vattenfall Europe (group license) TUEV Nord, Hamburg University of Stuttgart, Institute of Thermodynamics and Heat Engineeri MAN B&W Diesel A/S, Copenhagen, Denmark Siemens AG Power Generation, Erlangen Ulm University of Applied Sciences Visteon, Kerpen Technical University of Dresden, Professorship of Thermic Energy Machines and Plants Rerum Cognitio, Zwickau University of Saarbruecken Grenzebach BSH, Bad Hersfeld	01/2004 01/2004 ing 02/2004 02/2004 02/2004 03/2004 03/2004 04/2004 04/2004 04/2004
20	Vattenfall Europe (group license) TUEV Nord, Hamburg University of Stuttgart, Institute of Thermodynamics and Heat Engineeri MAN B&W Diesel A/S, Copenhagen, Denmark Siemens AG Power Generation, Erlangen Ulm University of Applied Sciences Visteon, Kerpen Technical University of Dresden, Professorship of Thermic Energy Machines and Plants Rerum Cognitio, Zwickau University of Saarbruecken Grenzebach BSH, Bad Hersfeld SOFBID Zwingenberg (general EBSILON program license)	01/2004 01/2004 ing 02/2004 02/2004 02/2004 03/2004 03/2004 04/2004 04/2004 04/2004 04/2004
20	Vattenfall Europe (group license) TUEV Nord, Hamburg University of Stuttgart, Institute of Thermodynamics and Heat Engineeri MAN B&W Diesel A/S, Copenhagen, Denmark Siemens AG Power Generation, Erlangen Ulm University of Applied Sciences Visteon, Kerpen Technical University of Dresden, Professorship of Thermic Energy Machines and Plants Rerum Cognitio, Zwickau University of Saarbruecken Grenzebach BSH, Bad Hersfeld SOFBID Zwingenberg (general EBSILON program license) EnBW Energy Solutions, Stuttgart	01/2004 01/2004 ing 02/2004 02/2004 02/2004 03/2004 03/2004, 10/2004 04/2004 04/2004 04/2004 04/2004 04/2004

	Physikalisch Technische Bundesanstalt (PTB), Braunschweig	08/2004
	Mainova Frankfurt	08/2004
	Rietschle Energieplaner, Winterthur, Switzerland	08/2004
	MAN Turbo Machines, Oberhausen	09/2004
	TUEV Sued, Dresden	10/2004
	STEAG Kraftwerk, Herne	10/2004, 12/2004
	University of Weimar	10/2004
	energeticals (e-concept), Munich	11/2004
	SorTech, Halle	11/2004
	Enertech EUT, Radebeul (company license)	11/2004
	Munich University of Applied Sciences	12/2004
	STORA ENSO Sachsen, Eilenburg	12/2004
	Technical University of Cottbus, Chair in Power Plant Engineering	12/2004
	Freudenberg Service, Weinheim	12/2004
20	003	
	Paper Factory, Utzenstorf, Switzerland	01/2003
	MAB Plant Engineering, Vienna, Austria	01/2003
	Wulff Energy Systems, Husum	01/2003
	Technip Benelux BV, Zoetermeer, Netherlands	01/2003
	ALSTOM Power, Baden, Switzerland	01/2003, 07/2003
	VER, Dresden	02/2003
	Rietschle Energieplaner, Winterthur, Switzerland	02/2003
	DLR, Leupholdhausen	04/2003
	Emden University of Applied Sciences, Department of Technology	05/2003
	Petterssson+Ahrends, Ober-Moerlen	05/2003
	SOFBID ,Zwingenberg (general EBSILON program license)	05/2003
	Ingenieurbuero Ostendorf, Gummersbach	05/2003
	TUEV Nord, Hamburg	06/2003
	Muenstermann GmbH, Telgte-Westbevern	06/2003
	University of Cali, Colombia	07/2003
	Atlas-Stord, Rodovre, Denmark	08/2003
	ENERKO, Aldenhoven	08/2003
	STEAG RKB, Leuna	08/2003
	eta Energieberatung, Pfaffenhofen	08/2003
	exergie, Dresden	09/2003

	AWTEC, Zurich, Switzerland	09/2003
	Energie, Timelkam, Austria	09/2003
	Electrowatt-EKONO, Zurich, Switzerland	09/2003
	LG, Annaberg-Buchholz	10/2003
	FZR Forschungszentrum, Rossendorf/Dresden	10/2003
	EnviCon & Plant Engineering, Nuremberg	11/2003
	Visteon, Kerpen	11/2003
	VEO Vulkan Energiewirtschaft Oderbruecke, Eisenhuettenstadt	11/2003
	Stadtwerke Hannover	11/2003
	SaarEnergie, Saarbruecken	11/2003
	Fraunhofer-Gesellschaft, Munich	12/2003
	Erfurt University of Applied Sciences, Department of Supply Engineering	12/2003
	SorTech, Freiburg	12/2003
	Mainova, Frankfurt	12/2003
	Energieversorgung Halle	12/2003
20	002	
	Hamilton Medical AG, Rhaezuens, Switzerland	01/2002
	Bochum University of Applied Sciences, Department of Thermo- and Fluid Dynamics	01/2002
	SAAS, Possendorf/Dresden	02/2002
	Siemens, Karlsruhe (general license for the WinIS information system)	02/2002
	FZR Forschungszentrum, Rossendorf/Dresden	03/2002
	CompAir, Simmern	03/2002
	GKS Gemeinschaftskraftwerk, Schweinfurt	04/2002
	ALSTOM Power Baden, Switzerland (group licenses)	05/2002
	InfraServ, Gendorf	05/2002
	SoftSolutions, Muehlhausen (company license)	05/2002
	DREWAG, Dresden (company license)	05/2002
	SOFBID, Zwingenberg (general EBSILON program license)	06/2002
	Kleemann Engineering, Dresden	06/2002
	Caliqua, Basel, Switzerland (company license)	07/2002
	PCK Raffinerie, Schwedt (group license)	07/2002
	Fischer-Uhrig Engineering, Berlin	08/2002

Fichtner Consulting & IT, Stuttgart	08/2002
(company licenses and distribution)	05/2002
Stadtwerke Duisburg	08/2002
Stadtwerke Hannover	09/2002
Siemens Power Generation, Goerlitz	10/2002
Energieversorgung Halle (company license)	10/2002
Bayer, Leverkusen	11/2002
Dillinger Huette, Dillingen	11/2002
G.U.N.T. Geraetebau, Barsbuettel (general license and training test benches)	12/2002
VEAG, Berlin (group license)	12/2002
2001	
ALSTOM Power, Baden, Switzerland	01/2001, 06/2001, 12/2001
KW2 B. V., Amersfoot, Netherlands	01/2001, 11/2001
Eco Design, Saitamaken, Japan	01/2001
M&M Turbine Technology, Bielefeld	01/2001, 09/2001
MVV Energie, Mannheim	02/2001
Technical University of Dresden, Department of Power Machinery and Plants	02/2001
PREUSSAG NOELL, Wuerzburg	03/2001
Fichtner Consulting & IT Stuttgart (company licenses and distribution)	04/2001
Muenstermann GmbH, Telgte-Westbevern	05/2001
SaarEnergie, Saarbruecken	05/2001
Siemens, Karlsruhe (general license for the WinIS information system)	08/2001
Neusiedler AG, Ulmerfeld, Austria	09/2001
h s energieanlagen, Freising	09/2001
Electrowatt-EKONO, Zurich, Switzerland	09/2001
IPM Zittau/Goerlitz University of Applied Sciences	s (general license) 10/2001
eta Energieberatung, Pfaffenhofen	11/2001
ALSTOM Power Baden, Switzerland	12/2001
VEAG, Berlin (group license)	12/2001
2000	
SOFBID, Zwingenberg (general EBSILON program license)	01/2000
AG KKK - PGW Turbo, Leipzig	01/2000

PREUSSAG NOELL, Wuerzburg	01/2000
M&M Turbine Technology, Bielefeld	01/2000
IBR Engineering Reis, Nittendorf-Undorf	02/2000
GK, Hannover	03/2000
KRUPP-UHDE, Dortmund (company license)	03/2000
UMAG W. UDE, Husum	03/2000
VEAG, Berlin (group license)	03/2000
Thinius Engineering, Erkrath	04/2000
SaarEnergie, Saarbruecken	05/2000, 08/2000
DVO Data Processing Service, Oberhausen	05/2000
RWTH Aachen University	06/2000
VAUP Process Automation, Landau	08/2000
Knuerr-Lommatec, Lommatzsch	09/2000
AVACON, Helmstedt	10/2000
Compania Electrica, Bogota, Colombia	10/2000
G.U.N.T. Geraetebau, Barsbuettel (general license for training test benches)	11/2000
Steinhaus Informationssysteme, Datteln (general license for process data software)	12/2000
1999	
Bayernwerk, Munich	01/1999
DREWAG, Dresden (company license)	02/1999
KEMA IEV, Dresden	03/1999
Regensburg University of Applied Sciences	04/1999
Fichtner Consulting & IT, Stuttgart (company licenses and distribution)	07/1999
Technical University of Cottbus, Chair in Power Plant Engineering	07/1999
Technical University of Graz, Department of Thermal Engineering	, Austria 11/1999
Ostendorf Engineering, Gummersbach	12/1999
1998	
Technical University of Cottbus, Chair in Power Plant Engineering	05/1998
Fichtner Consulting & IT (CADIS information systems) Stuttgart (general KPRO program license)	05/1998
, , ,	05/1998 06/1998
(general KPRO program license)	

VEAG Berlin (group license)	09/1998
NUTEC Engineering, Bisikon, Switzerland	10/1998
SCA Hygiene Products, Munich	10/1998
RWE Energie, Neurath	10/1998
Wilhelmshaven University of Applied Sciences	10/1998
BASF, Ludwigshafen (group license)	11/1998
Energieversorgung, Offenbach	11/1998
1997	
Gerb, Dresden	06/1997
Siemens Power Generation, Goerlitz	07/1997