

Faculty of MECHANICAL ENGINEERING Department of TECHNICAL THERMODYNAMICS

Property Library for Humid Air Calculated as Ideal Mixture of Real Fluids

FluidEXL*Graphics* with LibHuAir_Xiw for Excel®

Prof. Hans-Joachim Kretzschmar Dr. Ines Stoecker Ines Jaehne Matthias Kunick K. Knobloch T. Hellriegel L. Kleemann D. Seibt

Property Software for Humid Air Calculated as Ideal Mixture of Real Fluids

LibHuAir_Xiw FluidEXL^{Graphics}

Contents

- 0. Package Contents
 - 0.1 Zip-files for 32-bit Excel[®]
 - 0.2 Zip-files for 64-bit Excel[®]
- 1. Property Functions
 - 1.1 Functions
 - 1.2 Thermodynamic Diagrams
- 2. Application of FluidEXL^{Graphics} in Excel[®]
 - 2.1 Installing FluidEXLGraphics
 - 2.2 Registering FluidEXLGraphics as Add-In in Excel
 - 2.3 The FluidEXLGraphics Help System
 - 2.4 Licensing the LibHuAir_Xiw Property Library
 - 2.5 Example: Calculation of $h = f(p, t, Xi_w, succ)$
 - 2.6 Representation of Calculated Properties in Thermodynamic Diagrams
 - 2.7 Removing FluidEXLGraphics
- 3. Program Documentation
- 4. Property Libraries for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators
- 5. References
- 6. Satisfied Customers

 Zittau/Goerlitz University of Applied Sciences, Germany Faculty of Mechanical Engineering Department of Technical Thermodynamics Professor Hans-Joachim Kretzschmar Dr. Ines Stoecker Phone: +49-3583-61-1846 or -1881 Fax: +49-3583-61-1846 E-mail: hj.kretzschmar@hs-zigr.de Internet: www.thermodynamics-zittau.de

0. Package Contents

0.1 Zip files for 32-bit Windows[®]

The following zip files are delivered for your computer running a 32-bit version of Windows[®].

English zip file "CD_FluidEXL_Graphics_LibHuAir_Xiw_Eng.zip" including the following files:

FluidEXL_Graphics_Eng_Setup.exe	 Self-extracting and self-installing program for FluidEXL^{Graphics}
FluidEXL_Graphics_Eng.xla	- FluidEXL ^{Graphics} Add-In
FluidEXL_Graphics_LibHuAir_Xiw_Docu_Eng.pdf	- User's Guide
LibHuAir_Xiw.hlp	 Help file for the LibHuAir_Xiw property library
LibHuAir_Xiw.dll	 Dynamic link library with functions for humid air

German zip file "CD_FluidEXL_Graphics_LibHuAir_Xiw.zip" including the following files:

FluidEXL_Graphics_Setup.exe	- Self-extracting and self-installing program for FluidEXL ^{Graphics}
FluidEXL_Graphics.xla	- German Add-In for FluidEXL ^{Graphics}
FluidEXL_Graphics_LibHuAir_Xiw_Docu_Eng.pdf	- User's Guide
LibHuAir_Xiw.hlp	 Help file for the LibHuAir_Xiw property library
LibHuAir_Xiw.dll	 Dynamic link library with functions for humid air

0.2 Zip files for 64-bit Windows[®]

The following zip files are delivered for your computer running a 64-bit version of Windows[®].

English zip file "CD_FluidEXL_Graphics_LibHuAir_Xiw_x64_Eng.zip" including the following files and folders:

Files:	
Setup.exe	- Self-extracting and self-installing program for FluidEXL Graphics
FluidEXL_Graphics_Eng_64_Setup.msi	- Self-extracting and self-installing program
FluidEXL_Graphics_Eng.xla	- FluidEXL ^{Graphics} Add-In
FluidEXL_Graphics_LibHuAir_Xiw_Docu_Eng.pdf	- User's Guide
LibHuAir_Xiw.dll	 Dynamic link library with functions for humid air
LibHuAir_Xiw.hlp	 Help file for the LibHuAir_Xiw property library
Folders:	
/vcredist_x64	 Folder containing the "Microsoft Visual C++ 2010 x64 Redistributable Pack"
/WindowsInstaller3_1	 Folder containing the "Microsoft Windows Installer"

German zip file "CD_FluidEXL_Graphics_LibHuAir_Xiw_x64.zip" including the following files and folders:

Files:	
Setup.exe	- Self-extracting and self-installing program for FluidEXL
FluidEXL_Graphics_64_Setup.msi	- Self-extracting and self-installing program
FluidEXL_Graphics.xla	- FluidEXL ^{Graphics} Add-In
FluidEXL_Graphics_LibHuAir_Xiw_Docu_Eng.pdf	- User's Guide
LibHuAir_Xiw.dll	 Dynamic link library with functions for humid air
LibHuAir_Xiw.hlp	 Help file for the LibHuAir_Xiw property library

Folders:

/vcredist_x64

/WindowsInstaller3_1

- Folder containing the "Microsoft Visual C++ 2010 x64 Redistributable Pack"

- Folder containing the "Microsoft Windows Installer"

1. Property Functions

1.1 Functions

Functional Dependence	Function Name	Call from Fortran Program	Property or Function	Unit	Source or Algorithm	Information on page
$a = f(p, t, \xi_w)$	a_ptXiw_HuAir	= a_ptXiw_HuAir(p,t,Xiw,succ)	Thermal diffusivity	m²/s	[1-4], [6], [12], [14], [15]	3/2
$c_p = f(h, s, \xi_w)$	cp_hsXiw_HuAir	= cp_hsXiw_HuAir(h,s,Xiw,succ)	Backward function: Isobaric heat capacity from enthalpy and entropy	kJ/(kg∙K)	[1-4], [13], [14]	3/3
$c_p = f(p, h, \xi_w)$	cp_phXiw_HuAir	= cp_phXiw_HuAir(p,h,Xiw,succ)	Backward function: Isobaric heat capacity from pressure and enthalpy	kJ/(kg⋅K)	[1-4], [13], [14]	3/4
$c_p = f(p, s, \xi_w)$	cp_psXiw_HuAir	= cp_psXiw_HuAir(p,s,Xiw,succ)	Backward function: Isobaric heat capacity from pressure and entropy	kJ/(kg∙K)	[1-4], [13], [14]	3/5
$c_p = f(p, t, \xi_w)$	cp_ptXiw_HuAir	= cp_ptXiw_HuAir(p,t,Xiw,succ)	Specific isobaric heat capacity	kJ/(kg⋅K)	[1-4], [13], [14]	3/6
$c_p = f(t, s, \xi_w)$	cp_tsXiw_HuAir	= cp_tsXiw_HuAir(t,s,Xiw,succ)	Backward function: Specific isobaric heat capacity from temperature and entropy	kJ/(kg∙K)	[1-4], [13], [14]	3/7
$c_v = f(\rho, t, \xi_w)$	cv_ptXiw_HuAir	= cv_ptXiw_HuAir(p,t,Xiw,succ)	Specific isochoric heat capacity	kJ/(kg⋅K)	[1-4], [13], [14]	3/8
$\eta = f(p, t, \xi_w)$	Eta_ptXiw_HuAir	= Eta_ptXiw_HuAir(p,t,Xiw,succ)	Dynamic viscosity	Pa⋅s	[7], [12], [15]	3/9
$h = f(p, s, \xi_w)$	h_psXiw_HuAir	= h_psXiw_HuAir(p,s,Xiw,succ)	Backward function: Specific enthalpy from pressure and entropy	kJ/kg	[1-4], [13], [14], [18], [19]	3/10
$h = f(p, t, \xi_w)$	h_ptXiw_HuAir	= h_ptXiw_HuAir(p,t,Xiw,succ)	Specific enthalpy	kJ/kg	[1-4], [13], [14], [18], [19]	3/11
$h = f(t, s, \xi_W)$	h_tsXiw_HuAir	= h_tsXiw_HuAir(t,s,Xiw,succ)	Backward function: Specific enthalpy from temperature and entropy	kJ/kg	[1-4], [13], [14], [18], [19]	3/12

Functional Dependence	Function Name	Call from Fortran Program	Property or Function	Unit	Source or Algorithm	Information on page
$\kappa = f(\rho, s, \xi_w)$	Kappa_psXiw_HuAir	= Kappa_psXiw_HuAir(p,s,Xiw,succ)	Backward function: Isentropic exponent from pressure and entropy	-	[1-4], [13], [14]	3/13
$\kappa = f(p, t, \xi_W)$	Kappa_ptXiw_HuAir	= Kappa_ptXiw_HuAir(p,t,Xiw,succ)	Isentropic exponent	-	[1-4], [13], [14]	3/14
$\lambda = f(p, t, \xi_W)$	Lambda_ptXiw_HuAir	= Lambda_ptXiw_HuAir(p,t,Xiw,succ)	Thermal conductivity	W/(m · K)	[6], [12], [15]	3/15
$\nu = f(p, t, \xi_{W})$	Ny_ptXiw_HuAir	= Ny_ptXiw_HuAir(p,t,Xiw,succ)	Kinematic viscosity	m²/s	[1-4], [7], [12], [14], [15]	3/16
$p = f(h, s, \xi_w)$	p_hsXiw_HuAir	= p_hsXiw_HuAir(h,s,Xiw,succ)	Backward function: Pressure from enthalpy and entropy	bar	[1-4], [13], [14], [18], [19]	3/17
$p = f(t, s, \xi_w)$	p_tsXiw_HuAir	= p_tsXiw_HuAir(t,s,Xiw,succ)	Backward function: Pressure from temperature and entropy	bar	[1-4], [13], [14], [18], [19]	3/18
$p_{d} = f(p, t, \xi_{w})$	pd_ptXiw_HuAir	= pd_ptXiw_HuAir(p,t,Xiw,succ)	Partial pressure of steam	bar	[1-4], [16], [17], [25], [26]	3/19
$p_{dsatt} = f(p,t)$	pdsatt_pt_HuAir	= pdsatt_pt_HuAir(p,t,succ)	Saturation vapor pressure of water	bar	[1-4], [16], [17], [25], [26]	3/20
$\varphi = f(\rho, t, \xi_{W})$	Phi_ptXiw_HuAir	= Phi_ptXiw_HuAir(p,t,Xiw,succ)	Relative humidity	-	[1-4], [16], [17], [25], [26]	3/21
$p_{\rm I} = f(p, t, \xi_{\rm W})$	pl_ptXiw_HuAir	= pl_ptXiw_HuAir(p,t,Xiw,succ)	Partial pressure of air	bar	[1-4], [16], [17], [25], [26]	3/22
$Pr = f(p, t, \xi_W)$	Pr_ptXiw_HuAir	= Pr_ptXiw_HuAir(p,t,Xiw,succ)	PRANDTL-Number	-	[1-4], [6], [7], [12- 15]	3/23
$\psi_{I} = f(\xi_{W})$	Psil_Xiw_HuAir	= Psil_Xiw_HuAir(Xiw,succ)	Mole fraction of air	kmol/kmol		3/24
$\psi_{W} = f(\xi_{W})$	Psiw_Xiw_HuAir	= Psiw_Xiw_HuAir(Xiw,succ)	Mole fraction of water	kmol/kmol		3/25
Region = $f(h, s, \xi_w)$	Region_hsXiw_HuAir	= Region_hsXiw_HuAir(p,h,Xiw)	Region of state from enthalpy and entropy	-	[1-4], [14], [18], [19]	3/26
Region = f(p, h, ξ_{W})	Region_phXiw_HuAir	= Region_phXiw_HuAir(p,h,Xiw)	Region of state from pressure and enthalpy	-	[1-4], [14], [18], [19]	3/27

Functional Dependence	Function Name	Call from Fortran Program	Property or Function	Unit	Source or Algorithm	Information on page
Region = f(p , s, ξ_w)	Region_psXiw_HuAir	= Region_psXiw_HuAir(p,s,Xiw)	Region of state from pressure and entropy	-	[1-4], [14], [18], [19]	3/28
Region = f(p, T, ξ_W)	Region_ptXiw_HuAir	= Region_ptXiw_HuAir(p,t,Xiw)	Region of state from pressure and temperature	-	[1-4], [14], [18], [19]	3/29
Region = f(t, s, ξ_{W})	Region_tsXiw_HuAir	= Region_tsXiw_HuAir(t,s,Xiw)	Region of state from temperature and entropy	-	[1-4], [14], [18], [19]	3/30
$\rho = f(p, t, \xi_w)$	Rho_ptXiw_HuAir	= Rho_ptXiw_HuAir(p,t,Xiw,succ)	Density	kg/m ³	[1-4], [14], [18], [19]	3/31
$s = f(p, h, \xi_w)$	s_phXiw_HuAir	= s_phXiw_HuAir(p,h,Xiw,succ)	Backward function: Entropy from pressure and enthalpy	kJ/(kg ⋅ K)	[1-4], [13], [14], [18], [19]	3/32
$s = f(p, t, \xi_w)$	s_ptXiw_HuAir	= s_ptXiw_HuAir(p,t,Xiw,succ)	Specific entropy	kJ/(kg⋅K)	[1-4], [13], [14], [18], [19]	3/33
$\sigma = f(t)$	Sigma_t_HuAir	= Sigma_t_HuAir (t,succ)	Surface tension of water	N/m	[8]	3/34
$t = f(h, s, \xi_{W})$	t_hsXiw_HuAir	= t_hsXiw_HuAir(h,s,Xiw,succ)	Backward function: Temperature from enthalpy and entropy	°C	[1-4], [13], [14], [18], [19]	3/35
$t = f(p, h, \xi_{W})$	t_phXiw_HuAir	= t_phXiw_HuAir(p,h,Xiw,succ)	Backward function: Temperature from pressure and enthalpy	°C	[1-4], [13], [14], [18], [19]	3/36
$t = f(p, s, \xi_W)$	t_psXiw_HuAir	= t_psXiw_HuAir(p,s,Xiw,succ)	Backward function: Temperature from pressure and entropy	°C	[1-4], [13], [14], [18], [19]	3/37
$t_{\sf f}={\sf f}(p,t,\xi_{\sf W})$	tf_ptXiw_HuAir	= tf_ptXiw_HuAir(p,t,Xiw,succ)	Wet bulb temperature	°C	[1-4], [13], [22]	3/38
$t_{\tau} = f(p, \xi_{W})$	tTau_pXiw_HuAir	= tTau_pXiw_HuAir(p,Xiw,succ)	Dew point temperature	°C	[1-4], [16], [17]	3/39
$u = f(p, t, \xi_{W})$	u_ptXiw_HuAir	= u_ptXiw_HuAir(p,t,Xiw,succ)	Internal energy	kJ/kg	[1-4], [13], [14], [18], [19]	3/40
$v = f(h, s, \xi_W)$	v_hsXiw_HuAir	= v_hsXiw_HuAir(h,s,Xiw,succ)	Backward function: Specific volume from enthalpy and entropy	m ³ /kg	[1-4], [13], [14], [18], [19]	3/41

Functional Dependence	Function Name	Call from Fortran Program	Property or Function	Unit	Source or Algorithm	Information on page
$v = f(p, h, \xi_w)$	v_phXiw_HuAir	= v_phXiw_HuAir(p,h,Xiw,succ)	Backward function: Specific volume from pressure and enthalpy	m ³ /kg	[1-4], [13], [14], [18], [19]	3/42
$v = f(p, s, \xi_w)$	v_psXiw_HuAir	= v_psXiw_HuAir(p,s,Xiw,succ)	Backward function: Specific volume from pressure and entropy	m ³ /kg	[1-4], [13], [14], [18], [19]	3/43
$v = f(p, t, \xi_{W})$	v_ptXiw_HuAir	= v_ptXiw_HuAir(p,t,Xiw,succ)	Specific volume	m ³ /kg	[1-4], [14], [18], [19]	3/44
$v = f(t, s, \xi_{W})$	v_tsXiw_HuAir	= v_tsXiw_HuAir(t,s,Xiw,succ)	Backward function: Specific volume from temperature and entropy	m ³ /kg	[1-4], [13], [14], [18], [19]	3/45
$w = f(p, t, \xi_w)$	w_ptXiw_HuAir	= w_ptXiw_HuAir(p,t,Xiw,succ)	Isentropic speed of sound	m/s	[1-4], [13], [14]	3/46
$x_{W} = f(\xi_{W})$	xw_Xiw_HuAir	= xw_Xiw_HuAir(Xiw,succ)	Humidity ratio (absolute humidity) from mass fraction of water	kg/kg _{Air}		3/47
$\xi_{W} = f(p, t, \varphi)$	Xiw_ptPhi_HuAir	= Xiw_ptPhi_HuAir(p,t,Phi,succ)	Mass fraction of water from temperature and relative humidity	kg/kg	[1-4], [16], [17], [25], [26]	3/48
$\xi_{W} = f(\boldsymbol{p}, \boldsymbol{t}, \boldsymbol{p}_{d})$	Xiw_ptpd_HuAir	= Xiw_ptpd_HuAir(p,t,pd,succ)	Mass fraction of water from partial pressure of steam	kg/kg	[1-4], [16], [17], [25], [26]	3/49
$\xi_{\sf W}={\sf f}(\rho,t_{\tau})$	Xiw_ptTau_HuAir	= Xiw_ptTau_HuAir(p,tTau,succ)	Mass fraction of water from dew point temperature	kg/kg	[1-4], [16], [17], [25], [26]	3/50
$\xi_{\rm W}={\sf f}(p,t,t_{\rm f})$	Xiw_pttf_HuAir	= Xiw_pttf_HuAir(p,t,tf,succ)	Mass fraction of steam from temperature and wet bulb temperature	kg/kg	[1-4], [13], [14]	3/51
$\xi_{wf} = f(\boldsymbol{p}, t, \xi_{w})$	Xiwf_ptXiw_HuAir	= Xiwf_ptXiw_HuAir (p,t,Xiw,succ)	Mass fraction of liquid water	kg/kg	[1-4], [16], [17], [25], [26]	3/52
$\xi_{wsatt} = f(p,t)$	Xiwsatt_pt_HuAir	= Xiwsatt_pt_HuAir(p,t,succ)	Mass fraction steam of saturated air	kg/kg	[1-4], [16], [17], [25], [26]	3/53

Types of variables for function calls

All functions, except Region	REAL*8
All variables, except succ	REAL*8
Region , succ	INTEGER*4

Definition of the output value "succ":

succ	Meaning
0	Calculation not successful
1	Calculation successful

Definition of the region of state "Region":

Region	Meaning
0	Outside range of validity
1	Dry air
2	Unsaturated humid air
3	Liquid fog
4	Ice fog
5	Mixture of liquid fog and ice fog at 0 °C exactly
6	Pure water

Reference states:

Factor	Dry air	Water
Pressure	1.01325 bar	611.657 Pa
Temperature	0 °C	273.16 K
Enthalpy	0 kJ/kg	0.611783 J/kg
Internal energy	-78.37885533 kJ/kg	0 J/kg
Entropy	0.161802887 kJ/(kg K)	0 J/(kg K)

Composition of dry air (from Lemmon et al. [22], [23]):

Component		Mole fraction
Nitrogen	N_2	0.7812
Oxygen	O ₂	0.2096
Argon	Ar	0.0092

Parameters

- p Total pressure in bar
- t Temperature in °C
- Xiw Mass fraction of water in kg water(steam)/kg humid air

succ - Output parameter: succ = 1 if calculation successful, or else succ = 0

Range of validity

Temperature	t = - 30 °C 1726.85 °C
Pressure	p = 0.01 bar 1000 bar

Calculation algorithms

Unsaturated and saturated humid air $(0 \le Xi_w \le Xi_{ws})$:

Ideal mixture of dry air and steam

Dry air:

- v, h, u, s, c_p , c_v , κ , w from *Lemmon* et al. [14]

- λ , η from *Lemmon* et al. [15]

Steam:

- v, h, u, s, c_p, c_v, $\kappa,$ w of steam from IAPWS-IF97 [1], [2], [3], [4]

- λ , η for 0°C ≤ t ≤ 800°C from IAPWS-85 [6], [7] (Mixture of volume fractions) for t < 0 °C and t > 800 °C from *Brandt* [12] (Mixture of volume fractions)

Supersaturated humid air (liquid fog or ice fog)

Liquid fog (Xi_w > Xi_{wsatt}) and t \geq 0°C

Ideal mixture of saturated humid air and water liquid

- saturated humid air as specified above

- v, h, u, s, κ , w of liquid drops from IAPWS-IF97 [1], [2], [3], [4]

- λ , η of liquid drops from IAPWS-85, IAPWS-08 [6], [7] (Mixture of volume fractions)

Ice fog $(Xi_w > Xi_{wsatt})$ and $t < 0^{\circ}C$

Ideal mixture of saturated humid air and water ice

- saturated humid air as specified above

- v, h, s of ice crystals from IAPWS-06 [18], [19]
- λ of ice crystals as non varying value
- $\eta,\,\kappa,\,w$ of saturated humid air

Xi_{wsatt}(p,t) from saturation pressure p_{dsatt}(p,t) of water in mixtures of gases

 $p_{dsatt}(p,t)$ is the saturation vapor pressure from $p_{dsatt}(p,t) = f(p,t) \cdot p_s(t)$

- f(p,t) from Herrmann et al. [25], [26],

- $p_s(t)$ for T ≥ 0.01 °C from IAPWS - IF97 [1], [2], [3], [4],

- $p_s(t)$ for T < 0 °C from IAPWS-08 [16], [17].

1.2 Thermodynamic Diagrams

FluidEXL*Graphics* enables the user to represent the calculated properties in the following thermodynamic diagrams:

- h,x-Diagram p = 0.101325 MPa
- h,x-Diagram p = 0.11 MPa

The diagrams, in which the calculated point will be displayed, are shown below.

2. Application of FluidEXL*Graphics* in Excel[®]

The Add-In FluidEXL^{Graphics} has been developed to calculate thermodynamic properties in Excel[®] more conveniently. Within Excel, it enables the direct call of functions relating to humid air from the LibHuAir_Xiw property library. Furthermore, the program enables representation of calculated values in various thermodynamic diagrams.

2.1 Installing FluidEXL^{Graphics}

If FluidEXL^{Graphics} has not yet been installed or if there is a version installed which has been delivered before June 2010, please complete the initial installation procedure described below.

If FluidEXL^{Graphics} has already been installed in a version which has been delivered after June 2010, you simply need to copy the files which belong to the LibHuAir_Xiw library. In this case, follow the subsection "Adding the LibHuAir_Xiw Library" on page 2/11.

Installing FluidEXL^{Graphics} for 32-bit Excel[®]

Complete the following steps for initial installation of FluidEXLGraphics.

Before you begin, it is best to uninstall any trial version or full version of FluidEXL^{Graphics} delivered before June 2010.

After you have downloaded and extracted the zip-file

"CD_FluidEXL_Graphics_LibHuAir_Xiw_Eng.zip"	(for English version of Windows [®])
"CD_FluidEXL_Graphics_LibHuAir_Xiw.zip"	(for German version of Windows)
you will see the folder	
CD_FluidEXL_Graphics_LibHuAir_Xiw_Eng	(for English version of Windows)
CD FluidEXL Graphics LibHuAir Xiw	(for German version of Windows)

in your Windows Explorer, Norton Commander, etc.

Now, open this folder by double-clicking on it.

Within this folder you will see the following files:

FluidEXL_Graphics_Eng_Setup.exe FluidEXL_Graphics_Setup.exe	(for English version of Windows) (for German version of Windows)
FluidEXL_Graphics_Eng.xla	(for English version of Windows)
FluidEXL_Graphics.xla	(for German version of Windows)
LibHuAir_Xiw.dll	
LibHuAir_Xiw.hlp.	

In order to run the installation of FluidEXLGraphics, double-click the file

FluidEXL_Graphics_Eng_Setup.exe	(for English version of Windows)
FluidEXL_Graphics_Setup.exe	(for German version of Windows).

Installation may start with a window noting that all Windows programs should be closed. When this is the case, the installation can be continued. Click the "Continue" button. In the following dialog box, "Choose Destination Location", the default path offered automatically for the installation of FluidEXL^{Graphics} is

C:\Program Files\FluidEXL_Graphics	_Eng
C:\Programme\FluidEXL_Graphics	

(for English version of Windows) (for German version of Windows). By clicking the "Browse..." button, you can change the installation directory before installation (see figure below).

😼 Choose Destinat	ion Location
9	Setup will install FluidEXL Graphics English in the following folder.
	To install into a different folder, click Browse, and select another folder.
	You can choose not to install FluidEXL Graphics English by clicking Cancel to exit Setup.
	Destination Folder
	C:\Program Files\FluidEXL_Graphics_Eng
	Browse
	< <u>B</u> ack <u>Next</u> Cancel

Image 2.1: Choose Destination Location

Finally, click on "Next" to continue installation; click "Next" again in the "Start Installation" window which follows in order to start the installation of FluidEXLGraphics.

After FluidEXLGraphics has been installed, the sentence "FluidEXL Graphics English has been successfully installed." will be shown. Confirm this by clicking the "Finish" button.

The installation of FluidEXLGraphics has been completed.

During the installation process the following files

Advapi32.dll	LC.dll	
DFORMD.dll	Msvcp60.dll	
Dforrt.dll	Msvcrt.dll	
UNWISE.EXE	UNWISE.INI	
INSTALL_EXL.LOG		
FluidEXL_Graphics_Eng.xla	(for English version o	of Windows)
FluidEXL_Graphics.xla	(for German version	of Windows)
ve been copied into the chosen	destination folder, in th	e standard case
C:\Program Files\FluidEXL_	_Graphics_Eng	(for English version of Window

C:\Program Files\FluidEXL_Graphics_Eng	(for English version of Windows)
C:\Programme\FluidEXL_Graphics	(for German version of Windows).

In the next step, the files

FluidEXL_Graphics_Eng.xla FluidEXL_Graphics.xla	(for English version of (for German version)	of Windows) of Windows)
LibHuAir_Xiw.dll		
LibHuAir_Xiw.hlp		
in the extracted zip-folder		
CD_FluidEXL_Graphics_Lit	bHuAir_Xiw_Eng	(for English version of Windows)
CD_FluidEXL_Graphics_Lib	bHuAir_Xiw	(for German version of Windows)
must be copied into the chosen dea	stination folder (the sta	andard being
C:\Program Files\FluidEXL_Gra	phics_Eng (for E	nglish version of Windows)
C:\Programme\FluidEXL_Graph	nics (for G	erman version of Windows))

using an appropriate program such as Explorer or Norton Commander.

Installing FluidEXL^{Graphics} for 64-bit Excel[®]

In this section, the installation of FluidEXL^{Graphics} for a 64-bit Excel[®] version is described. Before you begin, it is best to uninstall any trial version or full version of FluidEXL^{Graphics} delivered before June 2010.

After you have downloaded and extracted the zip-file

"CD_FluidEXL_Graphics_LibHuAir_Xiw_Eng.zip"	(for English version of Windows)
"CD_FluidEXL_Graphics_LibHuAir_Xiw.zip"	(for German version of Windows)
you will see the folder	

CD_FluidEXL_Graphics_LibHuAir_Xiw_Eng CD_FluidEXL_Graphics_LibHuAir_Xiw

(for English version of Windows) (for German version of Windows)

in your Windows Explorer, Norton Commander etc.

Now, open this folder by double-clicking on it.

Within this folder you will see the following files

FluidEXL_Graphics_LibHuAir_Xiw_Docu_Eng.pdf		
FluidEXL_Graphics_Eng.xla	(for English version of Windows)	
FluidEXL_Graphics.xla	(for German version of Windows)	
FluidEXL_Graphics_Eng_Setup_64.msi	(for English version of Windows)	
FluidEXL_Graphics_Setup_64.msi	(for German version of Windows)	
LibHuAir_Xiw.dll		
LibHuAir_Xiw.hlp		
Setup.exe		

and the folders

vcredist_x64 WindowsInstaller3_1.

In order to run the installation of FluidEXLGraphics, double-click the file

Setup.exe.

If the "Microsoft Visual C++ 2010 x64 Redistributable Pack" is not running on your computer yet, installation will start with a window noting that the "Visual C++ 2010 runtime library (x64)" will be installed on your machine (see Figure 2.2).

6 FluidEXL_Graphics_Eng Setup	×
The following components will be installed on your machine:	
Visual C++ 2010-Laufzeitbibliotheken (x64)	
Do you wish to install these components?	
If you choose Cancel, setup will exit.	
Install Cancel	

Figure 2.2: Installing the "Visual C++ 2010 runtime library (x64)"

In the following window you are required to accept the Microsoft[®] license terms to install the "Microsoft Visual C++ 2010 x64 Redistributable Pack" by ticking the box next to "I have read and accept the license terms" (see Figure 2.3).

Microsoft Visual C++ 2010 x64 Redistributable Setup
Welcome to Microsoft Visual C++ 2010 x64 Redistributable Setup Please, accept the license terms to continue.
MICROSOFT SOFTWARE LICENSE TERMS
V i have read and accept the license terms.
<u>Y</u> es, send information about my setup experiences to Microsoft Corporation.
For more information, read the <u>Data Collection Policy</u> .
Install Cancel

Figure 2.3: Accepting the license terms

Now click on "Install" to continue installation.

After the "Microsoft Visual C++ 2010 x64 Redistributable Pack" has been installed, you will see the sentence "Microsoft Visual C++ 2010 x64 Redistributable has been installed." Confirm this by clicking "Finish."

Now the installation of FluidEXL^{Graphics} starts with a window noting that the installer will guide you through the installation. Click the "Next >" button to continue.

In the following dialog box (see Figure 2.4), "Select Installation Folder," the default path offered automatically for the installation of FluidEXL^{Graphics} is

C:\Program Files\FluidEXL_Graphics	_Eng
C:\Programme\FluidEXL_Graphics	

(for English version of Windows) (for German version of Windows).

B FluidEXL_Graphics_Eng	X
Select Installation Folder	
The installer will install FluidEXL_Graphics_Eng to the following folder.	
To install in this folder, click "Next". To install to a different folder, enter it below	or click "Browse".
Eolder:	
C:\Program Files\FluidEXL_Graphics_Eng\	Browse
	<u>D</u> isk Cost
Install FluidEXL_Graphics_Eng for yourself, or for anyone who uses this comp	outer:
Everyone	
⊚ Just <u>m</u> e	
Cancel < <u>B</u> ack	<u>N</u> ext >

Figure 2.4: Choosing the Installation Folder of FluidEXLGraphics

Finally, click on "Next >" to continue installation; click "Next >" again in the "Confirm Installation" window which follows in order to start the installation of FluidEXL^{Graphics}.

After FluidEXLGraphics has been installed, you will see the sentence

"FluidEXL Graphics English has been successfully installed."

"FluidEXL Graphics wurde erfolgreich installiert."

Confirm this by clicking the "Close" button.

During the installation process the following files

capt_ico_big.ico	libmmd.dll		
libifcoremd.dll	LC.dll		
libiomp5md.dll			

will have been copied into the destination folder chosen, the standard being

C:\Program Files\FluidEXL_Graphics_Eng C:\Programme\FluidEXL_Graphics

(for English version of Windows) (for German version of Windows).

In the next step, the following files

(for English version of Windows)
(for German version of Windows)

which can be found in your extracted folder must be copied into the chosen destination folder (the standard being

C:\Program Files\FluidEXL_Graphics_Eng C:\Programme\FluidEXL_Graphics (for English version of Windows) (for German version of Windows))

using an appropriate program such as Explorer or Norton Commander.

2.2 Registering FluidEXL^{Graphics} as Add-In in Excel[®]

Registering FluidEXL^{Graphics} as Add-In in Excel[®], versions 2003 or earlier

After the installation of FluidEXL^{*Graphics*}, the program must be registered as an Add-In in Excel[®]. In order to do so, start Excel and carry out the following steps:

- Click "Tools" in the upper Menu bar in Excel
- Here, click on "Add-Ins..." in the menu

After a short delay, the dialog box "Add-Ins" will appear

- Click "Browse ... "
- In the following dialog box, chose your destination folder (the standard being C:\Program Files\FluidEXL_Graphics_Eng C:\Programme\FluidEXL_Graphics (for English version of Windows))
- Here select the file

"FluidEXL_Graphics_Eng.xla" "FluidEXL_Graphics.xla" (for English version of Windows) or (for German version of Windows)

and afterwards click "OK".

Now, the entry

"FluidEXL Graphics Eng"	(for English version of Windows)
"FluidEXL Graphics"	(for German version of Windows)

will appear in your list of Add-Ins.

Note:

As long as the check box next to the file name

"FluidEXL Graphics Eng" (for English version of Windows) or "FluidEXL Graphics" (for German version of Windows),

is checked, this Add-In will be loaded automatically every time you start Excel until you unmark the box by clicking on it again.

- In order to register FluidEXL^{Graphics} as an Add-In click "OK" in the "Add-Ins" dialog box.

Now, the new FluidEXL^{*Graphics*} menu bar will appear in the upper menu area of your Excel screen, marked with a red circle in the next figure.

📔 Eile Ed	it <u>V</u> iew <u>I</u> nsert	F <u>o</u> rmat <u>T</u> oo	ls <u>D</u> ata <u>W</u> ir	ndow <u>H</u> elp							_ 8 ×
🗅 🚅 F	i 🖨 🖪 🖤	🐰 🖻 🕞	l 🝼 🗠	- Cii - 🕻	Δ 😤 Σ	$f_{*} \stackrel{A}{} \stackrel{Z}{} \stackrel{Z}{}$	hin 🥥 🤞	3 100% -	2		
Arial	• 1	0 - B	7 Π ≡		- · 	+.0 .00		······································	Α -		
	-	· • • •	* <u>u</u> =	= = 6		<u> </u>		<u> </u>	<u> </u>		
					Calcu <u>C</u> alcu	llate <u>D</u> iagram	ns 👻 Number	Format <u>?</u> •	\geq		
A1	_	=									
A	В	С	D	E	F	G	Н		J	K	L 🔺
1	_!										
2											
5											
6											
7											
8											
9											
10											
11											
12											
13											
14											
16											
17											
18											
19											
20											
21											
22											-
	Sheet1 / Sheet:	2 <u>/</u> Sheet3 /	/		·			1		1	
Ready										NUM	

Figure 2.5: Menu bar of FluidEXLGraphics

You can now select the "Ideal Gas Mixtures LibHuAir_Xiw" DLL library out of Excel via this menu bar.

Registering FluidEXL^{Graphics} as Add-In in Excel[®] 2007 (or later versions)

After installation in Windows[®], FluidEXL^{Graphics} must be registered in Excel[®] as from version 2007 as an Add-In. For this, start Excel and carry out the following steps:

- Click the Windows Office button in the upper left hand corner of Excel
- Click on the "Excel Options" button in the menu which then appears (see Figure 2.6)

Figure 2.6: Registering FluidEXLGraphics as Add-In in Excel 2007

- Click on "Add-Ins" in the next menu

Proofing Ar Save Advanced Curtamize Add-Ins Trus Center Resources	Id-ins Name Active Application Add-ins No Active Application Add-ins Analysis ToolPak Analysis ToolPak - VBA Conditional Sum Wizard Custom XML Data Date (Smart tag lists) Even Currange Tools	Location C:\ce\Office12\Library\Analysis\ANALYS32.XLL C:\Office12\Library\Analysis\ATPVBAEN.XLAM C:\osoft Office\Office12\Library\SUMIF.XLAM C:\es\Microsoft Office\Office12\OFFRHD.DLL	Type
Save Advanced Cutemite Add-Ins Trus Center Resources	Name Active Application Add-ins No Active Application Add-ins Analysis ToolPak Analysis ToolPak - VBA Conditional Sum Wizard Custom XML Data Date (Smart tag lists) Even Currance Tools	Location C:\ce\Office12\Library\Analysis\ANALYS32.XLL C:\Office12\Library\Analysis\ATPVBAEN.XLAM C:\osoft Office\Office12\Library\SUMIF.XLAM C:\es\Microsoft Office\Office12\OFFRHD.DLL	Type reference of the second s
Advanced Furtemize Add-Ins Trust Center Resources	Active Application Add-ins No Active Application Add-ins Inactive Application Add-ins Analysis ToolPak Analysis ToolPak - VBA Conditional Sum Wizard Custom XML Data Date (Smart tag lists) Even Currange Tools	C:\ce\Office12\Library\Analysis\ANALYS32.XLL C:\Office12\Library\Analysis\ATPVBAEN.XLAM C:\osoft Office\Office12\Library\SUMIF.XLAM C:\es\Microsoft Office\Office12\OFFRHD.DLL	Excel Add-in Excel Add-in Excel Add-in
Add-Ins Trust Center Resources	nactive Application Add-ins Analysis ToolPak Analysis ToolPak - VBA Conditional Sum Wizard Custom XML Data Date (Smart tag lists) Euro Curranz Tools	C:\ce\Office12\Library\Analysis\ANALYS32.XLL C:\Office12\Library\Analysis\ATPVBAEN.XLAM C:\osoft Office\Office12\Library\SUMIF.XLAM C:\es\Microsoft Office\Office12\OFFRHD.DLL	Excel Add-in Excel Add-in Excel Add-in
Add-Ins Trust Center Resources	Analysis ToolPak Analysis ToolPak - VBA Conditional Sum Wizard Custom XML Data Date (Smart tag lists) Euro Currance Tools	C:\ce\Office12\Library\Analysis\ANALYS32.XLL C:\Office12\Library\Analysis\ATPVBAEN.XLAM C:\osoft Office\Office12\Library\SUMIF.XLAM C:\es\Microsoft Office\Office12\OFFRHD.DLL	Excel Add-in Excel Add-in Excel Add-in
Trus Center Resources	Analysis ToolPak - VBA Conditional Sum Wizard Custom XML Data Date (Smart tag lists) Euro Currang Tools	C:\Office12\Library\Analysis\ATPVBAEN.XLAM C:\osoft Office\Office12\Library\SUMIF.XLAM C:\es\Microsoft Office\Office12\OFFRHD.DLL	Excel Add-in Excel Add-in
Trus Center Resources	Conditional Sum Wizard Custom XML Data Date (Smart tag lists) Euro Currange Tools	C:\osoft Office\Office12\Library\SUMIF.XLAM C:\es\Microsoft Office\Office12\OFFRHD.DLL	Excel Add-in
Resources	Custom XML Data Date (Smart tag lists) Sura Currency Tools	C:\es\Microsoft Office\Office12\OFFRHD.DLL	
Resources	Date (Smart tag lists) Euro Currency Tools		Document Inspector
	Euro Currency Tools	C:\iles\microsoft shared\Smart Tag\MOFL.DLL	Smart Tag
	cure currency roots	C:\ Office\Office12\Library\EUROTOOL.XLAM	Excel Add-in
	Financial Symbol (Smart tag lists)	C:\iles\microsoft shared\Smart Tag\MOFL.DLL	Smart Tag
	Headers and Footers	C:\es\Microsoft Office\Office12\OFFRHD.DLL	Document Inspector
	Hidden Rows and Columns	C:\es\Microsoft Office\Office12\OFFRHD.DLL	Document Inspector
	Hidden Worksheets	C:\es\Microsoft Office\Office12\OFFRHD.DLL	Document Inspector
	nternet Assistant VBA	C:\rosoft Office\Office12\Library\HTML.XLAM	Excel Add-in
	nvisible Content	C:\es\Microsoft Office\Office12\OFFRHD.DLL	Document Inspector
	ookup Wizard	C:\oft Office\Office12\Library\LOOKUP.XLAM	Excel Add-in
	Person Name (Outlook e-mail recipients)	C:\es\microsoft shared\Smart Tag\FNAME.DLL	Smart Tag
	Solver Add-in	C:\ce\Office12\Library\SOLVER\SOLVER.XLAM	Excel Add-in
	Document Related Add-ins		
	No Document Related Add-ins		
	dd in: Analysis ToolPak		
	Rublishari Misrosoft Corporation		
	Fullisher: Microsoft Corporation		
	Location: C:\Program Files\Microsoft O	mice\Omice12\Library\Analysis\ANALYS52.XLL	
	Description: Provides data analysis tool t	for statistical and engineering analysis	

Figure 2.7: Dialog window "Add-Ins"

- Should it not be shown in the list automatically, select "Excel Add-ins" (found next to "Manage:" in the lower area of the menu)
- Then click the "Go..." button
- Click "Browse" in the following window and locate the destination folder, generally

C:\Program Files\FluidEXL_Graphics_Eng	(for English version of Windows)
C:\Programme\FluidEXL_Graphics	(for German version of Windows);

within that folder click on the file named

"FluidEXL_Graphics_Eng.xla"	(for English version of Windows)
"FluidEXL_Graphics.xla"	(for German version of Windows)

and then hit "OK".

Add-Ins available:	
Analysis ToolPak	ОК
Conditional Sum Wizard	Cancel
Internet Assistant VBA	Browse
Solver Add-in	Automation
Ψ	
Analysis ToolPak	
Provides data analysis tools for engineering analys	statistical and sis

Figure 2.8: Dialog window "Add-Ins available"

- Now, "FluidEXL Graphics Eng" will be shown in your list of Add-Ins.
- (If a check-mark is situated in the box next to the name "FluidEXL Graphics", this Add-In will automatically be loaded whenever Excel starts. This will continue to occur unless the check-mark is removed from the box by clicking on it.)

Figure 2.9: Dialog window "Add-Ins"

- In order to register the Add-In click the "OK" button in the "Add-Ins" window.

In order to use FluidEXL^{Graphics} in the following example, click on the menu item "Add-Ins", shown in the next image.

) 🖬 🗤 - (🖬 -) 🔹		Book1 - Microsoft Excel			- e x
	Home Insert	Page Layout Formulas Data Review Vie	Add-Ins			🥥 – 🖷 X
	Cut	Calibri • 11 • A A	📑 Wrap Text General 🔹			Σ AutoSum * 💦 🕅
Pas	te V Format Painter		Merge & Center * \$ * % \$ *.00 *.0	Conditional Format Cell In Formatting * as Table * Styles *	nsert Delete Format	2 Clear * Filter * Select *
	Clipboard 🕅	Font G Alignm	ment 🖼 Number 🕅	Styles	Cells	Editing

Figure 2.10: Menu item "Add-Ins"

In the upper menu region of Excel, the FluidEXL^{Graphics} menu bar will appear as indicated by the red circle in the next image.

Figure 2.11: FluidEXLGraphics menu bar

Installation of FluidEXL^{Graphics} in Excel (versions 2007 and later) is now finished. FluidEXL^{Graphics} can be used analogous to the description for using with earlier Excel versions.

Adding the LibHuAir_Xiw Library (FluidEXL^{Graphics} is already installed)

If FluidEXL^{Graphics} has already been installed in the June 2010 version, you only have to copy the following files

FluidEXL_Graphics.xla

LibHuAir_Xiw.dll

LibHuAir_Xiw.hlp

provided in the extracted folder

CD_FluidEXL_Graphics_LibHuAir_Xiw_Eng	(for English version of Windows)
CD_FluidEXL_Graphics_LibHuAir_Xiw	(for German version of Windows)
into the folder you have chosen for the installation	of FluidEXL ^{Graphics} (the standard being
Ov) Dragmana Filos) Fluid FVI - Orankiaa - Frag	(for English version of Mindows [®]) or

C:\Program Files\FluidEXL_Graphics_Eng C:\Programme\FluidEXL Graphics (for English version of Windows[®]) or (for German version of Windows)),

using an appropriate program such as Explorer[®], Windows or Norton Commander.

From within Excel you can now select the "Humid Air HuAir Xiw" DLL library property functions via the FluidEXL*Graphics* menu bar (the example calculation can be found in chapter 2.5 on page 2/19).

2.3 The FluidEXL^{Graphics} Help System

As mentioned earlier, FluidEXL^{Graphics} also provides detailed online help functions.

If you are running Windows Vista or Windows 7, please note the paragraph

"Using the FluidEXL^{Graphics} Online-Help in Windows Vista or Windows 7."

For general information in Excel®

- Click "Help" in the FluidEXL^{Graphics} menu bar.

Information on individual property functions may be accessed via the following steps:

- Click "Calculate" in the FluidEXL Graphics menu bar.
- Select the "Humid Air HuAir Xiw" library under

"Or select a <u>category</u>:" in the "Insert Function" window which will appear.

- Click the "Help on this function" button in the lower left-hand edge of the "Insert Function" window.
- If the "Office Assistant" is active, first double-click "Help on this feature" and in the next menu click "Help on selected function".

If the LibHuAir_Xiw.hlp function help cannot be found, you will be asked whether you want to

look for it yourself – answer with "Yes." Click on the LibHuAir_Xiw.hlp file in the installation folder of FluidEXL^{*Graphics*} in the window which is opened, the standard being

C:\Program Files\FluidEXL_Graphics_Eng

(for English version of Windows) or (for German version of Windows),

C:\Programme\FluidEXL_Graphics and click "Yes" in order to complete the search.

Using the FluidEXL^{Graphics} Online Help in Windows Vista or Windows 7

If you are running Windows Vista or Windows 7 on your computer, you might not be able to open Help files. To view these files you have to install the Microsoft[®] Windows Help program which is provided by Microsoft[®]. Please carry out the following steps in order to download and install the Windows Help program.

Open Microsoft Internet Explorer[®] and go to the following address:

http://support.microsoft.com/kb/917607/

You will see the following web page:

Figure 2.12: Microsoft[®] Support web page

Scroll down until you see the headline "Resolution." Here you can see the bold hint:

"Download the appropriate version of Windows Help program (WinHlp32.exe), depending on the operating system that you are using:"

The following description relates to Windows[®] 7. The procedure is analogous for Windows[®] Vista.

Click on the link "Windows Help program (WinHlp32.exe) for Windows 7" (see Figure 2.13).

Figure 2.13: Selecting your Windows version

You will be forwarded to the Microsoft Download Center where you can download the Microsoft Windows Help program.

First, a validation of your Windows License is required.

To do this click on the "Continue" button (see Figure 2.14).

Figure 2.14: Microsoft® Download Center

You will be forwarded to a web page with instructions on how to install the Genuine Windows Validation Component.

At the top of your Windows Internet Explorer you will see a yellow information bar.

Right-click this bar and select "Install ActiveX Control" in the context menu (see Figure 2.15).

🥖 Genuine Validation - W	lindows Internet Explorer	Contraction of the local division of the loc	
🕞 🕞 🗢 📶 http://v	www. microsoft.com /downloads/en/GenuineValidation.aspx?fan	nilyid=258aa5ec-e3d9-4228-8844-	-008e02b32a2c
File Edit View Fav	vorites Tools Help		
🖕 Favorites 🛛 👍 🕻	ອ Web Slice Gallery ▼		
📶 Genuine Validation			
🔞 This website wants to in	nstall the following add-on: 'Windows Genuine Advantage' from	'Microsoft Corporation'. If you t	rust the website and the add-on a
	Install This Add-on for All Users on This Computer	\mathcal{P}	
	What's the Risk?		
	Information Bar Help		
		Downloads A-Z	Product Families▼ Dow
	Courts and a second second second	All Download Contar	biog 0 - Web
	Search	an Download Center	
	Install the Genuine W	indows Validatio	on Component

Figure 2.15: Installing the Genuine Windows Validation Component

A dialog window appears in which you will be asked if you want to install the software. Click the "Install" button to continue (see Figure 2.16).

Internet Ex	plorer - Security Warning			×	
Do you	Do you want to install this software?				
	Name: Windows Genu	iine Advantage			
	Publisher: Microsoft Co	rporation			
× Mor	re <u>o</u> ptions		<u>I</u> nstall	Don't Install	
1	While files from the Interne your computer. Only install	t can be useful, software from p	, this file type ca publishers you t	an potentially harm rust. <u>What's the risk?</u>	

Figure 2.16: Internet Explorer – Security Warning

After the validation has been carried out you will be able to download the appropriate version of Windows Help program (see Figure 2.17).

	Search All Download Center		
Windows Help pi	rogram (WinHlp32	2.exe) for V	Windows 7 🐡
Brief Description		On	this page
WinHlp32.exe is required to display file name extension. To view .hlp file this application.	32-bit Help files that have the ".hlp" s on Windows 7, you need to install	↓ Qu ↓ Ov ↓ Sv ↓ Ins ↓ Ad ↓ Re	ick Details erview stem Requirements structions ditional Information lated Resources
Genuine Microsoft So	ftware	* <u>wi</u>	at outers are bownloadin
For more information about the valid	lation process <u>click here</u>		
File Name:		Size:	Download files belo
Windows6. 1-KB9 17607-x64.msu 😾		702 KB	Download
		688 KB	Download
Windows6.1-KB917607-x86.msu 🕸			
Windows6.1-KB917607-x86.msu			
Windows6.1-KB917607-x86.msu		1.0	
Windows6.1-KB917607-x86.msu 🕸 Quick Details Version: Date Published:		1.0 10/14/2009	

Figure 2.17: Downloading the Windows Help program

To download and install the correct file you need to know which Windows version (32 bit or 64 bit) you are running on your computer.

If you are running a 64 bit operating system, please download the file

Windows6.1-KB917607-x64.msu.

If you are running a 32 bit operating system, please download the file

Windows6.1-KB917607-x86.msu.

In order to run the installation of the Windows Help program double-click the file you have just downloaded on your computer:

Windows6.1-KB917607-x64.msu (for 64 bit operating system) Windows6.1-KB917607-x86.msu. (for 32 bit operating system).

Installation starts with a window searching for updates on your computer. After the program has finished searching you may see the following window.

Windows Upo	Windows Update Standalone Installer				
Do you war Update fo	nt to install the following Windows software update? or Windows (KB917607)				
	<u>Y</u> es <u>N</u> o				

Figure 2.18: Windows Update Standalone Installer

In this case, the installation can be continued by clicking the "Yes" button. (If you have already installed this update, you will see the message "Update for Windows (KB917607) is already installed on this computer.")

In the next window you have to accept the Microsoft license terms before installing the update by clicking on "I Accept" (see Figure 2.19)

🖉 Download and Install Updates
Read these license terms (1 of 1) You need to accept the license terms before installing updates.
Update for Windows (KB917607)
MICROSOFT SOFTWARE LICENSE TERMS MICROSOFT WINDOWS HELP (WINHLP32.EXE) FOR WINDOWS 7 These license terms are an agreement between Microsoft Corporation (or based on where you live, one of its affiliates) and you. Please read them. They apply to the software named above, which includes the media on which you received it, if any. The terms also apply to any Microsoft • updates, • supplements, • Internet-based services, and • support services for this software, unless other terms accompany those items. If so, those terms apply. BY USING THE SOFTWARE, YOU ACCEPT THESE TERMS. IF YOU DO NOT ACCEPT THEM, DO NOT USE THE SOFTWARE.
Printable version I Decline I Accept Cancel

Figure 2.19: Windows License Terms

Installation starts once you have clicked the "I Accept" button (see Figure 2.20).

Download and Install Updates	X
The updates are being installed	
Installation status:	
Initializing installation done! Installing Update for Windows (KB917607) (update 1 of 1)	*
	Ŧ
Installing:	
	Cancel

Figure 2.20: Installation process

After the Windows Help program has been installed, the notification "Installation complete" will appear. Confirm this by clicking the "Close" button.

The installation of the Windows Help program has been completed and you will now be able to open the Help files.

2.4 Licensing the LibHuAir_Xiw Property Library

The licensing procedure has to be carried out when Excel[®] starts up and a FluidEXL*Graphics* prompt message appears. In this case, you will see the "License Information" window (see figure below).

License Information			
LibHuAir_Xiw Please type in your license key!	?		
OK]	Cancel		

Figure 2.21: "License Information" window

Here you will have to type in the license key which you have obtained from the Zittau/Goerlitz University of Applied Sciences. You can find contact information on the "Content" page of this User's Guide or by clicking the yellow question mark in the "License Information" window. Then the following window will appear:

Figure 2.22: "Help" window

If you do not enter a valid license it is still possible to start Excel by clicking "Cancel" twice. In this case, the LibHuAir_Xiw property library will display the result "-11111111" for every calculation.

The "License Information" window will appear every time you start Excel unless you uninstall FluidEXL^{*Graphics*} according to the description in section 2.7 of this User's Guide. Should you not wish to license the LibHuAir_Xiw property library, you have to delete the files

LibHuAir_Xiw.dll LibHuAir_Xiw.hlp

in the installation folder of FluidEXLGraphics (the standard being

C:\Program Files\FluidEXL_Graphics_Eng

(for English version of Windows)

C:\Programme\FluidEXL_Graphics

(for German version of Windows))

using an appropriate program such as Explorer[®] or Norton Commander.

2.5 Example: Calculation of h = f(p, t, Xiw)

We will now calculate, step by step, the specific enthalpy *h* for humid air as a function of given mixture pressure *p*, given temperature *t*, and given mass fraction of water *Xiw* using FluidEXL^{*Graphics*}. The following description relates to Excel 2003. The procedure is analogous for Excel 2000, 2002 (XP), and 2007.

The following steps have to be carried out:

- Start Excel[®]
- Enter the value for p in bar in a cell (Range of validity: $0.01 \le p \le 1000$ bar)

 \Rightarrow e.g.: Enter the value 1.01325 into cell A4

- Enter the value for t in °C in a cell (Range of validity: t = - 30 ... 1726.85 °C)
 ⇒ e.g.: Enter the value 20 into cell B4
- Enter the value for x_W in kg water(steam)/kg humid air in a cell

(Range of validity: $0 \le Xiw \le 1 \text{ kg/kg}$)

 \Rightarrow e.g.: Enter the value 0.01 into cell C4

- Click on the cell in which the calculated air-specific enthalpy *h* in kJ/kg is to be displayed

 \Rightarrow e.g.: Click on the cell D4

Click "Calculate" in the FluidEXL^{Graphics} menu bar
 The "Insert Function" window appears as shown in Figure 2.23.

Insert Function		? ×
Search for a function:		
Type a brief description of click Go	f what you want to do and then	Go
Or select a <u>c</u> ategory: Hun	nid Air HuAir_Xiw 👻	
Select a function: Stat	istical 🔺	
Eta_ptXiw_HuAir Data h_psXiw_HuAir Tex h_ptXiw_HuAir Logi h_TsXiw_HuAir Info Kappa_psXiw_HuAir Use Kappa_pTXiw_HuAir Carl Lambda_pTXiw_HuAir Hum	abase t cal rmation r Defined pon Dioxide LibCO2 iid Air - cp=f(t) iid Air LibHuAir	
Specific enthalpy h in (Hum	iid Air HuAir Xiw iid Gas LibHuGas 🛛 🔽	
Help on this function	ОК	Cancel
h psxiw HuAir Logi h pTxiw HuAir Logi h_TsXiw_HuAir Info Kappa_psXiw_HuAir Use Kappa_pTXiw_HuAir Carl Lambda_pTXiw_HuAir Hur h_pTXiw_HuAir(pithur Specific enthalpy h in Hur Hur	cal rmation r Defined con Dioxide LibCO2 nid Air - cp=f(t) nid Air LibHuAir nid Gas LibHuGas ▼	Cancel

Figure 2.23: Choice of library and function name

- Click "Humid Air HuAir Xiw" next to "Or select a category:"
- Click "h_ptXiw_HuAir" under "Select a function:"
- Click the "OK" button The menu for the function h_ptXiw_HuAir, as shown in Figure 2.24, appears.

	SUM	· × √	🔊 =h_pTXiw	/_HuAir(A4,B4	I,C4)		
	A	В	С	D	E	F	G
1	Calculate	d state po	int with units	of LibHuAir_	Xiw		
2	р	t	Xiw	h			
3	bar	°C	kg/kg	kJ/kg			
4	1.01325	20	0.01	44,B4,C4)	ļ		
5	Function A	rguments					×
7	_h_pTXiw_l	HuAir					
8		P in bar A4			1 = 1	.01325	
9		T in °C B4			 = 2(5	
10						-	
11		n kg/kg <u> </u> C4			<u> </u>	.01	
12					= 45	5.303865	
13	Specific en	thalpy h in kJ	/kg.				-
14							-
15		- I /I M	- 6				-
17	XIW II	n kg∕ kg ™asi	s rraction or wati	e			-
18	·						
19	Formula re	sult =	45.303865				
20	Help on thi	c function					
21	<u>nep on un</u>	STUNCTON			OK		
22							

Figure 2.24: Input menu for the function

- The cursor is now situated on the line next to "P in bar". The value for the mixture pressure *p* can be entered either by clicking the cell which contains the value for *p* or by typing the number of the cell or by typing the value for *p* directly into the window.

 \Rightarrow e. g.: Click on the cell A4

- Situate the cursor on the line next to "T in °C". Now the value for the temperature can be entered either by clicking the cell which contains the value for *t* or by typing the number of the cell or by typing the value for *t* directly into the window.

```
\Rightarrow e. g.: Type B4 into the window next to "t in °C"
```

- Situate the cursor on the line next to "Xiw in kg/kg". Now the value for the mass fraction of water *Xiw* can be entered either by clicking the cell which contains the value for *Xiw* or by typing the number of the cell or by typing the value for *Xiw* directly into the window.

 \Rightarrow e. g.: Click on the cell C4

- Click the "OK" button

The result for h in kJ/kg appears in the cell selected above.

 \Rightarrow The result in our sample calculation here is: h = 45.303865 kJ/kg.

The calculation of h = f(p, T, Xiw) has thus been completed.

You can now arbitrarily change the values for p, t or Xiw in the appropriate cells. The enthalpy h is recalculated and updated every time you change the data. This shows that the Excel[®] data flow and the DLL calculations are working together successfully.

Hint!

If the input values entered are located outside the range of validity or if they do not fit together, the function to be calculated will result in -1 or -1000.

For further property functions calculable in FluidEXL^{Graphics} see the function table in Chapter 1.

Number Formats

When using FluidEXL^{Graphics} you have the option of choosing special number formats in advance.

- Click the cell or select and click on the cells you wish to format
- Click "Number Format" in the FluidEXL Graphics menu bar
- Select the desired number format in the dialog box which appears:

"STD - Standard"	 Insignificant zeros behind the decimal point are not shown
"FIX - Fix Number of Digits"	 All set decimal places are shown, including insignificant zeros.
"SCI - Scientific Format"	 Numbers are always shown in the exponential form with the set number of decimal places

- Set the number of decimal places by entering the number into the appropriate window

- Confirm this by clicking the "OK" button

As an example, the table below shows the three formats for the number 1.230 adjusted for three decimal places:

STD	1.23
FIX	1.230
SCI	1.230E+00

This formatting can also be applied to cells which have already been calculated.

2.6 Representation of Calculated Properties in Thermodynamic Charts

In the following section, the calculated state point is to be represented in thermodynamic diagrams with the help of FluidEXL*Graphics*. Calculations can be represented in the following diagrams:

- *h-x* Diagram p = 0.101325 MPa

-
$$h$$
- x Diagram p = 0.11 MPa

In order to represent the calculated state point in the h-x diagram it is necessary to convert the units as follows (see Figure 2.5):

- Convert the given value of *p* in bar into *p* in MPa:

$$p = \frac{p}{bar} \cdot 10^{-1} \text{ MPa}$$

 \Rightarrow e.g.: Click the cell A9, then type "=A4/10" and press Enter.

The result 0.102325 for p in MPa appears in cell A9.

- The temperature *t* in °C needs not to be converted.
- Convert the given value of ξ_w (*Xiw*) in (kg / kg) into the absolute humidity x_W in (g / kg dry air):

$$x_{w} = \frac{\xi_{w}}{1 - \xi_{w}} \cdot 1000 \frac{g}{kg_{dry air}}$$

 \Rightarrow e.g.: Click the cell C9, then type "=C4/(1-C4)*1000" and press Enter. The result 10.1010101 for x_W in (g / kg dry air) appears in cell C9.

- Convert the calculated value of h in (kJ / kg) into h_1 in (kJ / kg dry air):

$$h_{\rm I} = \frac{h}{{\rm kJ/kg}} \cdot \left(\frac{1}{1-\xi_{\rm W}}\right) {\rm kJ/kg_{\rm dry\ air}}$$

 \Rightarrow e.g.: Click the cell D9, then type "=D4/(1-C4)" and press Enter.

The result 45.76147878 in (kJ / kg dry air) appears in cell D9.

	D9	• 1	🗣 =D4/(1-C4)						
	A	В	С	D	E	F			
1	Calculated state point with units of LibHuAir_Xiw								
2	р	t	Xiw	h					
3	bar	°C	kg/kg	kJ/kg					
4	1.01325	20	0.01	45.303865					
5									
6	Conversion into the units for representation in the h-x diagram								
7	р	t	XW	hl					
8	MPa	°C	g/kg(dry air)	kJ/kg(dry air)					
9	0.101325	20	10.1010101	45.7614798					
10									

Figure 2.25: Example conversion of the units

Now, the data can be represented in a h-x diagram for p = 0.101325 MPa:

- Click on the cell with the value for *h* (as *h* is the Y-axis in the diagram)

 \Rightarrow e. g.: Click on the cell D1

- Hold down the "Ctrl" key and simultaneously click the cell containing the value for *xw* (as *xw* is the X-axis in the diagram)

 \Rightarrow e. g.: Hold down the "Ctrl" key and click on the cell C1

Note:

The value pairs to be depicted (Y,X) here (h, x_w) must always be located in the same row or column.

- As displayed in the next figure, click "Diagrams" in the FluidEXLGraphics menu bar
- Choose "h,x Diagram 0.101325 MPa" in the drop-down menu

:1	<u>File E</u> dit	<u>V</u> iew <u>I</u> nse	ert F <u>o</u> rmat]	[ools <u>D</u> ata <u>V</u>	<u>M</u> indow	Help	Adobe PDF	
1	💕 🖬 🕻		🖑 🔛 🐰	🖻 🛍 • 🕩	19 - 1	(= -]	💄 Σ 🝷 🛓 👗 🔛 🏭 🐗 100% 🔹 🎯	
Ari	al	- 10	• B I			9 %	• 號 🔐 💷 🖬 🔛 • 🖄 • 🗛	
					1	<u>C</u> alculat	e Diagrams 🕶 Number Format 👔 📮	
	C9	•)	fx =C4/(1-C4)	*1000			T-s Diagram	
	A	В	С	D	E		h-s Diagram	
1	Calculate	d state poi	int with units	of LibHuAir_	Xiw		lg p-b Diagram	
2	р	t	Xiw	h				
3	bar	°C	kg/kg	kJ/kg			lg p-lg v Diagram	
4	1.01325	20	0.01	45.303865			lg p-T Diagram	
5							p-T Diagram	
6	6 Conversion into the units for representation in the h-x diagram							
7	р	t	XW	hl			T-h Diagram	
8	MPa	°C	g/kg(dry air)	kJ/kg(dry air)			T-lg v Diagram	
9	0.101325	20	10.1010101	45.7614798			la n-s Diagram	
10							ig p 5 blogram	
11				1			h-lg v Diagram	
12							s-lg v Diagram	
13							h-x Diagram 0.101325 MPa	
15							h-x Diagram 0.11 MPa	
16								

Figure 2.26: Marking the values and choosing the diagram
The h-x diagram shown in the figure below will appear. The calculated state point is marked as a red point.

Figure 2.27: *h*-*x* Diagram including the state point

Note:

If the coloring is distorted you need to increase the amount of colors displayed on the screen by Windows[®] to more than 256 colors. The preference can be set within Windows by going to "Control Panel" and then under "Screen".

To close the h-x diagram, click on the "x" in the upper-right hand corner of the h-x Diagram window.

Note - Diagrams with various state points:

If you calculate various state points, they can be represented in <u>one</u> selected diagram. To do this, first mark with the cursor those values which are to represent the values of y in the diagram. Afterwards, hold down the "Ctrl" key and mark the corresponding values which are to represent the values of x in the diagram. Note once more that all value pairs which should be represented (Y,X) must be located in one row in $\text{Excel}^{\mathbb{8}}$. Proceed as described above..

Note - Diagrams without any state points:

If you wish to have a look at a diagram without performing a calculation, mark two empty cells located in one row and select a diagram.

Printing the Diagrams

The state diagrams can be printed with the help of $Word^{\mathbb{8}}$ which also belongs to the Office suite^{$\mathbb{8}$}.

- When the selected diagram is on the screen, hold down the "Alt" key and press the "Print" key briefly.
 (This keyboard shortcut copies the current window, e.g., the diagram, into the Windows
- clipboard where it is ready to be pasted into other Windows[®] application programs.)
- Start Word by clicking "Start" in the Windows task bar, then "Programs", and then "Microsoft Word".
- As the diagram is to be printed in landscape format, change the (now loaded) Word application window into the landscape format.
 In order to do so, click "File" in the upper menu bar of Word, and then "Page Setup".
 Click "Margins" in the window which now appears, then "Landscape". Confirm this change by clicking "OK".
- In order to paste the diagram out of the Windows clipboard, click "Edit" in the upper menu bar of Word, and then "Paste".

The diagram out of FluidEXL^{Graphics} appears in the Word application window and is ready to save and/or print.

- Start the printing process by clicking "File" in the upper menu bar of Word, and then "Print". Proceed as usual in the "Print" window which appears.

The diagram will be printed in the A4 landscape format, if you do not change the preferences.

In order to continue working in Excel, click "Microsoft Excel - ..." in the Windows task bar.

Proceed in the same way to print further diagrams.

2.7 Removing FluidEXL^{Graphics}

Should you wish to remove only the LibHuAir_Xiw library, delete the files

LibHuAir_Xiw.dll LibHuAir_Xiw.hlp

in the directory selected for the installation of FluidEXLGraphics (in the standard case

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows[®]) C:\Programme\FluidEXL_Graphics (for German version of Windows),

by using an appropriate program such as Explorer[®], Windows, or Norton Commander.

Unregistering FluidEXL^{Graphics} as Add-In in Excel[®], versions 2003 or earlier

To remove FluidEXL Graphics completely, proceed as follows: First cancel the registration of

FluidEXL_Graphics_Eng.xla	(for English version of Windows [®]) or
FluidEXL_Graphics.xla	(for German version of Windows)

in Excel[®].

In order to do that, click "Tools" in the upper menu bar of Excel and here "Add-Ins..." Unmark the box on the left-hand side of

'FluidEXL Graphics Eng"	(for English version of Windows) or
FluidEXL Graphics"	(for German version of Windows)

in the window that appears and click the "OK" button. The additional menu bar of FluidEXL*Graphics* will disappear from the upper part of the Excel window. Afterwards, we recommend closing Excel.

If the FluidEXL^{Graphics} menu bar does not disappear, take the following steps:

Click "View" in the upper menu bar of Excel, then "Toolbars" and then "Customize..." in the list box which appears.

"FluidEXL Graphics Eng" (for English version of Windows) or

"FluidEXL Graphics" (for German version of Windows),

situated at the bottom of the "Toolbars" entries, must be selected by clicking on it. Delete the entry manually by clicking "Delete". When asked whether you really want to delete the toolbar, click "OK."

As the next step delete the files

LibHuAir_Xiw.dll LibHuAir_Xiw.hlp

in the directory selected for the installation of FluidEXLGraphics (the standard being

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)

C:\Programme\FluidEXL_Graphics (for German version of Windows),

using an appropriate program such as Explorer[®] or Norton Commander.

In order to remove FluidEXL^{Graphics} from Windows and the hard disk, click "Start" in the Windows task bar, select "Settings" and click "Control Panel." Now double-click on "Add or Remove Programs."

In the list box of the "Add or Remove Programs" window that appears, select

FluidEXL Graphics Eng"	(for English version of Windows) or
FluidEXL Graphics"	(for German version of Windows)

by clicking on it and click the "Add/Remove..." button. In the following dialog box click "Automatic" and then "Next >." Click "Finish" in the "Perform Uninstall" window. Answer the question whether all shared components shall be removed with "Yes to All." Finally, close the "Add/Remove Programs" and "Control Panel" windows.

Now FluidEXLGraphics has been removed.

Unregistering FluidEXL^{Graphics} as Add-In in Excel[®] 2007 (or later versions)

In order to unregister the FluidEXL^{Graphics} Add-In in Excel[®] 2007 start Excel and carry out the following commands:

- Click the Windows Office[®] button in the upper left hand corner of Excel
- Click on the "Excel Options" button in the menu which appears

- Click on "Add-Ins" in the next menu

Figure 2.29: Dialog window "Excel Options"

- If it is not shown in the list automatically, select "Excel Add-ins" next to "Manage:" in the lower area of the menu
- Then click the "Go..." button
- Remove the checkmark in front of
 - "FluidEXL Graphics Eng" (for English version of Windows)
 - "FluidEXL Graphics" (for German version of Windows)

in the window which now appears. Click the "OK" button to confirm your entry.

Add-Ins	? 💌
Add-Ins available: Analysis ToolPak Analysis ToolPak - VBA Conditional Sum Wizard Euro Currency Tools HuidEXL Graphics Eng Internet Assistant VBA Lookup Wizard Solver Add-in	OK Cancel Browse Automation
FluidEXL Graphics Eng Libraries for the Calculation of Thermophysical Properties for Fluids of the Power Technology	

Figure 2.30: Dialog window "Add-Ins"

In order to remove FluidEXL^{Graphics} from Windows[®] and from your hard drive, click "Start" in the lower task bar; then click "Settings" and "Control Panel." Now, double click "Add or Remove Programs," click on

"FluidEXL Graphics Eng" (for English version of Windows)

"FluidEXL Graphics" (for German version of Windows)

in the list box and then click the "Add/Remove..." button. Mark "Automatic" and click the "Next >" button. Now click the "Finish" button in the "Perform Uninstall" window. Click "Yes to All" in the "Remove Shared Component" window. Finally, the windows "Add or Remove Programs" and "Control Panel" should be closed.

Now FluidEXL^{Graphics} has been removed.

3. Program Documentation

Thermal Diffusivity $a = f(p, t, \xi_w)$

Function Name:

a_ptXiw_HuAir

Fortran Program:

REAL*8 FUNCTION a_ptXiw_HuAir(p,t,Xiw,succ), REAL*8 p,t,Xiw, INTEGER*4 succ

Input Values:

p - Total pressure *p* in bar

t - Temperature t in °C

Xiw - Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

a_ptXiw_HuAir	 Thermal diffusivity a in m²/s 	
SUCC	- 1 \rightarrow Calculation successful	
	- 0 \rightarrow Calculation not successful	

Range of Validity:

Temperature t:	$-30 ^{\circ}\text{C} \le t \le 1726.85 ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_w :	$0 \leq \xi_{w} \leq 1 \text{ kg/kg}$

Comments:

- Thermal diffusivity $a = \frac{\lambda}{\rho \cdot c_p}$

- Model of ideal mixture of real properties about volume fractions
- Calculation of fog ($\xi_w > \xi_{wsatt}$) is not possible

Results for Wrong Input Values:

a_ptXiw_HuAir = - 1, succ = 0

References:

Dry air:

- λ from *Lemmon* et al. [15]
- $c_{\rm p}$ from *Lemmon* et al. [14]
- ρ from *Lemmon* et al. [14]

Steam in humid air and water droplets in fog:

 λ for 0 °C \leq *t* \leq 800 °C from IAPWS – 85 [6]

for *t* < 0 °C and *t* > 800 °C from *Brandt* [12]

- *c*_p from IAPWS-IF97 [1], [2], [3], [4]
- *ρ* from IAPWS-IF97 [1], [2], [3], [4]

for *t* < 0.01 °C from IAPWS-06 [18], [19]

Specific Isobaric Heat Capacity $c_p = f(h, s, \xi_w)$

Function Name:

cp_hsXiw_HuAir

Fortran Program:

REAL*8 FUNCTION cp_hsXiw_HuAir(h,s,Xiw,succ) , REAL*8 h,s,Xiw INTEGER*4 succ

Input Values:

- *h* Specific enthalpy *h* in kJ/kg
- s Specific Entropy s in kJ/(kg K)
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

cp_hsXiw_HuAir	 Specific isobaric heat capacity c_p in kJ/(kg·K)
succ	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t :	$-30 ^{\circ}\text{C} \le t \le 1726.85 ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_w	$f: 0 \leq \xi_w \leq 1 \text{ kg/kg}$

Comments:

Iteration of *p* and *t* from $h(p,t,\xi_w)$ and $s(p,t,\xi_w)$ and calculation of c_p from $c_p(p,t,\xi_w)$ Calculation:

- for unsaturated and saturated humid air ($\xi_w \leq \xi_{wsatt}$) as ideal mixture of real gases (dry air and steam)
- not possible for fog $(\xi_w > \xi_{wsatt})$
- Effects of dissociation are taken into consideration from 500 °C upwards

Results for Wrong Input Values:

 $cp_hsXiw_HuAir = -1$, succ = 0

```
Dry air:
from Lemmon et al. [14]
Steam in humid air:
from IAPWS-IF97 [1], [2], [3], [4]
Dissociation:
from VDI Guideline 4670 [13]
```

Specific Isobaric Heat Capacity $c_p = f(p, h, \xi_w)$

Function Name:

cp_phXiw_HuAir

Fortran Program:

REAL*8 FUNCTION cp_phXiw_HuAir(p,h,Xiw,succ), REAL*8 p,h,Xiw, INTEGER*4 succ

Input Values:

- p Total pressure *p* in bar
- h Specific enthalpy h in kJ/kg
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

cp_phXiw_HuAir	 Specific isobaric heat capacity c_p in kJ/(kg·K)
SUCC	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t :	$-30 ^{\circ}\text{C} \le t \le 1726.85 ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_v	$_{\rm v}$: 0 $\leq \xi_{\rm w} \leq$ 1 kg/kg

Comments:

Iteration of *T* from $h(p,t,\xi_w)$ and calculation of c_p from $c_p(p,t,\xi_w)$

Calculation:

- for unsaturated and saturated humid air $(\xi_w \leq \xi_{wsatt})$ as ideal mixture of real gases (dry air and steam)
- not possible for fog ($\xi_w > \xi_{wsatt}$)
- Effects of dissociation are taken into consideration from 500 °C upwards

Results for Wrong Input Values:

 $cp_phXiw_HuAir = -1$, succ = 0

```
Dry air:
from Lemmon et al. [14]
Steam in humid air:
from IAPWS-IF97 [1], [2], [3], [4]
Dissociation:
from VDI Guideline 4670 [13]
```

Specific Isobaric Heat Capacity $c_p = f(p, s, \xi_w)$

Function Name:

cp_psXiw_HuAir

Fortran Program:

REAL*8 FUNCTION cp_psXiw_HuAir(p,s,Xiw,succ), REAL*8 p,s,Xiw, INTEGER*4 succ

Input Values:

- p Total pressure *p* in bar
- s Specific Entropy s in kJ/(kg K)
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

cp_psXiw_HuAir	 Specific isobaric heat capacity c_p in kJ/(kg·K)
SUCC	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t :	$-30 ^{\circ}\text{C} \le t \le 1726.85 ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_v	$_{\rm v}$: 0 $\leq \xi_{\rm w} \leq$ 1 kg/kg

Comments:

Iteration of *T* from $s(p,t,\xi_w)$ and calculation of c_p from $c_p(p,t,\xi_w)$

Calculation:

- for unsaturated and saturated humid air $(\xi_w \leq \xi_{wsatt})$ as ideal mixture of real gases (dry air and steam)
- not possible for fog ($\xi_w > \xi_{wsatt}$)
- Effects of dissociation are taken into consideration from 500 °C upwards

Results for Wrong Input Values:

cp_psXiw_HuAir = - 1, succ = 0

References:

Specific Isobaric Heat Capacity $c_p = f(p, t, \xi_w)$

Function Name:

cp_ptXiw_HuAir

Fortran Program:

REAL*8 FUNCTION cp_ptXiw_HuAir(p,t,Xiw,succ), REAL*8 p,t,Xiw, INTEGER*4 succ

Input Values:

- p Total pressure *p* in bar
- t Temperature t in °C
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

cp_ptXiw_HuAir	 Specific isobaric heat capacity c_p in kJ/(kg·K)
succ	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t:	$-30 ^{\circ}\text{C} \le t \le 1726.85 ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_v	$_{v}: 0 \leq \xi_{w} \leq 1 \text{ kg/kg}$

Comments:

Calculation:

- for unsaturated and saturated humid air ($\xi_w \leq \xi_{wsatt}$) as ideal mixture of real gases (dry air and steam)
- not possible for fog ($\xi_w > \xi_{wsatt}$)
- Effects of dissociation are taken into consideration from 500 °C upwards

Results for Wrong Input Values:

cp_ptXiw_HuAir = - 1, succ = 0

References:

Specific Isobaric Heat Capacity $c_p = f(t, s, \xi_w)$

Function Name:

cp_tsXiw_HuAir

Fortran Program:

REAL*8 FUNCTION cp_tsXiw_HuAir(t,s,Xiw,succ), REAL*8 p,t,Xiw, INTEGER*4 succ

Input Values:

- p Total pressure *p* in bar
- t Temperature t in °C
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

cp_TsXiw_HuAir	 Specific isobaric heat capacity c_p in kJ/(kg·K)
succ	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t :	$-30 ^{\circ}\text{C} \le t \le 1726.85 ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_v	$_{\rm v}$: 0 $\leq \xi_{\rm w} \leq$ 1 kg/kg

Comments:

Iteration of p from $s(p,t,\xi_w)$ and calculation of c_p from $c_p(p,t,\xi_w)$

Calculation:

- for unsaturated and saturated humid air $(\xi_w \leq \xi_{wsatt})$ as ideal mixture of real gases (dry air and steam)
- not possible for fog ($\xi_w > \xi_{wsatt}$)
- Effects of dissociation are taken into consideration from 500 °C upwards

Results for Wrong Input Values:

cp_TsXiw_HuAir = - 1, succ = 0

References:

Specific Isochoric Heat Capacity $c_v = f(p, t, \xi_w)$

Function Name:

cv_ptXiw_HuAir

Fortran Program:

REAL*8 FUNCTION cv_ptXiw_HuAir(p,t,Xiw,succ), REAL*8 p,t,Xiw, INTEGER*4 succ

Input Values:

- p Total pressure *p* in bar
- t Temperature t in °C
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

cv_ptXiw_HuAir	 Specific isochoric heat capacity c_v in kJ/(kg·K)
succ	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t:	$-30 \ ^{\circ}\text{C} \le t \le 1726.85 \ ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_w	$\zeta_{V}: 0 \leq \xi_{W} \leq 1 \text{ kg/kg}$

Comments:

Calculation:

- for unsaturated and saturated humid air ($\xi_w \leq \xi_{wsatt}$) as ideal mixture of real gases (dry air and steam)
- not possible for fog ($\xi_w > \xi_{wsatt}$)
- Effects of dissociation are taken into consideration from 500 °C upwards

Results for Wrong Input Values:

 $cv_ptXiw_HuAir = -1$, succ = 0

References:

Dynamic Viscosity $\eta = f(p, t, \xi_w)$

Function Name:

Eta_ptXiw_HuAir

Fortran Program:

REAL*8 FUNCTION Eta_ptXiw_HuAir(p,t,Xiw,succ), REAL*8 p, t, Xiw INTEGER*4 succ

Input Values:

- p Total pressure p in bar
- t Temperature t in °C
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

Eta_ptXiw_HuAir	- Dynamic viscosity η in Pa·s	
SUCC	- 1 \rightarrow Calculation successful	
	- 0 \rightarrow Calculation not successful	

Range of Validity:

Temperature t:	$-30 ^{\circ}\text{C} \le t \le 1726.85 ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_w	ζ : $0 \leq \xi_{\rm W} \leq 1 \rm kg/kg$

Comments:

- Model of ideal mixture of real fluids about volume fractions
- Negligence of ice crystals at ice fog (t < 0.01 °C and $\xi_w > \xi_{wsatt}$)

Results for Wrong Input Values:

Eta_ptXiw_HuAir = - 1, succ = 0

References:

Dry air:

from Lemmon et al. [17]

Steam in humid air and water droplets in fog:

for $0 \circ C \le t \le 800 \circ C$ from IAPWS – 85 [7]

for *t* < 0 °C and *t* > 800 °C from *Brandt* [12]

h_psXiw_HuAir

Fortran Program:

REAL*8 FUNCTION h_psXiw_HuAir(p,s,Xiw,succ), REAL*8 p,s,Xiw INTEGER*4 succ

Input Values:

p - Total pressure *p* in bar

- s Specific Entropy s in kJ/(kg K)
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

h_psXiw_HuAir	 Specific enthalpy h in kJ/kg 	
SUCC	- 1 \rightarrow Calculation successful	
	- 0 \rightarrow Calculation not successful	

Range of Validity:

Temperature t:	$-30 ^{\circ}\text{C} \le t \le 1726.85 ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_{w}	$\zeta: 0 \leq \xi_w \leq 1 \text{ kg/kg}$

Comments:

Iteration of *t* from $s(p, t, \xi_w)$ and calculation of *h* from $h(p, t, \xi_w)$

Calculation:

- for unsaturated and saturated humid air ($\xi_w \leq \xi_{wsatt}$) as ideal mixture of real gases (dry air and steam)
- for fog ($\xi_w > \xi_{wsatt}$) as ideal mixture of saturated humid air and water liquid or water ice
- Effects of dissociation are taken into consideration from 500 °C upwards

Results for Wrong Input Values:

 $h_psXiw_HuAir = -1.10^{100}$, succ = 0

References:

Dry air: from *Lemmon* et al. [14] Steam in humid air and water droplets in fog: from IAPWS-IF97 [1], [2], [3], [4] Ice crystals in fog: from to IAPWS-06 [18], [19] Dissociation: from VDI Guideline 4670 [13]

h_ptXiw_HuAir

Fortran Program:

REAL*8 FUNCTION h_ptXiw_HuAir(p,t,Xiw,succ), REAL*8 p,t,Xiw INTEGER*4 succ

Input Values:

- p Total pressure *p* in bar
- t Temperature t in °C
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

h_ptXiw_HuAir	 Specific enthalpy h in kJ/kg 	
SUCC	- 1 \rightarrow Calculation successful	
	- 0 \rightarrow Calculation not successful	

Range of Validity:

Temperature t:	$-30 \ ^{\circ}\text{C} \le t \le 1726.85 \ ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_{λ}	$_{N}$: 0 $\leq \xi_{W} \leq$ 1 kg/kg

Comments:

Calculation:

- for unsaturated and saturated humid air ($\xi_w \leq \xi_{wsatt}$) as ideal mixture of real gases (dry air and steam)
- for fog ($\xi_w > \xi_{wsatt}$) as ideal mixture of saturated humid air and water liquid or water ice
- Effects of dissociation are taken into consideration from 500 °C upwards

Results for Wrong Input Values:

h_ptXiw_HuAir = - $1 \cdot 10^{100}$, succ = 0

```
Dry air:

from Lemmon et al. [14]

Steam in humid air and water droplets in fog:

from IAPWS-IF97 [1], [2], [3], [4]

Ice crystals in fog:

from IAPWS-06 [18], [19]

Dissociation:

from VDI Guideline 4670 [13]
```

h_tsXiw_HuAir

Fortran Program:

REAL*8 FUNCTION h_tsXiw_HuAir(t,s,Xiw,succ), REAL*8 t,s,Xiw INTEGER*4 succ

Input Values:

- t Temperature t in °C
- s Specific Entropy s in kJ/(kg K)
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

h_TsXiw_HuAir	 Specific enthalpy h in kJ/kg
succ	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t:	$-30 \ ^{\circ}\text{C} \le t \le 1726.85 \ ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_v	$_{\rm v}$: 0 $\leq \xi_{\rm w} \leq$ 1 kg/kg

Comments:

Iteration of p from $s(p,t,\xi_w)$ and calculation of h from $h(p,t,\xi_w)$

Calculation:

- for unsaturated and saturated humid air $(\xi_w \leq \xi_{wsatt})$ as ideal mixture of real gases (dry air and steam)
- for fog ($\xi_w > \xi_{wsatt}$) as ideal mixture of saturated humid air and water liquid or water ice
- Effects of dissociation are taken into consideration from 500 °C upwards
- Calculation of the mixture of liquid fog and ice at t = 0.01 °C is not possible

Results for Wrong Input Values:

h_TsXiw_HuAir = - $1 \cdot 10^{100}$, succ = 0

References:

Dry air: from *Lemmon* et al. [14] Steam in humid air and water droplets in fog: from IAPWS-IF97 [1], [2], [3], [4] Ice crystals in fog: from IAPWS-06 [18], [19] Dissociation: from VDI Guideline 4670 [13]

Kappa_psXiw_HuAir

Fortran Program:

REAL*8 FUNCTION Kappa_psXiw_HuAir(p,s,Xiw,succ), REAL*8 p,s,Xiw INTEGER*4 succ

Input Values:

s

- Specific Entropy s in kJ/(kg K)
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

Kappa_psXiw_HuAir	- Isentropic exponent κ
SUCC	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t:	$-30 \ ^{\circ}\text{C} \le t \le 1726.85 \ ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_w	$f: 0 \leq \xi_{W} \leq 1 \text{ kg/kg}$

Comments:

Iteration of *t* from $s(p,t,\xi_w)$ and calculation of κ from $\kappa(p,s,\xi_w)$

- for unsaturated and saturated humid air $(\xi_w \leq \xi_{wsatt})$

$$\kappa = -\frac{v}{p} \cdot \left(\frac{\partial p}{\partial v}\right)_{t} \cdot \frac{c_{p}}{c_{v}}$$

- for liquid fog ($\xi_w > \xi_{wsatt}$): Model of ideal mixture of real fluids about volume fractions

- for ice fog ($\xi_w > \xi_{wsatt}$): Calculation of saturated humid air

Results for Wrong Input Values:

Kappa_psXiw_HuAir = - 1, succ = 0

References:

Kappa_ptXiw_HuAir

Fortran Program:

REAL*8 FUNCTION Kappa_ptXiw_HuAir(p,t,Xiw,succ), REAL*8 p,t,Xiw INTEGER*4 succ

Input Values:

t

- p Total pressure *p* in bar
 - Temperature t in °C
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

Kappa_ptXiw_HuAir	- Isentropic exponent κ
SUCC	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t:	$-30 \ ^{\circ}\text{C} \le t \le 1726.85 \ ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_w	$f_{i}: 0 \leq \xi_{w} \leq 1 \text{ kg/kg}$

Comments:

- for unsaturated and saturated humid air $(\xi_w \leq \xi_{wsatt})$

$$\kappa = -\frac{v}{p} \cdot \left(\frac{\partial p}{\partial v}\right)_{t} \cdot \frac{c_{p}}{c_{v}}$$

- for liquid fog ($\xi_w > \xi_{wsatt}$): Model of ideal mixture of real fluids about volume fractions

- for ice fog ($\xi_w > \xi_{wsatt}$): Calculation of saturated humid air

Results for Wrong Input Values:

Kappa_ptXiw_HuAir = - 1, succ = 0

References:

Dry air:

from Lemmon et al. [14]

Steam in humid air and water droplets in fog: from IAPWS-IF97 [1], [2], [3], [4]

Dissociation:

from VDI Guideline 4670 [13]

Lambda_ptXiw_HuAir

Fortran Program:

REAL*8 FUNCTION Lambda_ptXiw_HuAir(p,t,Xiw,succ), REAL*8 p, t, Xiw INTEGER*4 succ

Input Values:

t

р	- Total p	oressure	<i>p</i> in	bar
---	-----------	----------	-------------	-----

- Temperature *t* in °C

Xiw - Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

Lambda_ptXiw_HuAir	 Thermal conductivity in W/(m·K)
SUCC	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t:	$-30 ^{\circ}\text{C} \le t \le 1726.85 ^{\circ}\text{C}$
Pressure p:	0.01 bar $\le p \le 1000$ bar
Mass fraction of water ξ_w	$\zeta: 0 \leq \xi_w \leq 1 \text{ kg/kg}$

Comments:

- Model of ideal mixture of real fluids about volume fractions

Results for Wrong Input Values:

Lambda_ptXiw_HuAir = - 1, succ=0

References:

Dry air:

from Lemmon et al. [15]

Steam in humid air and water droplets in fog: for 273.15 K \leq T \leq 1073.15 K from IAPWS-85 [6] for T < 273.15 K and T > 1073.15 K from *Brandt* [12]

Ny_ptXiw_HuAir

Fortran Program:

REAL*8 FUNCTION Ny_ptXiw_HuAir(p,t,Xiw,succ), REAL*8 p,t,Xiw INTEGER*4 succ

Input Values:

p - Total pressure *p* in bar

t - Temperature t in °C

Xiw - Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

Ny_ptXiw_HuAir	 Kinematic viscosity v in m²/s
succ	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t:	$-30 \ ^{\circ}\text{C} \le t \le 1726.85 \ ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_w	$f: 0 \leq \xi_w \leq 1 \text{ kg/kg}$

Comments:

- Kinematic viscosity $v = \frac{\eta}{\rho} = \eta \cdot v$

- Model of ideal mixture of real fluids about volume fractions

Results for Wrong Input Values:

 $Ny_ptXiw_HuAir = -1$, succ = 0

References:

Dry air:

- η from *Lemmon* et al. [15]
- ρ from *Lemmon* et al. [14]

Steam in humid air and water droplets in fog:

- $\label{eq:product} \begin{array}{l} \eta & \mbox{for } 273.15 \mbox{ K} \leq \mbox{ T} \\ \mbox{for } T < 273.15 \mbox{ K} \mbox{ and } T > 1073.15 \mbox{ K} \mbox{from } \textit{Brandt} \mbox{ [12]} \end{array}$
- *ρ* from IAPWS-IF97 [1], [2], [3], [4]
 for T < 273.16 K from IAPWS-06 [18], [19]

p_hsXiw_HuAir

Fortran Program:

REAL*8 FUNCTION p_hsXiw_HuAir(h,s,Xiw,succ), REAL*8 h,s,Xiw INTEGER*4 succ

Input Values:

- h Specific enthalpy h in kJ/kg
- s Specific entropy s in kJ/(kg K)
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

p_hsXiw_HuAir	- Total pressure <i>p</i> in bar
SUCC	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t:	$-30 \ ^{\circ}\text{C} \le t \le 1726.85 \ ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_w	$_{I}: 0 \leq \xi_{w} \leq 1 \text{ kg/kg}$

Comments:

Iteration of p and t from $h(p,t,\xi_w)$ and $s(p,t,\xi_w, succ)$

Calculation:

- for unsaturated and saturated humid air $(\xi_w \leq \xi_{wsatt})$ as ideal mixture of real gases (dry air and steam)
- for fog ($\xi_w > \xi_{wsatt}$) as ideal mixture of saturated humid air and water liquid or water ice
- Effects of dissociation are taken into consideration from 500 °C upwards
- Calculation of the mixture of liquid fog and ice at t = 0.01 °C is not possible

Results for Wrong Input Values:

 $p_hsXiw_HuAir = -1$, succ = 0

```
Dry air:
from Lemmon et al. [14]
Steam in humid air and water droplets in fog:
from IAPWS-IF97 [1], [2], [3], [4]
Ice crystals in fog:
according to IAPWS-06 [18], [19]
Dissociation:
from VDI Guideline 4670 [13]
```

p_tsXiw_HuAir

Fortran Program:

REAL*8 FUNCTION p_tsXiw_HuAir(t,s,Xiw,succ), REAL*8 t,s,Xiw INTEGER*4 succ

Input Values:

t - Temperature t in °C

- s Specific entropy s in kJ/(kg K)
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

p_tsXiw_HuAir	- Total pressure <i>p</i> in bar
SUCC	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t:	$-30 ^{\circ}\text{C} \le t \le 1726.85 ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_w	$f: 0 \leq \xi_w \leq 1 \text{ kg/kg}$

Comments:

Iteration of *p* from $s(p, t, \xi_w)$

Calculation:

- for unsaturated and saturated humid air ($\xi_w \leq \xi_{wsatt}$) as ideal mixture of real gases (dry air and steam)
- for fog ($\xi_w > \xi_{wsatt}$) as ideal mixture of saturated humid air and water liquid or water ice
- Effects of dissociation are taken into consideration from 500 °C upwards
- Calculation of the mixture of liquid fog and ice at t = 0.01 °C is not possible

Results for Wrong Input Values:

 $p_tsXiw_HuAir = -1$, succ = 0

References:

Dry air: from *Lemmon* et al. [14] Steam in humid air and water droplets in fog: from IAPWS-IF97 [1], [2], [3], [4] Ice crystals in fog: according to IAPWS-06 [18], [19] Dissociation: from VDI Guideline 4670 [13]

pd_ptXiw_HuAir

Fortran Program:

REAL*8 FUNCTION pd_ptXiw_HuAir(p,t,Xiw,succ), REAL*8 p,t,Xiw INTEGER*4 succ

Input Values:

p - Total pressure *p* in bar

t - Temperature t in °C

Xiw - Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

pd_ptXiw_HuAir	- Partial pressure of water p_{d} in bar
succ	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t:	$-30 \ ^{\circ}\text{C} \le t \le 1726.85 \ ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water $\xi_{\rm N}$	$_{\rm N}$: 0 $\leq \xi_{\rm W} \leq$ 1 kg/kg

Comments:

- Partial pressure of water	$p_{\rm d} = \frac{1}{\frac{1-\xi_{\rm w}}{\xi_{\rm w}}} \cdot \frac{R_{\rm l}}{R_{\rm w}} + 1 \text{for}$	$\xi_{W} \leq \xi_{Wsatt}(p,t)$
	ς_{W} Λ_{W}	

- for $\xi_w > \xi_{wsatt}(p, t)$ result $p_d = p_{dsatt}(p, t)$

Saturation vapor pressure at saturation $p_{\text{dsatt}} = f \cdot p_{\text{s}}(t)$

with $p_s(t)$ for $t \ge 0.01^{\circ}C$ - vapor pressure of water

for $t < 0.01^{\circ}$ C - sublimation pressure of water

Result for pure steam, liquid water and water ice: $p_d = 0$

Results for Wrong Input Values:

pd_ptXiw_HuAir = - 1; succ=0

f(p,t)	Herrmann et al. [25], [26]
$p_{\rm S}(t)$	if $t \ge 0.01^{\circ}$ C from IAPWS-IF97 [1], [2], [3], [4]
	if t < 0.01°C from IAPWS-08 [16], [17]

Saturation Vapor Pressure of Water $p_{dsatt} = f(p,t)$

Function Name:

pdsatt_pt_HuAir

Fortran Program:

REAL*8 FUNCTION pdsatt_pt_HuAir(p,t,succ), REAL*8 p,t INTEGER*4 succ

Input Values:

- p Total pressure *p* in bar
- t Temperature t in °C

Output Values:

pdsatt_pT_HuAir	- Saturation vapor pressure p_{dsatt} of water in humid air in bar
succ	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t:	$-30 \ ^{\circ}\text{C} \le t \le 1726.85 \ ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$

Comments:

Saturation vapor pressure at saturation $p_{dsatt} = f \cdot p_s(t)$ with $p_s(t)$ for $t \ge 0.01$ °C - vapor pressure of water

for $t < 0.01^{\circ}$ C - sublimation pressure of water

Results for Wrong Input Values:

pdsatt_pt_HuAir = - 1, succ=0

f(p,t)	Herrmann et al. [25], [26]
$p_{\rm S}(t)$	if $t \ge 0.01^{\circ}$ C from IAPWS-IF97 [1], [2], [3], [4]
	if t < 0.01°C from IAPWS-08 [16], [17]

Phi_ptXiw_HuAir

Fortran Program:

REAL*8 FUNCTION Phi_ptXiw_HuAir(p,t,Xiw,succ), REAL*8 p, t, Xiw INTEGER*4 succ

Input Values:

p - Total pressure p in base

T - Temperature T in °C

Xiw - Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

Phi_ptXiw_HuAir	- Relative humidity φ	
SUCC	- 1 \rightarrow Calculation successful	
	- 0 \rightarrow Calculation not successful	

Range of Validity:

Temperature t:	$-30 \ ^{\circ}\text{C} \le t \le t_{\text{krit}} = 373.946 \ ^{\circ}\text{C}$
	(t _{krit} - critical Temperature of water)
Pressure p:	0.01 bar $\le p \le 1000$ bar
	•

Mass fraction of water ξ_w : $0 \leq \xi_w \leq 1 - 1 * 10^{-8} \text{ kg/kg}$

Comments:

Relative humidity $\varphi = \frac{1}{\frac{1-\xi_{w}}{\xi_{w}}} \cdot \frac{R_{l}}{R_{w}} + 1} \cdot \frac{p}{p_{dsatt}(p,T)}$

Saturation vapor pressure at saturation $p_{\text{dsatt}} = f \cdot p_{\text{s}}(t)$

with $p_s(t)$ for $t \ge 0.01^{\circ}$ C - vapor pressure of water

for $t < 0.01^{\circ}$ C - sublimation pressure of water

Results for Wrong Input Values:

Phi_ptXiw_HuAir = - 1, succ=0

f(p,t)	Herrmann et al. [25], [26]
$p_{s}(t)$	if $t \ge 0.01^{\circ}$ C from IAPWS-IF97 [1], [2], [3], [4]
	if t < 0.01°C from IAPWS-08 [16], [17]

pl_ptXiw_HuAir

Fortran Program:

REAL*8 FUNCTION pl_ptXiw_HuAir(p,t,Xiw,succ), REAL*8 p,t,Xiw INTEGER*4 succ

Input Values:

p - Total pressure *p* in bar

t - Temperature t in °C

Xiw - Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

pl_ptXiw_HuAir	 Partial pressure of air p_l in bar
SUCC	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t :	$-30 \ ^{\circ}\text{C} \le t \le 1726.85 \ ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ	$_{W}$: 0 $\leq \xi_{W} \leq$ 1 kg/kg

Comments:

Partial pressure of air
$$p_{\rm l} = p \cdot \left(1 - \frac{1}{\frac{1 - \xi_{\rm w}}{\xi_{\rm w}}} \cdot \frac{R_{\rm l}}{R_{\rm w}} + 1 \right)$$

at $\xi_w > \xi_{wsatt}(p, t)$: result $p_l = p - p_{dsatt}(p, t)$

Saturation vapor pressure at saturation $p_{dsatt} = f \cdot p_s(t)$ with $p_s(t)$ for $t \ge 0.01^{\circ}$ C - vapor pressure of water for $t < 0.01^{\circ}$ C - sublimation pressure of water

Result for pure steam, liquid water and water ice: $p_1 = 0$ **Results for Wrong Input Values:**

 $pl_ptXiw_HuAir = -1$, succ = 0

f(p,t)	Herrmann et al. [25], [26]
$\rho_{\rm S}(t)$	if $t \ge 0.01^{\circ}$ C from IAPWS-IF97 [1], [2], [3], [4]
	if t < 0.01°C from IAPWS-08 [16], [17]

Pr_ptXiw_HuAir

Fortran Program:

REAL*8 FUNCTION Pr_ptxw_HuAir(p,t,Xiw,succ), REAL*8 p,t,Xiw INTEGER*4 succ

Input Values:

t

- p Total pressure p in bar
 - Temperature *t* in °C
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

Pr_ptxw_HuAir	- Prandtl-Number Pr	
SUCC	- 1 \rightarrow Calculation successful	
	- 0 \rightarrow Calculation not successful	

Range of Validity:

Temperature t:	$-30 ^{\circ}\text{C} \le t \le 1726.85 ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_{w}	$\zeta: 0 \leq \xi_w \leq 1 \text{ kg/kg}$

Comments:

- Prandtl-Number $Pr = \frac{v}{a} = \frac{\eta \cdot c_p}{\lambda}$

- Model of ideal mixture of real fluids about volume fractions
- Calculation of fog ($\xi_w > \xi_{wsatt}$) is not possible

Results for Wrong Input Values:

 $Pr_ptXiw_HuAir = -1$, succ = 0

References:

Dry air:

5]

- c_{p} from *Lemmon* et al. [14]
- η from *Lemmon* et al. [15]

Steam in humid air and water droplets in fog:

 λ for 0 °C \leq *t* \leq 800 °C from IAPWS – 85 [6]

for *t* < 0 °C and *t* > 800 °C from *Brandt* [12]

- for $0 \,^{\circ}\text{C} \le t \le 800 \,^{\circ}\text{C}$ from IAPWS 85 [7]
- for *t* < 0 °C and *t* > 800 °C from *Brandt* [12]
- from IAPWS IF97 [1], [2], [3], [4]

Dissociation:

η

cp

from VDI Guideline 4670 [13]

Psil_Xiw_HuAir

Fortran Program:

REAL*8 FUNCTION Psil_Xiw_HuAir(Xiw,succ), REAL*8 Xiw INTEGER*4 succ

Input Values:

Xiw - Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

Psil_Xiw_HuAir	- Mole fraction of air in y_1 kmol / kmol
succ	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Mass fraction of water ξ_w : $0 \le \xi_w \le 1 \text{ kg/kg}$

Comments:

Mole fraction of dry air $\psi_{\rm I} = 1 - \frac{R_{\rm w}}{R \cdot \left(\frac{1 - \xi_{\rm w}}{\xi_{\rm w}} + 1\right)}$

Results for Wrong Input Values:

 $Psil_Xiw_HuAir = -1$, succ = 0

Psiw_Xiw_HuAir

Fortran Program:

REAL*8 FUNCTION Psiw_Xiw_HuAir(Xiw,succ), REAL*8 Xiw INTEGER*4 succ

Input Values:

Xiw - Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

Psiw_Xiw_HuAir- Mole fraction of water ψ_w kmol / kmolsucc- 1 \rightarrow Calculation successful- 0 \rightarrow Calculation not successful

Range of Validity:

Mass fraction of water ξ_w : $0 \le \xi_w \le 1 \text{ kg/kg}$

Comments:

Mole fraction of water: $\psi_{w} = \frac{R_{w}}{R \cdot \left(\frac{1 - \xi_{w}}{\xi_{w}} + 1\right)}$ with $R = \xi_{I}R_{I} + \xi_{w}R_{w}$

Results for Wrong Input Values:

Psiw_Xiw_HuAir = - 1, succ=0

Region_hsXiw_HuAir

Fortran Program:

INTEGER*4 FUNCTION Region_hsXiw_HuAir(h,s,Xiw), REAL*8 h,s,Xiw

Input Values:

- h Specific enthalpy h in kJ/kg
- s Specific entropy s in kJ/(kg K)
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

Region_hsXiw_HuAir Region of state of humid air:

- $0 \rightarrow$ Outside region of state
- $1 \rightarrow Dry air$
- $2 \rightarrow$ Unsaturated humid air
- $3 \rightarrow \text{ Liquid mist}$
- $4 \rightarrow$ Ice fog
- $5 \rightarrow$ Mixture of liquid fog and ice fog at 0.01 °C exactly
- $6 \rightarrow$ Pure water

Range of Validity:

Temperature t:	$-30 ^{\circ}\text{C} \le t \le 1726.85 ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_w	$f: 0 \leq \xi_w \leq 1 \text{ kg/kg}$

Comments:

Iteration of *p* and *t* from $h(p,t,\xi_w)$ and $s(p,t,\xi_w, \text{ succ})$. With this result it is possible to calculate *Region*.

Results for Wrong Input Values:

Region_hsXiw_HuAir = 0

References:

Dry air:

Region_phXiw_HuAir

Fortran Program:

INTEGER*4 FUNCTION Region_phXiw_HuAir(p, h, Xiw,), REAL*8 p, h, Xiw

Input Values:

- p Total pressure p in bar
- h Specific enthalpy h in kJ/kg
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

Region_phXiw_HuAir Region of state of humid air:

- $0 \rightarrow$ Outside region of state
- $1 \rightarrow Dry air$
- $2 \rightarrow$ Unsaturated humid air
- $3 \rightarrow \text{Liquid mist}$
- $4 \rightarrow$ Ice fog
- $5 \rightarrow$ Mixture of liquid fog and ice fog at 0.01 °C exactly
- $6 \rightarrow Pure water$

Range of Validity:

Temperature t:	$-30 \ ^{\circ}\text{C} \le t \le 1726.85 \ ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_w	$\zeta_{1}: 0 \leq \xi_{w} \leq 1 \text{ kg/kg}$

Comments:

Iteration of *t* from $h(p,t,\xi_w)$. With this result it is possible to calculate *Region*.

Results for Wrong Input Values:

 $Region_phXiw_HuAir = 0$

References:

Region_psXiw_HuAir

Fortran Program:

INTEGER*4 FUNCTION Region_psXiw_HuAir(p, s, Xiw), REAL*8 p, s, Xiw

Input Values:

- p Total pressure p in bar
- s Specific entropy s in kJ/(kg K)
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

Region_psXiw_HuAir Region of state of humid air:

- $0 \rightarrow$ Outside region of state
- $1 \rightarrow Dry air$
- $2 \rightarrow$ Unsaturated humid air
- $3 \rightarrow \text{Liquid mist}$
- $4 \rightarrow$ Ice fog
- $5 \rightarrow$ Mixture of liquid fog and ice fog at 0.01 °C exactly
- $6 \rightarrow Pure water$

Range of Validity:

Temperature t:	$-30 \ ^{\circ}\text{C} \le t \le 1726.85 \ ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_w	$\zeta: 0 \leq \xi_w \leq 1 \text{ kg/kg}$

Comments:

Iteration of *t* from $s(p,t,\xi_w)$. With this result it is possible to calculate *Region*.

Results for Wrong Input Values:

Region_psXiw_HuAir = 0

References:

Region_ptXiw_HuAir

Fortran Program:

INTEGER*4 FUNCTION Region_ptXiw_HuAir(p, t, Xiw), REAL*8 p, t, Xiw

Input Values:

- p Total pressure p in bar
- t Temperature t in °C
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

Region_ptXiw_HuAir - Region of state of humid air:

- $0 \rightarrow$ Outside region of state
- $1 \rightarrow Dry air$
- $2 \rightarrow$ Unsaturated humid air
- $3 \rightarrow \text{Liquid mist}$
- $4 \rightarrow \text{ Ice fog}$
- $5 \rightarrow \,$ Mixture of liquid fog and ice fog at 0.01 °C exactly
- $6 \rightarrow Pure water$

Range of Validity:

Temperature t:	$-30 \ ^{\circ}\text{C} \le t \le 1726.85 \ ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_w	$\zeta: 0 \leq \xi_w \leq 1 \text{ kg/kg}$

Comments:

Results for Wrong Input Values:

Region_ptXiw_HuAir = 0

References:

Region_tsXiw_HuAir

Fortran Program:

INTEGER*4 FUNCTION Region_tsXiw_HuAir(t, s, Xiw), REAL*8 t, s, Xiw

Input Values:

- t Temperature t in °C
- s Specific entropy s in kJ/(kg K)
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

Region_tsXiw_HuAir Region of state of humid air:

- $0 \rightarrow$ Outside region of state
- $1 \rightarrow \text{Dry air}$
- $2 \rightarrow$ Unsaturated humid air
- $3 \rightarrow$ Liquid mist
- $4 \rightarrow \text{Ice fog}$
- $5 \rightarrow \,$ Mixture of liquid fog and ice fog at 0.01 °C exactly
- $6 \rightarrow$ Pure water

Range of Validity:

Temperature t:	$-30 \ ^{\circ}\text{C} \le t \le 1726.85 \ ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_w	$\zeta: 0 \leq \xi_w \leq 1 \text{ kg/kg}$

Comments:

Iteration of *p* from $s(p,t,\xi_w)$. With this result it is possible to calculate *Region*.

Results for Wrong Input Values:

Region_tsXiw_HuAir = 0

References:
Density $\rho = f(p, t, \xi_w)$

Function Name:

Rho_ptXiw_HuAir

Fortran Program:

REAL*8 FUNCTION Rho_ptXiw_HuAir(p,t,Xiw,succ), REAL*8 p, t, Xiw

INTEGER*4 succ

Input Values:

р	-	Total	pressure	р	in	bar
---	---	-------	----------	---	----	-----

t - Temperature t in °C

Xiw - Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

Rho_ptXiw_HuAir	- Density $ ho$ in kg/m ³	
SUCC	- 1 \rightarrow Calculation successful	
	- 0 \rightarrow Calculation not successful	

Range of Validity:

Temperature t:	$-30 ^{\circ}\text{C} \le t \le 1726.85 ^{\circ}\text{C}$
Pressure p:	0.01 bar $\le p \le 1000$ bar
Mass fraction of water ξ_w	$\zeta: 0 \leq \xi_w \leq 1 \text{ kg/kg}$

Comments:

Calculation:

- for unsaturated and saturated humid air ($\xi_w \leq \xi_{wsatt}$) as ideal mixture of real gases (dry air and steam)
- for fog ($\xi_w > \xi_{wsatt}$) as ideal mixture of saturated humid air and water liquid or water ice

Results for Wrong Input Values:

```
Rho_ptXiw_HuAir = -1, succ = 0
```

References:

Dry air:

from *Lemmon* et al. [14] Steam in humid air and water droplets in fog: from IAPWS-IF97 [1], [2], [3], [4] Ice crystals in fog: according to IAPWS-06 [18], [19]

s_phXiw_HuAir

Fortran Program:

REAL*8 FUNCTION s_phXiw_HuAir(p,h,Xiw,succ), REAL*8 p,h,Xiw INTEGER*4 succ

Input Values:

р	- Total pressure <i>p</i> in bar
h	- Specific entropy <i>h</i> in kJ/kg

Xiw - Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

s_ptXiw_HuAir	 Specific Entropy s in kJ/(kg K) 	
SUCC	- 1 \rightarrow Calculation successful	
	- 0 \rightarrow Calculation not successful	

Range of Validity:

Temperature t:	$-30 ^{\circ}\text{C} \le t \le 1726.85 ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_w	$f: 0 \leq \xi_w \leq 1 \text{ kg/kg}$

Comments:

Iteration of *t* from $h(p, t, \xi_w)$ and calculation of *s* from $s(p, t, \xi_w)$

Calculation:

- for unsaturated and saturated humid air ($\xi_w \leq \xi_{wsatt}$) as ideal mixture of real gases (dry air and steam)
- for fog ($\xi_w > \xi_{wsatt}$) as ideal mixture of saturated humid air and water liquid or water ice
- Effects of dissociation are taken into consideration from 500 °C upwards

Results for Wrong Input Values:

s_phXiw_HuAir = - $1 \cdot 10^{100}$, succ=0

References:

Dry air: from *Lemmon* et al. [14] Steam in humid air and water droplets in fog: from IAPWS-IF97 [1], [2], [3], [4] Ice crystals in fog: according to IAPWS-06 [18], [19] Dissociation: from VDI Guideline 4670 [13]

s_ptXiw_HuAir

Fortran Program:

REAL*8 FUNCTION s_ptXiw_HuAir(p,t,Xiw,succ), REAL*8 p, t, Xiw INTEGER*4 succ

Input Values:

t

p - Total pressure *p* in bar

- Temperature t in °C
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

s_ptXiw_HuAir	 Specific Entropy s in kJ/(kg K) 	
succ	- 1 \rightarrow Calculation successful	
	- 0 \rightarrow Calculation not successful	

Range of Validity:

Temperature t:	$-30 ^{\circ}\text{C} \le t \le 1726.85 ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_w	$f: 0 \leq \xi_w \leq 1 \text{ kg/kg}$

Comments:

Calculation:

- for unsaturated and saturated humid air $(\xi_w \leq \xi_{wsatt})$ as ideal mixture of real gases (dry air and steam)
- for fog ($\xi_w > \xi_{wsatt}$) as ideal mixture of saturated humid air and water liquid or water ice
- Effects of dissociation are taken into consideration from 500 °C upwards

Results for Wrong Input Values:

s_ptXiw_HuAir = - $1 \cdot 10^{100}$, succ=0

References:

Dry air: from *Lemmon* et al. [14] Steam in humid air and water droplets in fog: from IAPWS-IF97 [1], [2], [3], [4] Ice crystals in fog: according to IAPWS-06 [18], [19] Dissociation: from VDI Guideline 4670 [13]

Sigma_t_HuAir

Fortran Program:

REAL*8 FUNCTION Sigma_t_HuAir(t, succ), REAL*8 t INTEGER*4 succ

Input Values:

t - Temperature t in °C

Output Values:

Sigma_t_HuAir	- Surface tension σ in N/m
succ	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t: 0 °C $\leq t \leq t_{krit} = 373.946$ °C

Comments:

Calculation: for pure water from IAPWS-IF97

Results for Wrong Input Values:

Sigma_t_HuAir = - 1

References: [8]

Temperature $t = f(h, s, \xi_w)$

Function Name:

t_hsXiw_HuAir

Fortran Program:

REAL*8 FUNCTION T_hsXiw_HuAir(h, s, Xiw, succ), REAL*8 h, s, Xiw INTEGER*4 succ

Input Values:

h	 Specific enthalpy h in kJ/kg
S	 Specific entropy s in kJ/(kg K)

Xiw - Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

t_hsXiw_HuAir	- Temperature <i>t</i> in °C	
SUCC	- 1 \rightarrow Calculation successful	
	- 0 \rightarrow Calculation not successful	

Range of Validity:

Temperature t:	$-30 ^{\circ}\text{C} \le t \le 1726.85 ^{\circ}\text{C}$
Pressure p:	0.01 bar $\le p \le 1000$ bar
Mass fraction of water ξ_w	$f: 0 \leq \xi_w \leq 1 \text{ kg/kg}$

Comments:

Iteration of *t* and *p* from $h(p, t, \xi_w)$ and $s(p, t, \xi_w)$

Calculation:

- for unsaturated and saturated humid air ($\xi_w \leq \xi_{wsatt}$) as ideal mixture of real gases (dry air and steam)
- for fog ($\xi_w > \xi_{wsatt}$) as ideal mixture of saturated humid air and water liquid or water ice
- Effects of dissociation are taken into consideration from 500 °C upwards

Results for Wrong Input Values:

 $t_hsXiw_HuAir = -1$, succ = 0

References:

Dry air: from *Lemmon* et al. [14] Steam in humid air and water droplets in fog: from IAPWS-IF97 [1], [2], [3], [4] Ice crystals in fog: according to IAPWS-06 [18], [19] Dissociation:

Temperature $t = f(p, h, \xi_w)$

Function Name:

t_phXiw_HuAir

Fortran Program:

REAL*8 FUNCTION t_phXiw_HuAir(p, h, Xiw, succ), REAL*8 p, h, Xiw INTEGER*4 succ

Input Values:

٢

- h Specific enthalpy h in kJ/kg
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

t_phXiw_HuAir	- Temperature <i>t</i> in °C
SUCC	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t:	$-30 ^{\circ}\text{C} \le t \le 1726.85 ^{\circ}\text{C}$
Pressure p:	0.01 bar $\le p \le 1000$ bar
Mass fraction of water ξ_w	$f: 0 \leq \xi_w \leq 1 \text{ kg/kg}$

Comments:

Iteration of *t* from $h(p, t, \xi_W)$

Calculation:

- for unsaturated and saturated humid air $(\xi_w \leq \xi_{wsatt})$ as ideal mixture of real gases (dry air and steam)
- for fog ($\xi_w > \xi_{wsatt}$) as ideal mixture of saturated humid air and water liquid or water ice
- Effects of dissociation are taken into consideration from 500 °C upwards

Results for Wrong Input Values:

 $t_phXiw_HuAir = -1$, succ = 0

References:

Dry air: from *Lemmon* et al. [14] Steam in humid air and water droplets in fog: from IAPWS-IF97 [1], [2], [3], [4] Ice crystals in fog: according to IAPWS-06 [18], [19] Dissociation: from VDI Guideline 4670 [13]

Temperature $t = f(p, s, \xi_w)$

Function Name:

t_psXiw_HuAir

Fortran Program:

REAL*8 FUNCTION t_psXiw_HuAir(p, s, Xiw, succ), REAL*8 p, s, Xiw INTEGER*4 succ

Input Values:

s - Specific entropy s in kJ/(kg K)

Xiw - Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

t_psXiw_HuAir	- Temperature <i>t</i> in °C
SUCC	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t:	$-30 ^{\circ}\text{C} \le t \le 1726.85 ^{\circ}\text{C}$
Pressure p:	0.01 bar $\le p \le 1000$ bar
Mass fraction of water ξ_w	$f: 0 \leq \xi_w \leq 1 \text{ kg/kg}$

Comments:

Iteration of t from $s(p, t, \xi_w)$

Calculation:

- for unsaturated and saturated humid air $(\xi_w \leq \xi_{wsatt})$ as ideal mixture of real gases (dry air and steam)
- for fog ($\xi_w > \xi_{wsatt}$) as ideal mixture of saturated humid air and water liquid or water ice
- Effects of dissociation are taken into consideration from 500 °C upwards

Results for Wrong Input Values:

t_psXiw_HuAir = - 1, succ = 0

References:

Dry air: from *Lemmon* et al. [14] Steam in humid air and water droplets in fog: from IAPWS-IF97 [1], [2], [3], [4] Ice crystals in fog: according to IAPWS-06 [18], [19] Dissociation:

from VDI Guideline 4670 [13]

tf_ptXiw_HuAir

Fortran Program:

REAL*8 FUNCTION tf_ptXiw_HuAir(p, t, Xiw, succ), REAL*8 p, t, Xiw INTEGER*4 succ

Input Values:

- p Total pressure *p* in bar
- t Temperature t in °C
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

tf_ptXiw_HuAir	 Wet bulb Temperature (cooling limit Temperature) t_f in °C
succ	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t:	$-30 ^{\circ}\text{C} \le t \le 1726.85 ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_w	$f: 0 \leq \xi_{w} \leq 1 \text{ kg/kg}$

Comments:

Iteration of t_{f} from $h_{unsaturated}(p, t, Xi_{W}) = h(p, t_{f}, Xi_{W})$

Effects of dissociation are taken into consideration from 500 °C upwards

Results for Wrong Input Values:

 $tf_ptXiw_HuAir = -1$, succ = 0

References:

Dry air: from *Lemmon* et al. [14] Steam in humid air and water droplets in fog: from IAPWS-IF97 [1], [2], [3], [4] Dissociation: from VDI Guideline 4670 [13]

tTau_pXiw_HuAir

Fortran Program:

REAL*8 FUNCTION tTau_pXiw_HuAir(p, Xiw, succ), REAL*8 p, Xiw

INTEGER*4 succ

Input Values:

p - Total pressure *p* in bar

Xiw - Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

tTau_pXiw_HuAir	- Dew point Temperature t_{τ} in °C
succ	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Pressure p:	0.01 bar $\le p \le 1000$ bar
Mass fraction of water ξ_w :	$\xi_{wsatt}(p,-30^{\circ}C) \le \xi_w \le 1 \text{ kg/kg}$

Comments:

Dew point Temperature of water in mixtures of gases:

$$t_{\tau} = t_{s}(p, p_{d})$$
 for $t \ge 0.01$ °C
(t_{s} – Boiling Temperature of water in mixtures of gases)
 $t_{\tau} = t_{sub}(p, p_{d})$ for $t < 0.01$ °C

 $(t_{sub} - Sublimation Temperature of water in mixtures of gases)$

with
$$p_{d} = \frac{1}{\frac{1-\xi_{w}}{\xi_{w}} \cdot \frac{R_{l}}{R_{w}} + 1}$$

Dew point Temperature of pure water:

$$t_{\tau} = t_{s}(p)$$

(t_{s} – Boiling Temperature of pure water)

Results for Wrong Input Values:

tTau_pXiw_HuAir = - 1, succ = 0

$$\begin{aligned} t_{\rm s}(p,p_{\rm d}) & \text{for } t_{\tau} \geq 0.01^{\circ}\text{C from IAPWS-IF97 [1], [2], [3], [4]} \\ t_{\rm sub}(p,p_{\rm d}) & \text{for } \mathcal{T}_{\tau} < 0.01^{\circ}\text{C from IAPWS-08 [16], [17]} \\ t_{\rm s}(p) & \text{from IAPWS-IF97 [1], [2], [3], [4]} \end{aligned}$$

u_ptXiw_HuAir

Fortran Program:

REAL*8 FUNCTION u_ptXiw_HuAir(p, t, Xiw, succ), REAL*8 p, t, Xiw INTEGER*4 succ

Input Values:

- p Total pressure *p* in bar
- t Temperature t in °C
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

u_ptXiw_HuAir	- Specific internal energy <i>u</i> in kJ/kg
SUCC	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t:	$-30 ^{\circ}\text{C} \le t \le 1726.85 ^{\circ}\text{C}$
Pressure p:	0.01 bar $\le p \le 1000$ bar
Mass fraction of water ξ_w	$\xi: 0 \leq \xi_w \leq 1 \text{ kg/kg}$

Comments:

Calculation: $u = h - p \cdot v$

- for unsaturated and saturated humid air $(\xi_w \leq \xi_{wsatt})$ as ideal mixture of real gases (dry air and steam)
- for fog ($\xi_w > \xi_{wsatt}$) as ideal mixture of saturated humid air and water liquid or water ice
- Effects of dissociation are taken into consideration from 500 °C upwards

Results for Wrong Input Values:

u_ptXiw_HuAir = - 1.10^{100} , succ = 0

References:

Dry air:

h, v from Lemmon et al. [14]

Steam in humid air and water droplets in fog:

h, v from IAPWS-IF97 [1], [2], [3], [4]

Ice crystals in fog:

h, *v* according to IAPWS-06 [18], [19]

Dissociation:

from VDI Guideline 4670 [13]

v_hsXiw_HuAir

Fortran Program:

REAL*8 FUNCTION v_hsXiw_HuAir(h, s, Xiw, succ), REAL*8 h, s, Xiw INTEGER*4 succ

Input Values:

h - Specific enthalpy h	in kJ/kg
-------------------------	----------

- s Specific Entropy s in kJ/(kg K)
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

v_hsXiw_HuAir	- Specific volume <i>v</i> in m³/kg
succ	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t:	$-30 \ ^{\circ}\text{C} \le t \le 1726.85 \ ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_w	$\zeta: 0 \leq \xi_w \leq 1 \text{ kg/kg}$

Comments:

Iteration of p and t from $h(p,t,\xi_w)$ and $s(p,t,\xi_w)$ and calculation of $v(p,t,\xi_w)$

Calculation:

- for unsaturated and saturated humid air $(\xi_w \leq \xi_{wsatt})$ as ideal mixture of real gases (dry air and steam)
- for fog ($\xi_w > \xi_{wsatt}$) as ideal mixture of saturated humid air and water liquid or water ice
- Calculation of the mixture of liquid fog and ice at t = 0.01 °C is not possible

Results for Wrong Input Values:

 $v_hsXiw_HuAir = -1$, succ = 0

```
Dry air:
from Lemmon et al. [14]
Steam in humid air and water droplets in fog:
from IAPWS-IF97 [1], [2], [3], [4]
Ice crystals in fog:
according to IAPWS-06 [18], [19]
Dissociation:
from VDI Guideline 4670 [13]
```

v_phXiw_HuAir

Fortran Program:

REAL*8 FUNCTION v_phXiw_HuAir(p, h, Xiw, succ), REAL*8 p, h, Xiw INTEGER*4 succ

Input Values:

р - Т	otal pressure	<i>p</i> in	ba
-------	---------------	-------------	----

- h Specific enthalpy h in kJ/(kg K)
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

v_phXiw_HuAir	- Specific volume <i>v</i> in m³/kg		
SUCC	- 1 \rightarrow Calculation successful		
	- 0 \rightarrow Calculation not successful		

Range of Validity:

Temperature t:	$-30 \ ^{\circ}\text{C} \le t \le 1726.85 \ ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_w	$f: 0 \leq \xi_{\rm W} \leq 1 \rm kg/kg$

Comments:

Iteration of *t* from $h(p,t,\xi_w)$ and calculation of $v(p,t,\xi_w)$

Calculation:

- for unsaturated and saturated humid air ($\xi_w \leq \xi_{wsatt}$) as ideal mixture of real gases (dry air and steam)
- for fog ($\xi_w > \xi_{wsatt}$) as ideal mixture of saturated humid air and water liquid or water ice

Results for Wrong Input Values:

v_phXiw_HuAir = -1, succ = 0

References:

Dry air: from *Lemmon* et al. [14] Steam in humid air and water droplets in fog: from IAPWS-IF97 [1], [2], [3], [4] Ice crystals in fog: according to IAPWS-06 [18], [19] Dissociation: from VDI Guideline 4670 [13]

v_psXiw_HuAir

Fortran Program:

REAL*8 FUNCTION v_psXiw_HuAir(p, s, Xiw, succ), REAL*8 p, s, Xiw INTEGER*4 succ

Input Values:

р.	- Total	pressure	<i>p</i> in	baı
----	---------	----------	-------------	-----

- s Specific Entropy s in kJ/(kg K)
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

v_psXiw_HuAir	- Specific volume <i>v</i> in m³/kg
SUCC	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t:	$-30 ^{\circ}\text{C} \le t \le 1726.85 ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_w	$: 0 \leq \xi_{\rm w} \leq 1 \rm kg/kg$

Comments:

Iteration of *t* from $s(p, t, \xi_w)$ and calculation of $v(p, t, \xi_w)$

Calculation:

- for unsaturated and saturated humid air ($\xi_w \leq \xi_{wsatt}$) as ideal mixture of real gases (dry air and steam)
- for fog ($\xi_w > \xi_{wsatt}$) as ideal mixture of saturated humid air and water liquid or water ice

Results for Wrong Input Values:

 $v_psXiw_HuAir = -1$, succ = 0

```
Dry air:

from Lemmon et al. [14]

Steam in humid air and water droplets in fog:

from IAPWS-IF97 [1], [2], [3], [4]

Ice crystals in fog:

according to IAPWS-06 [18], [19]

Dissociation:

from VDI Guideline 4670 [13]
```

Specific Volume $v = f(p, t, \xi_w)$

Function Name:

v_ptXiw_HuAir

Fortran Program:

REAL*8 FUNCTION v_ptXiw_HuAir(p, t, Xiw, succ), REAL*8 p, t, Xiw INTEGER*4 succ

Input Values:

- p Total pressure *p* in bar
- t Temperature t in °C
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

v_ptXiw_HuAir	 Specific volume v in m³/kg 		
succ	- 1 \rightarrow Calculation successful		
	- 0 \rightarrow Calculation not successful		

Range of Validity:

Temperature t:	$-30 ^{\circ}\text{C} \le t \le 1726.85 ^{\circ}\text{C}$
Pressure p:	0.01 bar $\le p \le 1000$ bar
Mass fraction of water ξ_w	$\zeta: 0 \leq \xi_{w} \leq 1 \text{ kg/kg}$

Comments:

Calculation:

- for unsaturated and saturated humid air $(\xi_w \leq \xi_{wsatt})$ as ideal mixture of real

gases (dry air and steam)

- for fog ($\xi_w > \xi_{wsatt}$) as ideal mixture of saturated humid air and water liquid or water ice

Results for Wrong Input Values:

 $v_ptXiw_HuAir = -1$, succ = 0

References:

Dry air: from *Lemmon* et al. [14] Steam in humid air and water droplets in fog: from IAPWS-IF97 [1], [2], [3], [4] Ice crystals in fog: according to IAPWS-06 [18], [19]

Specific Volume $v = f(t, s, \xi_w)$

Function Name:

v_tsXiw_HuAir

Fortran Program:

REAL*8 FUNCTION v_tsXiw_HuAir(t, s, Xiw, succ), REAL*8 t, s, Xiw

INTEGER*4 succ

Input Values:

t - Temperature	t in	°C
-----------------	------	----

- s Specific entropy s in kJ/(kg K)
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

v_tsXiw_HuAir	- Specific volume <i>v</i> in m³/kg
succ	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t:	$-30 ^{\circ}\text{C} \le t \le 1726.85 ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_w	$\zeta: 0 \leq \xi_w \leq 1 \text{ kg/kg}$

Comments:

Iteration of p from $s(p,t,\xi_w)$ and calculation of $v(p,t,\xi_w)$

Calculation:

- for unsaturated and saturated humid air $(\xi_w \leq \xi_{wsatt})$ as ideal mixture of real gases (dry air and steam)
- for fog ($\xi_w > \xi_{wsatt}$) as ideal mixture of saturated humid air and water liquid or water ice
- Calculation of the mixture of liquid fog and ice at t = 0.01 °C is not possible

Results for Wrong Input Values:

 $v_tsXiw_HuAir = -1$, succ = 0

```
Dry air:
from Lemmon et al. [14]
Steam in humid air and water droplets in fog:
from IAPWS-IF97 [1], [2], [3], [4]
Ice crystals in fog:
according to IAPWS-06 [18], [19]
Dissociation:
from VDI Guideline 4670 [13]
```

w_ptXiw_HuAir

Fortran Program:

REAL*8 FUNCTION w_ptXiw_HuAir(p, t, Xiw, succ), REAL*8 p, t, Xiw INTEGER*4 succ

Input Values:

- p Total pressure *p* in bar
- t Temperature t in °C
- Xiw Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

w_ptXiw_HuAir	- Isentropic speed of sound w in m/s
SUCC	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t:	$-30 ^{\circ}\text{C} \le t \le 1726.85 ^{\circ}\text{C}$
Pressure p:	0.01 bar $\le p \le 1000$ bar
Mass fraction of water ξ_w	$\xi: 0 \leq \xi_w \leq 1 \text{ kg/kg}$

Comments:

- for unsaturated and saturated humid air $(\xi_w \leq \xi_{wsatt})$

$$w = \sqrt{p \cdot v \cdot \kappa}$$
 with $\kappa = -\frac{v}{p} \cdot \left(\frac{\partial p}{\partial v}\right)_{t} \cdot \frac{c_{p}}{c_{v}}$

- for liquid fog ($\xi_w > \xi_{wsatt}$): Model of ideal mixture of real fluids about volume fractions

- for ice fog $(\xi_w \leq \xi_{wsatt})$: Calculation of saturated humid air

Results for Wrong Input Values:

 $w_ptXiw_HuAir = -1$, succ = 0

References:

Dry air:

from Lemmon et al. [14]

Steam in humid air and water droplets in fog:

from IAPWS-IF97 [1], [2], [3], [4]

Dissociation:

from VDI Guideline 4670 [13]

Humidity Ratio (Absolute Humidity) $x_w = f(\xi_w)$

Function Name:

xw_Xiw_HuAir

Fortran Program:

REAL*8 FUNCTION xw_Xiw_HuAir(Xiw, succ), REAL*8 Xiw INTEGER*4 succ

Input Values:

Xiw - Mass fraction of water ξ_w in kg water / kg mixture

Output Values:

xw_Xiw_HuAir	- Humidity Ratio (Absolute humidity) $x_{\rm w}$ in kg water / kg air
succ	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Mass fraction of water ξ_w : $0 \le \xi_w \le 1 \text{ kg/kg}$

Comments:

Humidity Ratio (Absolute humidity) in mixture of gas:

$$x_{\rm w} = \frac{\xi_{\rm w}}{1 - \xi_{\rm w}}$$

Result for pure water $x_{\rm w} = 1.10^{100}$

Results for Wrong Input Values:

 $xw_Xiw_HuAir = -1$, succ = 0

Xiw_ptPhi_HuAir

Fortran Program:

REAL*8 FUNCTION Xiw_ptPhi_HuAir(p,t,Phi,succ), REAL*8 p,t,Phi INTEGER*4 succ

Input Values:

- p Total pressure *p* in bar
- t Temperature t in °C
- Phi relative humidity

Output Values:

Xiw_ptPhi_HuAir	- Mass fraction of water $\xi_{ m w}$ in kg / kg
SUCC	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t:	$-30 \ ^{\circ}\text{C} \le t \le t_{\text{krit}} = 373.946 \ ^{\circ}\text{C}$
	(T _{krit} - critical Temperature of water)
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Relative humidity φ :	$0 \leq \varphi \leq 1$

Comments:

Mass fraction of water $\xi_{w} = \frac{x_{w}}{1 + x_{w}}$ with $x_{w} = \frac{R_{l}}{R_{w}} \frac{\varphi \cdot p_{dsatt}(p, t)}{p - \varphi \cdot p_{dsatt}(p, t)}$ Saturation vapor pressure at saturation $p_{dsatt} = f \cdot p_{s}(t)$ with $p_{s}(t)$ for $t \ge 0.01^{\circ}$ C - vapor pressure of water for $t < 0.01^{\circ}$ C - sublimation pressure of water

Results for Wrong Input Values:

 $Xiw_ptPhi_HuAir = -1$, succ = 0

f(p,t)	Herrmann et al. [25], [26]
$p_{\rm S}(t)$	if $t \ge 0.01^{\circ}$ C from IAPWS-IF97 [1], [2], [3], [4]
	if t < 0.01°C from IAPWS-08 [16], [17]

Xiw_ptpd_HuAir

Fortran Program:

REAL*8 FUNCTION Xiw_ptpd_HuAir(p, t, pd, succ), REAL*8 p, t, pd

INTEGER*4 succ

Input Values:

- p Total pressure *p* in bar
- t Temperature t in °C
- pd Partial pressure of water p_d in bar

Output Values:

Xiw_ptpd_HuAir	- Mass fraction of water $\xi_{ m W}$ in kg / kg
succ	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t:	$-30 ^{\circ}\text{C} \le t \le 1726.85 ^{\circ}\text{C}$
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Mass fraction of water ξ_{w}	ζ : $0 \leq \xi_w \leq 1 \text{ kg/kg}$

Range of Validity:

Temperature <i>t</i> :	- 30 °C $\leq t \leq$ 1726.85 °C
Pressure <i>p</i> :	0.01 bar $\leq p \leq 1000$ bar
Partial pressure of water p_{d} :	0.01 bar $\leq~p~\leq~p_{dsatt}(p,t)$ for $~t~\leq~373.946~^{\circ}C,$
	\leq 1000 bar for t > 373.946 °C

Comments:

Mass fraction of water $\xi_{w} = \frac{x_{w}}{1 + x_{w}}$ with $x_{w} = \frac{R_{l}}{R_{w}} \frac{p_{d}}{p - p_{d}}$ Saturation vapor pressure at saturation $p_{dsatt} = f \cdot p_{s}(t)$ with $p_{s}(t)$ for $t \ge 0.01^{\circ}$ C - vapor pressure of water for $t < 0.01^{\circ}$ C - sublimation pressure of water

Results for Wrong Input Values:

 $Xiw_ptpd_HuAir = -1$, succ = 0

f(p,t)	Herrmann et al. [25], [26]
$p_{\rm s}(t)$	if $t \ge 0.01^{\circ}$ C from IAPWS-IF97 [1], [2], [3], [4]
	if t < 0.01°C from IAPWS-08 [16], [17]

3/50

Mass Fraction of Water $\xi_{w} = f(p, t_{\tau})$

Function Name:

Xiw_ptTau_HuAir

Fortran Program:

REAL*8 FUNCTION Xiw_ptTau_HuAir(p, tTau, succ), REAL*8 p, tTau

INTEGER*4 succ

Input Values:

p - Total pressure *p* in bar

 t_{τ} - Dew point Temperature t_{τ} in °C

Output Values:

Xiw_ptTau_HuAir	- Mass fraction of water $\xi_{\rm W}$ in kg / kg
succ	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$
Dew point temperature t_{τ} :	$-30 \ ^{\circ}\text{C} \le t_{\tau} \le t_{s}(\rho, \rho_{d})$
	$(t_{s} - Boiling Temperature of water in mixtures of gases)$

Comments:

Mass fraction of water $\xi_{w} = \frac{x_{w}}{1 + x_{w}}$ with $x_{w} = \frac{R_{l}}{R_{w}} \frac{p_{dsatt}(p, t_{\tau})}{p - p_{dsatt}(p, t_{\tau})}$ Saturation vapor pressure at saturation $p_{dsatt} = f \cdot p_{s}(t_{\tau})$ with $p_{s}(t_{\tau})$ for $t_{\tau} \ge 0.01^{\circ}$ C - vapor pressure of water for $t_{\tau} < 0.01^{\circ}$ C - sublimation pressure of water

Results for Wrong Input Values:

Xiw_ptTau_HuAir = - 1, succ = 0

$f(p, t_{\tau})$	Herrmann et al. [25], [26]
$p_{s}(t_{\tau})$	if $t_{\tau} \geq 0.01^{\circ}$ C from IAPWS-IF97 [1], [2], [3], [4]
	if t _r < 0.01°C from IAPWS-08 [16], [17]

Xiw_pttf_HuAir

Fortran Program:

REAL*8 FUNCTION Xiw_pttf_HuAir(p, t, tf, succ), REAL*8 p, t, tf

INTEGER*4 succ

Input Values:

- p Total pressure *p* in bar
- t Temperature t in °C
- tf Wet bulb Temperature t_f in °C

Output Values:

Xiw_pttf_HuAir	- Mass fraction of steam $\xi_{ m W}$ in kg / kg
succ	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t:	-30 °C ≤ t ≤ 1726.85 °C
Wet bulb temperature t_f :	$-30 \text{ °C} \leq t_{f} \leq t \text{ or } t_{s}(p, p_{d})$
	$(t_{\rm S}$ – Boiling Temperature of water in mixtures of gases)
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$

Comments:

Iteration of ξ_{w} from $h_{unsaturated}(p, t, Xi_{w}) = h(p, t_{f}, Xi_{w})$

Effects of dissociation are taken into consideration from 500 °C upwards

Results for Wrong Input Values:

 $Xiw_pttf_HuAir = -1$, succ = 0

References:

Dry air:

from Lemmon et al. [14]

Steam in humid air and water droplets in fog:

from IAPWS-IF97 [1], [2], [3], [4]

Dissociation:

from VDI Guideline 4670 [13]

Mass Fraction of Liquid Water $\xi_{wf} = f(p, t, \xi_w)$

Function Name:

Xiwf_ptXiw_HuAir

Fortran Program:

REAL*8 FUNCTION Xiwf_ptXiw_HuAir(p, t, Xiw, succ), REAL*8 p, t, Xiw INTEGER*4 succ

Input Values:

t

- Total pressure *p* in bar р
 - Temperature t in °C
- Xiw - Mass fraction of water $\xi_{\rm W}$ in kg water / kg mixture

Output Values:

Xiwf_ptXiw_HuAir	- Mass fraction of water $\xi_{ m wf}$ in kg / kg
succ	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t:	$t_{ au}(oldsymbol{ ho}, \xi_{W}) \leq t \leq t_{S}(oldsymbol{ ho}, oldsymbol{ ho}_{d})$
	$(t_{s} - Boiling Temperature of water in mixtures of gases)$
Pressure p:	0.01 bar $\le p \le 1000$ bar
Mass fraction of water ξ_v	$v_{v}: \xi_{wsatt}(p,t) \le \xi_{w} \le 1 \text{ kg/kg}$

Comments:

Mass fraction c	of liquid water:	$\xi_{\rm wf} = -$	$\frac{x_{\rm w}-x_{\rm ws}}{1+x_{\rm w}}$	
with: $x_{\rm w} = \frac{R_{\rm l}}{R_{\rm w}}$	$\frac{\varphi \cdot p_{dsatt}(\rho, t)}{\rho - \varphi \cdot p_{dsatt}(\rho, t)}$	and	$x_{\rm ws} = \frac{R_{\rm I}}{R_{\rm w}}$	$\frac{p_{\rm dsatt}(p,t)}{p - p_{\rm dsatt}(p,t)}$
Saturation va	por pressure at s	aturation p	$_{dsatt} = f \cdot p_{s}$	(<i>t</i>)
with $p_{\rm s}(t)$	for $t \ge 0.01^{\circ}$ C	- vapor pre	essure of wa	ater

for $t < 0.01^{\circ}$ C - sublimation pressure of water

Result for pure liquid water	$\xi_{wf} = 1$
Result for pure steam:	$\xi_{wf} = 0$
Result for pure water ice:	$\xi_{wf} = 0$

Results for Wrong Input Values:

Xiwf_ptXiw_HuAir = - 1, succ = 0

f(p,t)	Herrmann et al. [25], [26]
$p_{\rm s}(t)$	if $t \ge 0.01^{\circ}$ C from IAPWS-IF97 [1], [2], [3], [4]
	if t < 0.01°C from IAPWS-08 [16], [17]

Saturation Mass Fraction of Water $\xi_{wsatt} = f(p, t)$

Function Name:

Xiwsatt_pt_HuAir

Fortran Program:

REAL*8 FUNCTION Xiwsatt_pt_HuAir(p, t, succ), REAL*8 p, t INTEGER*4 succ

Input Values:

p - Total pressure *p* in bar

t - Temperature t in °C

Output Values:

i values.	
Xiwsatt_pt_HuAir	- Saturation mass fraction of water $\xi_{ m wsatt}$ in kg / kg
succ	- 1 \rightarrow Calculation successful
	- 0 \rightarrow Calculation not successful

Range of Validity:

Temperature t:	$0 {}^{\circ}\mathrm{C} \le t \le t_{\mathrm{s}}(\rho, \rho_{\mathrm{d}}) {}^{\circ}\mathrm{C}$
	(t _s – Boiling Temperature of water in mixtures of gases)
Pressure p:	$0.01 \text{bar} \le p \le 1000 \text{bar}$

Comments:

Specific humidity of water for saturated humid air:

$$\xi_{\text{wsatt}} = \frac{x_{\text{ws}}}{1 + x_{\text{ws}}} \text{ with } x_{\text{ws}} = \frac{R_{\text{I}}}{R_{\text{w}}} \frac{p_{\text{dsatt}}(p, t)}{p - p_{\text{dsatt}}(p, t)}$$

Saturation vapor pressure at saturation $p_{dsatt} = f \cdot p_s(t)$

with $p_s(t)$ for $t \ge 0.01^{\circ}$ C - vapor pressure of water

for $t < 0.01^{\circ}$ C - sublimation pressure of water

Results for Wrong Input Values:

Xiwsatt_pt_HuAir = - 1, succ = 0

f(p,t)	Herrmann et al. [25], [26]
$p_{\rm S}(t)$	if $t \ge 0.01^{\circ}$ C from IAPWS-IF97 [1], [2], [3], [4]
	if t < 0.01°C from IAPWS-08 [16], [17]

ZITTAU/GOERLITZ UNIVERSITY OF APPLIED SCIENCES **Department of Technical Thermodynamics** www.thermodynamics-zittau.de

4. Property Libraries for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators

Water and Steam

Library LibIF97

- Industrial Formulation IAPWS-IF97 (Revision 2007)
- Supplementary Standards
- IAPWS-IF97-S01
- IAPWS-IF97-S03rev
- IAPWS-IF97-S04
- IAPWS-IF97-S05
- IAPWS Revised Advisory Note No. 3 on Thermodynamic Derivatives (2008)

Humid Combustion Gas Mixtures

Library LibHuGas

Model: Ideal mixture of the real fluids:

O₂ - Schmidt and Wagner CO₂ - Span and Wagner H₂O - IAPWS-95 Ar - Tegeler et al.

N₂ - Span et al.

and of the ideal gases: SO₂, CO, Ne (Scientific Formulation of Bücker et al.)

Consideration of: Dissociation from VDI 4670 and Poynting effect

Humid Air

Library LibHuAir

Model: Ideal mixture of the real fluids:

- Dry Air from Lemmon et al.
- Steam, water and ice from
- IAPWS-IF97 and IAPWS-06 Consideration of:

- Condensation and freezing of steam
- Dissociation from the VDI 4670
- Poynting effect from
- ASHRAE RP-1485

Carbon Dioxide including Dry Ice

Library LibCO2

Formulation of Span and Wagner (1994)

Seawater

Library LibSeaWa

IAPWS Formulation 2008 of Feistel and IAPWS-IF97

Ice

Library LibICE

Ice from IAPWS-06, Melting and sublimation pressures from IAPWS-08, Water from IAPWS-IF97, Steam from IAPWS-95 and -IF97

Ideal Gas Mixtures

Library LibIdGasMix

Model: Ideal mixture of the ideal gases:

Ar	NO	He	Propylene
Ne	H₂O	F_2	Propane
N ₂	SO ₂	NH ₃	Iso-Butane
O ₂	H ₂	Methane	n-Butane
CO	H₂S	Ethane	Benzene
CO ₂	ОH	Ethylene	Methanol
Air			

Consideration of: Dissociation from the VDI Guideline 4670

Library LibIDGAS

Model: Ideal gas mixture from VDI Guideline 4670

Consideration of: Dissociation from the VDI Guideline 4670

Dry Air including Liquid Air

Library LibRealAir

Formulation of Lemmon et al. (2000)

Nitrogen

Library LibN2

Formulation of Span et al. (2000)

Hydrogen

Library LibH2

Formulation of Leachman et al. (2007)

Refrigerants

Ammonia Library LibNH3

Formulation of Tillner-Roth (1995)

R134a

Library LibR134a

Formulation of Tillner-Roth and Baehr (1994)

Iso-Butane Library LibButane Iso

Formulation of Bücker et al. (2003)

n-Butane Library LibButane_n Formulation of Bücker et al. (2003)

Mixtures for Absorption Processes

Ammonia/Water Mixtures

Library LibAmWa

IAPWS Guideline 2001 of Tillner-Roth and Friend (1998) Helmholtz energy equation for the mixing term (also useable for calculating Kalina Cycle)

Water/Lithium Bromide Mixtures

Library LibWaLi

Formulation of Kim and Infante Ferreira (2004) Gibbs energy equation for the mixing term

Liquid Coolants

Liquid Secondary Refrigerants

Library LibSecRef

Liquid solutions of water with

$C_2H_6O_2$	Ethylene glycol
$C_3H_8O_2$	Propylene glycol
C₂H₅OH	Ethyl alcohol
CH ₃ OH	Methyl alcohol
$C_3H_8O_3$	Glycerol
K ₂ CO ₃	Potassium carbonate
CaCl ₂	Calcium chloride
MgCl ₂	Magnesium chloride
NaCl	Sodium chloride
C ₂ H ₃ KO ₂	Potassium acetate

Formulation of the International Institute of Refrigeration (1997)

Siloxanes as ORC Working Fluids

Octamethylcyclotetrasiloxane C₈H₂₄O₄Si₄ Library LibD4 Decamethylcyclopentasiloxane C10H30O5Si5 Library LibD5 Tetradecamethylhexasiloxane C14H42O5Si6 Library LibMD4M Hexamethyldisiloxane C₆H₁₈OSi₂ Library LibMM Formulation of Colonna et al. (2006)

Dodecamethylcyclohexasiloxane C12H36O6Si6 Library LibD6 Decamethyltetrasiloxane C10H30O3Si4 Library LibMD2M Dodecamethylpentasiloxane C12H36O4Si5 Library LibMD3M Octamethyltrisiloxane C₈H₂₄O₂Si₃ Library LibMDM Formulation of Colonna et al. (2008)

Propane

4/2

Library LibPropane

Formulation of Lemmon et al. (2007)

Methanol

Library LibCH3OH

Formulation of de Reuck and Craven (1993)

Ethanol

Library LibC2H5OH

Formulation of Schroeder et al. (2012)

Helium

Library LibHe

Formulation of Arp et al. (1998)

Hydrocarbons

Decane C10H22 Library LibC10H22 Isopentane C₅H₁₂ Library LibC5H12_ISO Neopentane C₅H₁₂ Library LibC5H12_NEO Isohexane C₅H₁₄ Library LibC5H14 Toluene C₇H₈ Library LibC7H8 Formulation of Lemmon and Span (2006)

Further Fluids

Carbon monoxide CO Library LibCO Carbonyl sulfide COS Library LibCOS Hydrogen sulfide H₂S Library LibH2S Dinitrogen monooxide N₂O Library LibN2O Sulfur dioxide SO₂ Library LibSO2 Acetone C₃H₆O Library LibC3H6O

Formulation of Lemmon and Span (2006)

For more information please contact:

Zittau/Goerlitz University of Applied Sciences **Department of Technical Thermodynamics** Professor Hans-Joachim Kretzschmar Dr. Ines Stoecker

Theodor-Koerner-Allee 16 02763 Zittau, Germany

Internet: www.thermodynamics-zittau.de E-mail: hj.kretzschmar@hs-zigr.de Phone: +49-3583-61-1846 Fax.: +49-3583-61-1846

The following thermodynamic and transport properties can be calculated^a:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature T_s
- Density ρ
- Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_p
- Isochoric heat capacity c_v
- Isentropic exponent κ Speed of sound w
- Surface tension σ

Transport Properties

- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl-number Pr

Backward Functions

- T, v, s (p,h)
- *T*, *v*, *h* (*p*,*s*)
- *p*, *T*, *v* (*h*,*s*)
- p, T (v,h)
- p, T (v,u)

Thermodynamic Derivatives

· Partial derivatives can be calculated.

^a Not all of these property functions are available in all property libraries.

ZITTAU/GOERLITZ UNIVERSITY OF APPLIED SCIENCES Department of Technical Thermodynamics www.thermodynamics-zittau.de

Property Software for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators

Add-In FluidMAT for Mathcad®

The property libraries can be used in Mathcad[®].

Add-In FluidLAB for MATLAB®

Using the Add-In FluidLAB the property functions can be called in MATLAB[®].

Shortcuts 2 How to Add 2 What Current Directory - C:\Programme C C C	's New me\FluidLAB\Li	bHuAir_Example * ×	Editor - C:\Programme\FluidLAB\LibHuAir_Example\Example\Example\M_
M Fee: Bi h ptxw. HuAir.mexw32 Bi bibfuAir.dll Bibincoremdd.dll Bibinmdd.dll Bibrmdd.dll Bicxample_hl_ptxw_HuAir.m Workspace Current Directory	Prie Type MEX-file DLL File DLL File DLL File DLL File DLL File M-file	luescription hl_ptxw_HuAir.m ♪	<pre>2 ** Lig Lig - pl.0 + * pl.1 × %% %% % 1 * hiptxw HuAir.m 2 ** 3 - p=1; * pressure in bar 4 - t=20; * temperature in *C 5 - xw=10; * absolute humidity in g/kg_air 6 ** 7 - h1=h1_ptxw HuAir(p,t,xw) 8 ** Function call Function call </pre>
Command History		* ×	of FluidLAB
			Command Window #

Add-In FluidDYM for DYMOLA® (Modelica) and SimulationX®

The property functions can be called in DYMOLA® and SimulationX®

Add-On FluidVIEW for LabVIEW®

The property functions can be calculated in LabVIEW®.

File Edit ଛ 🖬 Q 💩 🐶 // □ O 🎸 A 🔳 🛃 🎍 : ∰ 🍡 🖾 - 🗞 - ♦ ♦ 🖨 🗒 🖬 🛃 🖆 1002 💌 ackage Bro fluidDYM_LibSeaWa_Input in FluidDYM_SeaWa.TestMo Modelica Re Adde Modelica med Name BuidDYM LibSeaWa Inpu FluidDYM_SeaWa FluidDYM_SeaWa FluidDYM_LibSe -. UKEVM_LESeeMa_hput FluidDYM_SeaWaFluidDYM_LibSeaWa_Inpu TestModelle Example1 - FluidDYM_SeaWa.TestModelle.Example1 Scan range 0.001 Simulation Plot Animation Commands Window Help 📽 🖬 🍳 🚳 🥀 🛊 🚍 🔟 × 📈 Plot N_p0G_SeaWa hsl_pstsXisl_SeaWa Variables Cancel Values v_pitovic_SeaWa ippa_p0G_SeaWa ippal_p0G_SeaWa winasl_pstsSist_Se fluidDYM_LibSeaWa_Input.z Example1 1 €Parameter_x2 70 Parameter_x3 69 0.001 scanRange FunctionNumber 68 Hodeling Ye Simulation ₹z □x1 • fluidDYM_LibSeaWa_Input.z = 67.9239 - Tx2 67 □x3 slope = 0 ° time = 1

Add-In FluidEES for Engineering Equation Solver®

Function Information <u>?</u>× C EES library routines Math functions Fluid properties External routines ○ Boiling and Condensation ▼ Solid/liquid properties GEN EOS DLL OPENG ROBINSON.DLL CUBHUAIRPROP SIDLL CMONTECARLO.DLL OLIBEO2.DLL DLIBEO2.DLL DLIBE.DLL DCURVEFITID D CURVEFITID D SOMMETIAL D: DORWMEN rcial: D:\ er EES\Hu Ers Fo p=11 Solution Main t=20 Unit Settings: [kJ]/[C]/[kPa]/[kg]/[degrees] W=0 h = 45.4866 [kJ/kg] p = 101.3 [kPa] t = 20 [C] W = 0.01 [kg/kg] CAL No unit problems were detected Calculation time = .1 sec.

App International Steam Tables for iPhone, iPad, iPod touch, Android smart phones and tablets

International Steam Tables

IAPWS-IF97

Spe

Online Property Calculator at www.thermodynamics-zittau.de

7

F

F

U

E

4/4

x 1
d®, :lick I <u>here</u>
E

Property Software for Pocket Calculators

For more information please contact:

Zittau/Goerlitz University of Applied Sciences Department of Technical Thermodynamics Professor Hans-Joachim Kretzschmar Dr. Ines Stoecker Theodor-Koerner-Allee 16 02763 Zittau, Germany E-mail: hj.kretzschmar@hs-zigr.de Internet: www.thermodynamics-zittau.de Phone: +49-3583-61-1846 Fax.: +49-3583-61-1846

The following thermodynamic and transport properties^a can be calculated in Excel[®], MATLAB[®], Mathcad[®], Engineering Equation Solver[®] EES, DYMOLA[®] (Modelica), SimulationX[®], and LabVIEW[®]:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature $T_{\rm s}$
- Density ρ
- Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_p
- Isochoric heat capacity c_v
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Transport Properties

- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl-number Pr

Backward Functions

- T, v, s (p,h)
- T, v, h (p,s)
- p, T, v (h,s)
- p, T (v,h)
- p, T (v,u)

Thermodynamic Derivatives

• Partial derivatives can be calculated.

^a Not all of these property functions are available in all property libraries.

5. References

- [1] Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam IAPWS-IF97.
 IAPWS Executive Secretariat (2007), available at <u>www.iapws.org</u>
- [2] Wagner, W.; Kretzschmar, H.-J.: International Steam Tables.
 Springer-Verlag, Berlin (2008), <u>www.international-steam-tables.com</u>
- [3] Wagner, W.; Cooper, J. R.; Dittmann, A.; Kijima, J.; Kretzschmar, H.-J.; Kruse, A.; Mares, R.; Oguchi, K.; Sato, H.; Stöcker, I.; Sifner, O.; Takaishi, Y.; Tanishita, I.; Trübenbach, J.; Willkommen, Th.: The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. J. Eng. Gas Turbines Power 122 (2000), S. 150-182.
- [4] Wagner, W.; Rukes, B.:
 IAPWS-IF97: Die neue Industrie-Formulation.
 BWK 50 (1998) Nr. 3, S. 42-97.
- [5] Kretzschmar, H.-J.: Mollier *h*,s-Diagramm. Springer-Verlag, Berlin (2008).
- [6] Revised Release on the IAPS Formulation 1985 for the Thermal Conductivity of Ordinary Water Substance.
 IAPWS Executive Secretariat (2008), available at www.iapws.org
- [7] Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance.
 IAPWS Executive Secretariat (2008), available at www.iapws.org
- [8] IAPWS Release on Surface Tension of Ordinary Water Substance 1994. IAPWS Executive Secretariat (1994), available at <u>www.iapws.org</u>
- [9] Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use.
 IAPWS Executive Secretariat (1995), available at <u>www.iapws.org</u>
- [10] Wagner, W.; Pruß, A.: The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use.
 J. Phys. Chem. Ref. Data 31 (2002), S. 387-535-
- [11] Kretzschmar, H.-J.:
 Zur Aufbereitung und Darbietung thermophysikalischer Stoffdaten für die Energietechnik.
 Habilitation, TU Dresden, Fakultät Maschinenwesen (1990).
- [12] Brandt, F.: Wärmeübertragung in Dampferzeugern und Wärmetauschern. FDBR-Fachbuchreihe, Bd. 2, Vulkan Verlag Essen (1985).
- [13] VDI Richtlinie 4670 Thermodynamische Stoffwerte von feuchter Luft und Verbrennungsgasen. (2003).

- [14] Lemmon, E. W.; Jacobsen, R. T.; Penoncello, S. G.; Friend, D. G.: Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon, and Oxygen from 60 to 2000 K at Pressures to 2000 MPa. J. Phys. Chem. Ref. Data 29 (2000), S. 331-385.
- [15] Lemmon, E. W.; Jacobsen, R. T.: Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air. Int. J. Thermophys. 25 (2004), S. 21-69.
- [16] Revised Release on the Pressure along the Melting and Sublimation Curves of Ordinary Water Substance.
 IAPWS Executive Secretariat (2008), available at <u>www.iapws.org</u>
- [17] Wagner, W.; Feistel, R.; Riethmann, T.: New Equations for the Melting Pressure and Sublimation Pressure of H2O Ice Ih. To be submitted to J. Phys. Chem. Ref. Data.
- [18] Revised Release on the Equation of State 2006 for H₂O Ice Ih.
 IAPWS Executive Secretariat (2009), available at <u>www.iapws.org</u>
- [19] Feistel, R.; Wagner, W.: A New Equation of State for H2O Ice Ih. J. Phys. Chem. Ref. Data 35 (2006), S. 1021-1047.
- [20] Nelson, H. F.; Sauer, H. J.:
 Formulation of High-Temperature Properties for Moist Air.
 HVAC&R Research 8 (2002), S. 311-334.
- [21] Gatley, D. P.: Understanding Psychrometrics, 2nd ed. ASHRAE, Atlanta (2005).
- [22] Gatley, D.; Herrmann, S.; Kretzschmar, H.-J.: A Twenty-First Century Molar Mass for Dry Air. HVAC&R Research 14 (2008), S. 655-662.
- [23] Herrmann, S.; Kretzschmar, H.-J.; Teske, V.; Vogel, E.; Ulbig, P.; Span, R.; Gatley, D. P.: Determination of Thermodynamic and Transport Properties for Humid Air for Power-Cycle Calculations. Bericht PTB-CP-3, Physikalisch-Technische Bundesanstalt Braunschweig und Berlin (Hrsg.), Wirtschaftsverlag NW, Verlag für neue Wissenschaft GmbH, Bremerhaven (2009). ISBN: 978-3-86509-917-4.
- [24] Herrmann, S.; Kretzschmar, H.-J.; Teske, V.; Vogel, E.; Ulbig, P.; Span, R.; Gatley, D. P.:
 Properties of Humid Air for Calculating Power Cycles.
 J. Eng. Gas Turbines Power 132 (2010), S. 093001-1 093001-8 (published online).
- Herrmann, S.; Kretzschmar, H.-J.; Gatley, D. P.: Thermodynamic Properties of Real Moist Air, Dry Air, Steam, Water, and Ice (RP-1485).
 HVAC&R Research 15 (2009), S. 961-986.

[26] Herrmann, S.; Kretzschmar, H.-J.; Gatley, D. P.: Thermodynamic Properties of Real Moist Air, Dry Air, Steam, Water, and Ice. Final Report ASHRAE RP-1485, American Society of Heating, Refrigeration, and Air-Conditioning Engineers, Inc., Atlanta, GA (2009).

6. Satisfied Customers

Date: 10/2011

The following companies and institutions use the property libraries

- FluidEXL^{Graphics} for Excel[®]
- FluidLAB for MATLAB®
- FluidMAT for Mathcad®
- FluidEES for Engineering Equation $\operatorname{Solver}^{\textcircled{R}}\operatorname{EES}$
- FluidDYM for Dymola[®] (Modelica)
- FluidVIEW for LabVIEW[®]:

2011

Lopez, Munguia, Spain	10/2011
University of KwaZulu-Natal, Westville, South Africa	10/2011
Voith, Heidenheim	09/2011
SpgBe Montreal, Canada	09/2011
SPG TECH, Montreuil Cedex, France	09/2011
Voith, Heidenheim-Mergelstetten	09/2011
MTU Aero Engines, Munich	08/2011
MIBRAG, Zeitz	08/2011
RWE, Essen	07/2011
Fels, Elingerode	07/2011
Weihenstephan University of Applied Sciences	07/2011, 09/2011, 10/2011
Forschungszentrum Juelich	07/2011
RWTH Aachen University	07/2011, 08/2011
INNEO Solutions, Ellwangen	06/2011
Caliqua, Basel, Switzerland	06/2011
Technical University of Freiberg	06/2011
Fichtner IT Consulting, Stuttgart	05/2011, 06/2011, 08/2011
Salzgitter Flachstahl, Salzgitter	05/2011
Helbling Beratung & Bauplanung, Zurich, Switzerland	05/2011
INEOS, Cologne	04/2011
Enseleit Consulting Engineers, Siebigerode	04/2011
Witt Consulting Engineers, Stade	03/2011

Helbling, Zurich, Switzerland	03/2011
MAN Diesel, Copenhagen, Denmark	03/2011
AGO, Kulmbach	03/2011
University of Duisburg	03/2011, 06/2011
CCP, Marburg	03/2011
BASF, Ludwigshafen	02/2011
ALSTOM Power, Baden, Switzerland	02/2011
Universität der Bundeswehr, Munich	02/2011
Calorifer, Elgg, Switzerland	01/2011
STRABAG, Vienna, Austria	01/2011
TUEV Sued, Munich	01/2011
ILK Dresden	01/2011
Technical University of Dresden	01/2011, 05/2011, 06/2011, 08/2011
2010	
Umweltinstitut Neumarkt	12/2010
YIT Austria, Vienna, Austria	12/2010
MCI Innsbruck, Austria	12/2010
University of Stuttgart	12/2010
HS Cooler, Wittenburg	12/2010
Visteon, Novi Jicin, Czech Republic	12/2010
CompuWave, Brunntal	12/2010
Stadtwerke Leipzig	12/2010
MCI Innsbruck, Austria	12/2010
EVONIK Energy Services, Zwingenberg	12/2010
Caliqua, Basel, Switzerland	11/2010
Shanghai New Energy Resources Science & Technology, China	11/2010
Energieversorgung Halle	11/2010
Hochschule für Technik Stuttgart, University of Applied Sciences	11/2010
Steinmueller, Berlin	11/2010
Amberg-Weiden University of Applied Sciences	11/2010
AREVA NP, Erlangen	10/2010
MAN Diesel, Augsburg	10/2010
KRONES, Neutraubling	10/2010
Vaillant, Remscheid	10/2010

PC Ware, Leipzig	10/2010
Schubert Consulting Engineers, Weißenberg	10/2010
Fraunhofer Institut UMSICHT, Oberhausen	10/2010
Behringer Consulting Engineers, Tagmersheim	09/2010
Saacke, Bremen	09/2010
WEBASTO, Neubrandenburg	09/2010
Concordia University, Montreal, Canada	09/2010
Compañía Eléctrica de Sochagota, Bogota, Colombia	08/2010
Hannover University of Applied Sciences	08/2010
ERGION, Mannheim	07/2010
Fichtner IT Consulting, Stuttgart	07/2010
TF Design, Matieland, South Africa	07/2010
MCE, Berlin	07/2010, 12/2010
IPM, Zittau/Goerlitz University of Applied Sciences	06/2010
TUEV Sued, Dresden	06/2010
RWE IT, Essen	06/2010
Glen Dimplex, Kulmbach	05/2010, 07/2010 10/2010
Hot Rock, Karlsruhe	05/2010
Darmstadt University of Applied Sciences	05/2010
Voith, Heidenheim	04/2010
CombTec, Zittau	04/2010
University of Glasgow, Great Britain	04/2010
Universitaet der Bundeswehr, Munich	04/2010
Technical University of Hamburg-Harburg	04/2010
Vattenfall Europe, Berlin	04/2010
HUBER Consulting Engineers, Berching	04/2010
VER, Dresden	04/2010
CCP, Marburg	03/2010
Offenburg University of Applied Sciences	03/2010
Technical University of Berlin	03/2010
NIST Boulder CO, USA	03/2010
Technical University of Dresden	02/2010
Siemens Energy, Nuremberg	02/2010
Augsburg University of Applied Sciences	02/2010

ALSTOM Power, Baden, Switzerland	02/2010, 05/2010
MIT Massachusetts Institute of Technology Cambridge MA, USA	02/2010
Wieland Werke, Ulm	01/2010
Siemens Energy, Goerlitz	01/2010, 12/2010
Technical University of Freiberg	01/2010
ILK, Dresden	01/2010, 12/2010
Fischer-Uhrig Consulting Engineers, Berlin	01/2010
2009	
ALSTOM Power, Baden, Schweiz	01/2009, 03/2009, 05/2009
Nordostschweizerische Kraftwerke AG, Doettingen, Switzerland	02/2009
RWE, Neurath	02/2009
Brandenburg University of Technology, Cottbus	02/2009
Hamburg University of Applied Sciences	02/2009
Kehrein, Moers	03/2009
EPP Software, Marburg	03/2009
Bernd Münstermann, Telgte	03/2009
Suedzucker, Zeitz	03/2009
CPP, Marburg	03/2009
Gelsenkirchen University of Applied Sciences	04/2009
Regensburg University of Applied Sciences	05/2009
Gatley & Associates, Atlanta, USA	05/2009
BOSCH, Stuttgart	06/2009, 07/2009
Dr. Nickolay, Consulting Engineers, Gommersheim	06/2009
Ferrostal Power, Saarlouis	06/2009
BHR Bilfinger, Essen	06/2009
Intraserv, Wiesbaden	06/2009
Lausitz University of Applied Sciences, Senftenberg	06/2009
Nuernberg University of Applied Sciences	06/2009
Technical University of Berlin	06/2009
Fraunhofer Institut UMSICHT, Oberhausen	07/2009
Bischoff, Aurich	07/2009
Fichtner IT Consulting, Stuttgart	07/2009
Techsoft, Linz, Austria	08/2009
DLR, Stuttgart	08/2009

Wienstrom, Vienna, Austria	08/2009
RWTH Aachen University	09/2009
Vattenfall, Hamburg	10/2009
AIC, Chemnitz	10/2009
Midiplan, Bietigheim-Bissingen	11/2009
Institute of Air Handling and Refrigeration ILK, Dresden	11/2009
FZD, Rossendorf	11/2009
Techgroup, Ratingen	11/2009
Robert Sack, Heidelberg	11/2009
EC, Heidelberg	11/2009
MCI, Innsbruck, Austria	12/2009
Saacke, Bremen	12/2009
ENERKO, Aldenhoven	12/2009
2008	
Pink, Langenwang	01/2008
Fischer-Uhrig, Berlin	01/2008
University of Karlsruhe	01/2008
MAAG, Kuesnacht, Switzerland	02/2008
M&M Turbine Technology, Bielefeld	02/2008
Lentjes, Ratingen	03/2008
Siemens Power Generation, Goerlitz	04/2008
Evonik, Zwingenberg (general EBSILON program license)	04/2008
WEBASTO, Neubrandenburg	04/2008
CFC Solutions, Munich	04/2008
RWE IT, Essen	04/2008
Rerum Cognitio, Zwickau	04/2008, 05/2008
ARUP, Berlin	05/2008
Research Center, Karlsruhe	07/2008
AWECO, Neukirch	07/2008
Technical University of Dresden, Professorship of Building Services	07/2008
Technical University of Cottbus, Chair in Power Plant Engineering	07/2008, 10/2008
Ingersoll-Rand, Unicov, Czech Republic	08/2008
Technip Benelux BV, Zoetermeer, Netherlands	08/2008
Fennovoima Oy, Helsinki, Finland	08/2008

Fichtner Consulting & IT, Stuttgart	09/2008
PEU, Espenhain	09/2008
Poyry, Dresden	09/2008
WINGAS, Kassel	09/2008
TUEV Sued, Dresden	10/2008
Technical University of Dresden, Professorship of Thermic Energy Machines and Plants	10/2008, 11/2008
AWTEC, Zurich, Switzerland	11/2008
Siemens Power Generation, Erlangen	12/2008
2007	
Audi, Ingolstadt	02/2007
ANO Abfallbehandlung Nord, Bremen	02/2007
TUEV NORD SysTec, Hamburg	02/2007
VER, Dresden	02/2007
Technical University of Dresden, Chair in Jet Propulsion Systems	02/2007
Redacom, Nidau, Switzerland	02/2007
Universität der Bundeswehr, Munich	02/2007
Maxxtec, Sinsheim	03/2007
University of Rostock, Chair in Technical Thermodynamics	03/2007
AGO, Kulmbach	03/2007
University of Stuttgart, Chair in Aviation Propulsions	03/2007
Siemens Power Generation, Duisburg	03/2007
ENTHAL Haustechnik, Rees	05/2007
AWECO, Neukirch	05/2007
ALSTOM, Rugby, Great Britain	06/2007
SAAS, Possendorf	06/2007
Grenzebach BSH, Bad Hersfeld	06/2007
Reichel Engineering, Haan	06/2007
Technical University of Cottbus, Chair in Power Plant Engineering	06/2007
Voith Paper Air Systems, Bayreuth	06/2007
Egger Holzwerkstoffe, Wismar	06/2007
Tissue Europe Technologie, Mannheim	06/2007
Dometic, Siegen	07/2007
RWTH Aachen University, Institute for Electrophysics	09/2007
National Energy Technology Laboratory, Pittsburg, USA	10/2007
Energieversorgung Halle	10/2007
---	------------------
AL-KO, Jettingen	10/2007
Grenzebach BSH, Bad Hersfeld	10/2007
Wiesbaden University of Applied Sciences, Department of Engineering Sciences	10/2007
Endress+Hauser Messtechnik, Hannover	11/2007
Munich University of Applied Sciences, Department of Mechanical Engineering	11/2007
Rerum Cognitio, Zwickau	12/2007
Siemens Power Generation, Erlangen	11/2007
University of Rostock, Chair in Technical Thermodynamics	11/2007, 12/2007
2006	
STORA ENSO Sachsen, Eilenburg	01/2006
Technical University of Munich, Chair in Energy Systems	01/2006
NUTEC Engineering, Bisikon, Switzerland	01/2006, 04/2006
Conwel eco, Bochov, Czech Republic	01/2006
Offenburg University of Applied Sciences	01/2006
KOCH Transporttechnik, Wadgassen	01/2006
BEG Bremerhavener Entsorgungsgesellschaft	02/2006
Deggendorf University of Applied Sciences, Department of Mechanical Engineering and Mechatronics	02/2006
University of Stuttgart, Department of Thermal Fluid Flow Engines	02/2006
Technical University of Munich, Chair in Apparatus and Plant Engineering	02/2006
Energietechnik Leipzig (company license),	02/2006
Siemens Power Generation, Erlangen	02/2006, 03/2006
RWE Power, Essen	03/2006
WAETAS, Pobershau	04/2006
Siemens Power Generation, Goerlitz	04/2006
Technical University of Braunschweig, Department of Thermodynamics	04/2006
EnviCon & Plant Engineering, Nuremberg	04/2006
Brassel Engineering, Dresden	05/2006
University of Halle-Merseburg, Department of USET Merseburg incorporated society	05/2006
Technical University of Dresden, Professorship of Thermic Energy Machines and Plants	05/2006

Fichtner Consulting & IT Stuttgart (company licenses and distribution)	05/2006
Suedzucker, Ochsenfurt	06/2006
M&M Turbine Technology, Bielefeld	06/2006
Feistel Engineering, Volkach	07/2006
ThyssenKrupp Marine Systems, Kiel	07/2006
Caliqua, Basel, Switzerland (company license)	09/2006
Atlas-Stord, Rodovre, Denmark	09/2006
Konstanz University of Applied Sciences, Course of Studies Construction and Development	10/2006
Siemens Power Generation, Duisburg	10/2006
Hannover University of Applied Sciences, Department of Mechanical Engineering	10/2006
Siemens Power Generation, Berlin	11/2006
Zikesch Armaturentechnik, Essen	11/2006
Wismar University of Applied Sciences, Seafaring Department	11/2006
BASF, Schwarzheide	12/2006
Enertech Energie und Technik, Radebeul	12/2006
2005	
TUEV Nord, Hannover	01/2005
J.H.K Plant Engineering and Service, Bremerhaven	01/2005
Electrowatt-EKONO, Zurich, Switzerland	01/2005
FCIT, Stuttgart	01/2005
Energietechnik Leipzig (company license)	02/2005, 04/2005, 07/2005
eta Energieberatung, Pfaffenhofen	02/2005
FZR Forschungszentrum, Rossendorf/Dresden	04/2005
University of Saarbruecken	04/2005
Technical University of Dresden Professorship of Thermic Energy Machines and Plants	04/2005
Grenzebach BSH, Bad Hersfeld	04/2005
TUEV Nord, Hamburg	04/2005
Technical University of Dresden, Waste Management	05/2005
Siemens Power Generation, Goerlitz	05/2005
Duesseldorf University of Applied Sciences, Department of Mechanical Engineering and Process Engineering	05/2005

Redacom, Nidau, Switzerland	06/2005
Dumas Verfahrenstechnik, Hofheim	06/2005
Alensys Engineering, Erkner	07/2005
Stadtwerke Leipzig	07/2005
SaarEnergie, Saarbruecken	07/2005
ALSTOM ITC, Rugby, Great Britain	08/2005
Technical University of Cottbus, Chair in Power Plant Engineering	08/2005
Vattenfall Europe, Berlin (group license)	08/2005
Technical University of Berlin	10/2005
Basel University of Applied Sciences, Department of Mechanical Engineering, Switzerland	10/2005
Midiplan, Bietigheim-Bissingen	11/2005
Technical University of Freiberg, Chair in Hydrogeology	11/2005
STORA ENSO Sachsen, Eilenburg	12/2005
Energieversorgung Halle (company license)	12/2005
KEMA IEV, Dresden	12/2005

2004

Vattenfall Europe (group license)	01/2004
TUEV Nord, Hamburg	01/2004
University of Stuttgart, Institute of Thermodynamics and Heat Engineering	J 02/2004
MAN B&W Diesel A/S, Copenhagen, Denmark	02/2004
Siemens AG Power Generation, Erlangen	02/2004
Ulm University of Applied Sciences	03/2004
Visteon, Kerpen 03	3/2004, 10/2004
Technical University of Dresden, Professorship of Thermic Energy Machines and Plants	04/2004
Rerum Cognitio, Zwickau	04/2004
University of Saarbruecken	04/2004
Grenzebach BSH, Bad Hersfeld	04/2004
SOFBID Zwingenberg (general EBSILON program license)	04/2004
EnBW Energy Solutions, Stuttgart	05/2004
HEW-Kraftwerk, Tiefstack	06/2004
h s energieanlagen, Freising	07/2004
FCIT, Stuttgart	08/2004
Physikalisch Technische Bundesanstalt (PTB), Braunschweig	08/2004
Mainova Frankfurt	08/2004

	Rietschle Energieplaner, Winterthur, Switzerland	08/2004
	MAN Turbo Machines, Oberhausen	09/2004
	TUEV Sued, Dresden	10/2004
	STEAG Kraftwerk, Herne	10/2004, 12/2004
	University of Weimar	10/2004
	energeticals (e-concept), Munich	11/2004
	SorTech, Halle	11/2004
	Enertech EUT, Radebeul (company license)	11/2004
	Munich University of Applied Sciences	12/2004
	STORA ENSO Sachsen, Eilenburg	12/2004
	Technical University of Cottbus, Chair in Power Plant Engineering	12/2004
	Freudenberg Service, Weinheim	12/2004
2	003	
	Paper Factory, Utzenstorf, Switzerland	01/2003
	MAB Plant Engineering, Vienna, Austria	01/2003
	Wulff Energy Systems, Husum	01/2003
	Technip Benelux BV, Zoetermeer, Netherlands	01/2003
	ALSTOM Power, Baden, Switzerland	01/2003, 07/2003
	VER, Dresden	02/2003
	Rietschle Energieplaner, Winterthur, Switzerland	02/2003
	DLR, Leupholdhausen	04/2003
	Emden University of Applied Sciences, Department of Technology	05/2003
	Petterssson+Ahrends, Ober-Moerlen	05/2003
	SOFBID ,Zwingenberg (general EBSILON program license)	05/2003
	Ingenieurbuero Ostendorf, Gummersbach	05/2003
	TUEV Nord, Hamburg	06/2003
	Muenstermann GmbH, Telgte-Westbevern	06/2003
	University of Cali, Colombia	07/2003
	Atlas-Stord, Rodovre, Denmark	08/2003
	ENERKO, Aldenhoven	08/2003
	STEAG RKB, Leuna	08/2003
	eta Energieberatung, Pfaffenhofen	08/2003
	exergie, Dresden	09/2003
	AWTEC, Zurich, Switzerland	09/2003
	Energie, Timelkam, Austria	09/2003

Electrowatt-EKONO, Zurich, Switzerland	09/2003
LG, Annaberg-Buchholz	10/2003
FZR Forschungszentrum, Rossendorf/Dresden	10/2003
EnviCon & Plant Engineering, Nuremberg	11/2003
Visteon, Kerpen	11/2003
VEO Vulkan Energiewirtschaft Oderbruecke, Eisenhuettenstadt	11/2003
Stadtwerke Hannover	11/2003
SaarEnergie, Saarbruecken	11/2003
Fraunhofer-Gesellschaft, Munich	12/2003
Erfurt University of Applied Sciences, Department of Supply Engineering	12/2003
SorTech, Freiburg	12/2003
Mainova, Frankfurt	12/2003
Energieversorgung Halle	12/2003
2002	
Hamilton Medical AG, Rhaezuens, Switzerland	01/2002
Bochum University of Applied Sciences, Department of Thermo- and Fluid Dynamics	01/2002
SAAS, Possendorf/Dresden	02/2002
Siemens, Karlsruhe (general license for the WinIS information system)	02/2002
FZR Forschungszentrum, Rossendorf/Dresden	03/2002
CompAir, Simmern	03/2002
GKS Gemeinschaftskraftwerk, Schweinfurt	04/2002
ALSTOM Power Baden, Switzerland (group licenses)	05/2002
InfraServ, Gendorf	05/2002
SoftSolutions, Muehlhausen (company license)	05/2002
DREWAG, Dresden (company license)	05/2002
SOFBID, Zwingenberg (general EBSILON program license)	06/2002
Kleemann Engineering, Dresden	06/2002
Caliqua, Basel, Switzerland (company license)	07/2002
PCK Raffinerie, Schwedt (group license)	07/2002
Fischer-Uhrig Engineering, Berlin	08/2002
Fichtner Consulting & IT, Stuttgart (company licenses and distribution)	08/2002
Stadtwerke Duisburg	08/2002

	Stadtwarka Hannavar	00/2002
		09/2002
	Siemens Power Generation, Goerlitz	10/2002
	Energieversorgung Halle (company license)	10/2002
	Bayer, Leverkusen	11/2002
	Dillinger Huette, Dillingen	11/2002
	G.U.N.T. Geraetebau, Barsbuettel (general license and training test benches)	12/2002
	VEAG, Berlin (group license)	12/2002
20	001	
	ALSTOM Power, Baden, Switzerland	01/2001, 06/2001, 12/2001
	KW2 B. V., Amersfoot, Netherlands	01/2001, 11/2001
	Eco Design, Saitamaken, Japan	01/2001
	M&M Turbine Technology, Bielefeld	01/2001, 09/2001
	MVV Energie, Mannheim	02/2001
	Technical University of Dresden, Department of Power Machinery and Plants	02/2001
	PREUSSAG NOELL, Wuerzburg	03/2001
	Fichtner Consulting & IT Stuttgart (company licenses and distribution)	04/2001
	Muenstermann GmbH, Telgte-Westbevern	05/2001
	SaarEnergie, Saarbruecken	05/2001
	Siemens, Karlsruhe (general license for the WinIS information system)	08/2001
	Neusiedler AG, Ulmerfeld, Austria	09/2001
	h s energieanlagen, Freising	09/2001
	Electrowatt-EKONO, Zurich, Switzerland	09/2001
	IPM Zittau/Goerlitz University of Applied Sciences (general I	icense) 10/2001
	eta Energieberatung, Pfaffenhofen	11/2001
	ALSTOM Power Baden, Switzerland	12/2001
	VEAG, Berlin (group license)	12/2001
20	000	
_ `	SOFBID, Zwingenberg (general EBSILON program license)	01/2000
	AG KKK - PGW Turbo, Leipzig	01/2000
	PREUSSAG NOELL, Wuerzburg	01/2000
	M&M Turbine Technology, Bielefeld	01/2000

	IBR Engineering Reis, Nittendorf-Undorf	02/2000
	GK, Hannover	03/2000
	KRUPP-UHDE, Dortmund (company license)	03/2000
	UMAG W. UDE, Husum	03/2000
	VEAG, Berlin (group license)	03/2000
	Thinius Engineering, Erkrath	04/2000
	SaarEnergie, Saarbruecken	05/2000, 08/2000
	DVO Data Processing Service, Oberhausen	05/2000
	RWTH Aachen University	06/2000
	VAUP Process Automation, Landau	08/2000
	Knuerr-Lommatec, Lommatzsch	09/2000
	AVACON, Helmstedt	10/2000
	Compania Electrica, Bogota, Colombia	10/2000
	G.U.N.T. Geraetebau, Barsbuettel (general license for training test benches)	11/2000
	Steinhaus Informationssysteme, Datteln (general license for process data software)	12/2000
19	999	
	Bayernwerk, Munich	01/1999
	DREWAG, Dresden (company license)	02/1999
	KEMA IEV, Dresden	03/1999
	Regensburg University of Applied Sciences	04/1999
	Fichtner Consulting & IT, Stuttgart (company licenses and distribution)	07/1999
	Technical University of Cottbus, Chair in Power Plant Engineering	07/1999
	Technical University of Graz, Department of Thermal Engineering, Aus	tria 11/1999
	Ostendorf Engineering, Gummersbach	12/1999
19	98	
	Technical University of Cottbus, Chair in Power Plant Engineering	05/1998
	Fichtner Consulting & IT (CADIS information systems) Stuttgart (general KPRO program license)	05/1998
	M&M Turbine Technology Bielefeld	06/1998
	B+H Software Engineering Stuttgart	08/1998
	Alfa Engineering, Switzerland	09/1998
	VEAG Berlin (group license)	09/1998
	NUTEC Engineering, Bisikon, Switzerland	10/1998

SCA Hygiene Products, Munich	10/1998
RWE Energie, Neurath	10/1998
Wilhelmshaven University of Applied Sciences	10/1998
BASF, Ludwigshafen (group license)	11/1998
Energieversorgung, Offenbach	11/1998
1997	
Gerb. Dresden	06/1997

Siemens Power Generation, Goerlitz	07/1997