

Faculty of MECHANICAL ENGINEERING

Department of TECHNICAL THERMODYNAMICS

Property Library for Humid Gas Mixtures

FluidEXL^{Graphics} with LibHuGas for Excel®

Prof. Hans-Joachim Kretzschmar

Dr. Ines Stoecker

Ines Jaehne

Matthias Kunick

L. Kleemann

D. Seibt

Software for the Calculation of the Properties of Humid Gas Mixtures

LibHuGas FluidEXL^{Graphics}

Contents

- 0. Package Contents
 - 0.1 Zip-files for 32-bit Office®
 - 0.2 Zip-files for 64-bit Office®
- 1. Property Functions
- 2. Application of FluidEXLGraphics in Excel®
 - 2.1 Installing FluidEXLGraphics
 - 2.2 Registering FluidEXLGraphics as Add-In in Excel
 - 2.3 The FluidEXLGraphics Help System
 - 2.4 Licensing the LibHuGas Property Library
 - 2.5 Example: Calculation of h = f(p,t,type,comp(1:8))
 - 2.6 Removing FluidEXLGraphics
- 3. Program Documentation
 - 3.1 Documentation of FluidEXLGraphics including LibHuGas for Excel®
 - 3.2 Documentation of the Fortran Source Code of LibHuGas
- 4. Property Libraries for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators
- 5. References
- 6. Satisfied Customers

© Zittau/Goerlitz University of Applied Sciences, Germany

Faculty of Mechanical Engineering

Department of Technical Thermodynamics

Professor Hans-Joachim Kretzschmar

Dr. Ines Stoecker

Phone: +49-3583-61-1846 or -1881

Fax: +49-3583-61-1846

E-mail: hj.kretzschmar@hszg.de

Internet: www.thermodynamics-zittau.de

0. Package Contents

0.1 Zip files for 32-bit Office®

The following zip files are delivered for your computer running a 32-bit Office[®] version.

English zip file "CD_FluidEXL_Graphics_LibHuGas_Eng.zip" including the following files:

FluidEXL_Graphics_Eng_Setup.exe - English installation program for the Add-In

FluidEXLGraphics for use in Excel®

FluidEXL_Graphics_Eng.xla - English Add-In for FluidEXL_Graphics

LibHuGas.dll - Dynamic link library for use in Windows®

programs

LibHuGas.hlp - Help file for the LibHuGas property library

FluidEXL_Graphics_LibHuGas_Docu_Eng.pdf - User's Guide

German zip file "CD_FluidEXL_Graphics_LibHuGas.zip" including the following files:

FluidEXL_Graphics_Setup.exe - German installation program for the Add-In

FluidEXLGraphics for use in Excel®

FluidEXL_Graphics.xla - German Add-In for FluidEXLGraphics

LibHuGas.dll - Dynamic link library for use in Windows®

programs

LibHuGas.hlp - Help file for the LibHuGas property library

FluidEXL_Graphics_LibHuGas_Docu_Eng.pdf - User's Guide

0.2 Zip files for 64-bit Office®

The following zip files are delivered for your computer running a 64-bit Office[®] version.

English zip file "CD_FluidEXL_Graphics_LibHuGas_x64_Eng.zip" including the following files and folders:

Files:

FluidEXL Graphics LibHuGas Docu Eng.pdf - User's Guide

FluidEXL_Graphics_Eng.xla - FluidEXLGraphics Add-In

FluidEXL_Graphics_Eng_64_Setup.msi - Self-extracting and self-installing

program

- Dynamic link library for use in

Windows[®] programs

LibHuGas.hlp - Help file for the LibHuGas property

library

Setup.exe - Self-extracting and self-installing

program for FluidEXL Graphics

Folders:

vcredist_x64 - Folder containing the "Microsoft

Visual C++ 2010 x64 Redistributable Pack"

WindowsInstaller3_1 - Folder containing the "Microsoft

Windows Installer"

German zip file "CD_FluidEXL_Graphics_LibHuGas_x64.zip" including the following files and folders:

Files:

FluidEXL_Graphics_LibHuGas_Docu_Eng.pdf - User's Guide

FluidEXL_Graphics.xla - FluidEXLGraphics Add-In

FluidEXL_Graphics_64_Setup.msi - Self-extracting and self-installing

program

LibHuGas.dll - Dynamic link library for use in

Windows[®] programs

LibHuGas.hlp - Help file for the LibHuGas property

library

Setup.exe - Self-extracting and self-installing

program for FluidEXL Graphics

Folders:

vcredist_x64 - Folder containing the "Microsoft

Visual C++ 2010 x64 Redistributable Pack"

WindowsInstaller3_1 - Folder containing the "Microsoft

Windows Installer"

1. Property Functions

Function	Function Name	Call of Fortran Program	Property or Function	Unit
a = f(p, t)	a_ptcomp_HuGas	= a_pTcomp_HuGas(p,T,type,comp)	Thermal diffusivity	m ² /s
$c_p = f(h,s)$	cp_hscomp_HuGas	= cp_hscomp_HuGas(h,s,type,comp)	Backward function: Specific isobaric heat capacity from enthalpy and entropy	kJ/(kg·K)
$c_p = f(p,h)$	cp_phcomp_HuGas	= cp_phcomp_HuGas(p,h,type,comp)	Backward function: Specific isobaric heat capacity from pressure and enthalpy	kJ/(kg·K)
$c_p = f(p,s)$	cp_pscomp_HuGas	= cp_pscomp_HuGas(p,s,type,comp)	Backward function: Specific isobaric heat capacity from pressure and entropy	kJ/(kg·K)
$c_p = f(p,t)$	cp_ptcomp_HuGas	= cp_pTcomp_HuGas(p,T,type,comp)	Specific isobaric heat capacity	kJ/(kg·K)
$c_p = f(t,s)$	isobaric heat capac		Backward function: Specific isobaric heat capacity from temperature and entropy	kJ/(kg·K)
$c_V = f(p,t)$	cv_ptcomp_HuGas	= cv_pTcomp_HuGas(p,T,type,comp) Specific isochoric heat capacity		kJ/(kg·K)
$\eta = f(p,t)$	(p,t) Eta_ptcomp_HuGas = eta_pTcomp_HuGas(p,T,type,comp) Dynamic viscosity		Dynamic viscosity	Pa⋅s
h = f(p, s)			Backward function: Specific enthalpy from pressure and entropy	kJ/kg
h = f(p,t)	$f(p,t)$ h_ptcomp_HuGas = h_pTcomp_HuGas(p,T,type,comp) Specific Enthalpy		Specific Enthalpy	kJ/kg
h = f(t,s)	h_tscomp_HuGas	comp_HuGas = h_Tscomp_HuGas(T,s,type,comp) Backward function: Specific enthalpy from temperature and entropy		kJ/kg
$\kappa = f(p, s)$	$f = f(p, s)$ Kappa_pscomp_HuGas = kappa_pscomp_HuGas(p,s,type,comp)		Backward function: Isentropic exponent from pressure and entropy	-

Function	Function Name	Call of Fortran Program	Property or Function	Unit
$\kappa = f(p,t)$	Kappa_ptcomp_HuGas	= kappa_pTcomp_HuGas(p,T,type,comp)	Isentropic exponent	-
$\lambda = f(p,t)$	Lambda_ptcomp_HuGas	= lambda_pTcomp_HuGas(p,T,type,comp)	Thermal conductivity	W/(m·K)
М	M_comp_HuGas	= M_comp_HuGas(type,comp)	Molar mass	kg/kmol
v = f(p, t)	Ny_ptcomp_HuGas	= ny_pTcomp_HuGas(p,T,type,comp)	Kinematic viscosity	m ² /s
p = f(h, s)	p_hscomp_HuGas	= p_hscomp_HuGas(h,s,type,comp)	Backward function: Pressure from enthalpy and entropy	bar
p = f(t,s)			Backward function: Pressure from temperature and entropy	bar
$p_{dsat} = f(p,t)$	$f_{\text{lsat}} = f(p,t)$ pdsat_pt_HuGas = pdsat_pT_HuGas(p,T) Saturation pressure of the in mixture		Saturation pressure of water in mixture	bar
$\varphi = f(p,t)$	Phi_ptcomp_HuGas	= phi_pTcomp_HuGas(p,T,type,comp)	Relative humidity	%
Pr = f(p,t)	Pr_ptcomp_HuGas = Pr_pTcomp_HuGas(p,T,type,comp) Prandtl number		Prandtl number	-
$\psi_{Wl} = f(p,t)$	Psiwl_ptcomp_HuGas	= psiwl_pTcomp_HuGas(p,T,type,comp)	Mole fraction of water (liquid)	kmol/kmol
$\psi_{wsat} = f(p,t)$	r wsat $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$		Mole fraction of water of the saturated gas	kmol/kmol
R	R_comp_HuGas	= R_comp_HuGas(type,comp)	Gas constant	kJ/(kg⋅K)
Region = f(h,s) Region_hscomp_HuGas = Region_hscomp_HuGas(h,s,type,comp) Region from given er and entropy		Region from given enthalpy and entropy	-	
Region = $f(p,h)$	Region_phcomp_HuGas = Region_phcomp_HuGas(p,h,type,comp) Region from given presond and enthalpy		Region from given pressure and enthalpy	-
Region = $f(p,s)$ Region_pscomp_HuGas= Region_pscomp		= Region_pscomp_HuGas(p,s,type,comp)	Region from given pressure and entropy	-

Function	Function Name	Call of Fortran Program	Property or Function	Unit
Region = f(p,t)	Region_ptcomp_HuGas	= Region_pTcomp_HuGas(p,T,type,comp)	Region from given pressure and temperature	-
Region = f(t,s)	Region_tscomp_HuGas	= Region_Tscomp_HuGas(T,s,type,comp)	Region from given temperature and entropy	-
$\rho = f(p,t)$	Rho_ptcomp_HuGas	= rho_pTcomp_HuGas(p,T,type,comp)	Density	kg/m ³
s = f(p, h)	s_phcomp_HuGas	= s_phcomp_HuGas(p,h,type,comp)	Backward function: Specific entropy from pressure and specific enthalpy	kJ/(kg·K)
s = f(p,t)	s_ptcomp_HuGas	= s_pTcomp_HuGas(p,T,type,comp)	Entropy	kJ/(kg⋅K)
$\sigma_{\rm W}={\sf f}(t)$	Sigmaw_t_HuGas	Gas = sigmaw_T_HuGas(T) Surface tension of water		N/m
t = f(h, s)	t_hscomp_HuGas	HuGas = T_hscomp_HuGas(h,s,type,comp) Backward function: Temperature from enthalpy and entropy		°C
t = f(p,h)	t_phcomp_HuGas	= T_phcomp_HuGas(p,h,type,comp)		
t = f(p, s)	t_pscomp_HuGas	pscomp_HuGas = T_pscomp_HuGas(p,s,type,comp) Backward function: Temperature from pressure and entropy		°C
$t_{\rm w,dew} = f(p)$	twdew_pcomp_HuGas	= Twdew_pcomp_HuGas(p,type,comp) Dew point temperature of water		°C
u = f(p, t)	u_ptcomp_HuGas	= u_pTcomp_HuGas(p,T,type,comp) Specific internal energy		kJ/kg
v = f(h, s)	v_hscomp_HuGas	= v_hscomp_HuGas(h,s,type,comp) Backward function: Specific volume from enthalpy and entropy		m ³ /kg

Function	Function Name Call of Fortran Program		Property or Function	Unit
V = f(p,h)	v_phcomp_HuGas	= v_phcomp_HuGas(p,h,type,comp)	Backward function: Specific volume from pressure and enthalpy	m ³ /kg
V = f(p,s)	v_pscomp_HuGas	= v_pscomp_HuGas(p,s,type,comp) Backward function: Specific volume from pressure and entropy		m ³ /kg
V = f(p,t)	$f(p,t)$ v_ptcomp_HuGas = v_pTcomp_HuGas(p,T,type,comp) Specific volume		Specific volume	m ³ /kg
V = f(t,s)			Backward function: Specific volume from temperature and entropy	m ³ /kg
w = f(p,t)	w_ptcomp_HuGas	= w_pTcomp_HuGas(p,T,type,comp)	Isentropic speed of sound	m/s
X _w	xw_comp_HuGas	= xw_comp_HuGas(type,comp)	Humidity ratio (Absolute humidity)	g _{water} /kg _{gas}

Parameter

p - Pressure *p* of mixture in bar

t - Temperature *t* in °C type - Type of composition:

type = 0 for compostion in mole fractions type = 1 for compostion in mass fractions

comp(1:8) - Mole or mass fractions of components

Parameter for using Fortran Functions of LibHuGas

p - Pressure *p* of mixture in bar

T - Temperature *t* in °C

For input of composition in mass fractions use the function set_comp_mass_HuGas or

For input of composition in mole fractions use the function set_comp_mol_HuGas.

This composition will be stored in a Common Block and will be used for all calculations after that.

This will continue to occur unless the composition is changed by calling set_comp_mol_HuGas or set_comp_mass_HuGas again. In order to know what composition is stored, it can be called by using get_comp_mass_HuGas or get_comp_mol_HuGas.

Range of Validity

Temperature: $t = -70 \, ^{\circ}\text{C} \dots 3026.15 \, ^{\circ}\text{C}$ Pressure of mixture: $p = 0.01 \, \text{bar} \dots 1000 \, \text{bar}$

Mixture Components

Nr.	Symbol	Name of mixture component
0	Dummy	
1	Ar	Argon
2	Ne	Neon
3	N_2	Nitrogen
4	02	Oxygen
5	СО	Carbon Monoxide
6	CO ₂	Carbon Dioxide
7	H ₂ O	Water
8	SO ₂	Sulfur dioxide

Values of the Region Functions

Region	Description
0	Out of range of validity
1	Dry gas mixture
2	Unsaturated humid gas mixture
3	Liquid fog
4	Ice fog
5	Liquid-ice fog at 0.01 °C exactly
6	Pure liquid water
7	Pure water-wet steam
8	Pure steam
10	The CO2 in the gas mixture would be partly liquid. Calculation is terminated.
11	The SO2 in the gas mixture would be partly liquid. Calculation is terminated.

Reference States of LibHuGas

Fluid	<i>t</i> ₀ [°C]	p_0 [bar]	h_0 [kJ/kg]	s_0 [kJ/(kg K)]	u_0 [kJ/kg]
Argon	0	1.01325	0	0	-56.79766
Neon	0	1.01325	0	0	-112.5436
Nitrogen	0	1.01325	0	0	-81.03459
Oxygen	0	1.01325	0	0	-70.90573
Carbon monoxide	0	1.01325	0	0	-81.08139
Carbon dioxide	0	1.01325	0	0	-51.25686
Water	0.01	0.00611657	0.611872·10 ⁻³	0	0
Sulfur dioxide	0	1.01325	0	0	-35.45001

Conversion to the Reference State of Water to $t_0 = 0$ °C

 $h = h_{\text{HuGas}} - \xi_{\text{H}_2\text{O}} \cdot 2500.914579 \text{ kJ/kg}$

 $u = u_{\text{HuGas}} - \xi_{\text{H}_2\text{O}} \cdot 2500.914579 \text{ kJ/kg}$

 $s = s_{\text{HuGas}} - \xi_{\text{H}_2\text{O}} \cdot 9.155493408 \text{ (kJ/kgK)}$

Conversion to the Reference States of the Publications

 $z_{Publication} = z_{LibHuGas} + \Delta z$ where z = h, s, u

Fluid	<i>t</i> ₀ [°C]	ρ ₀ [bar]	∆ <i>h</i> [kJ/kg]	∆s [kJ/(kg K)]	∆ <i>u</i> [kJ/kg]	Reference
Argon	25	1.01325	-13.23564	-4.6203961·10 ⁻²	-13.23564	[27]
Neon	0	1.01325	0	0	0	-
Nitrogen	25	1.01325	283.2331	6.744095	283.2331	[28]
Oxygen	25	1	-23.20175	-8.448914·10 ⁻²	-23.20175	[29]
Carbon monoxide	0	1.01325	0	0	0	-
Carbon dioxide	25	1.01325	-21.90979	-7.564382·10 ⁻²	-21.90979	[30]
Water	0.01	0.00611657	0	0	0	[31]
Sulfur dioxide	0	1.01325	0	0	0	-

2. Application of FluidEXLGraphics in Excel®

The FluidEXL^{Graphics} Add-In has been developed to calculate thermodynamic properties in Excel[®] more conveniently. Within Excel[®], it enables the direct call of functions relating to humid gas from the LibHuGas property library. Furthermore, the program enables representation of the calculated values in various thermodynamic diagrams.

2.1 Installing FluidEXL^{Graphics}

If FluidEXL^{Graphics} has not yet been installed or if there is a version installed which has been delivered before June 2010, please complete the initial installation procedure described below.

If FluidEXL^{Graphics} has already been installed in a version which has been delivered after June 2010, you simply need to copy the files which belong to the LibHuGas library. In this case, follow the subsection "Adding the LibHuGas Library" on page 2/11.

Installing FluidEXL Graphics for 32-bit Office®

In this section, the installation of FluidEXL^{Graphics} for a 32-bit Office[®] version is described. Before you begin, it is best to uninstall any trial version or full version of FluidEXL^{Graphics} delivered before June 2010.

After you have downloaded and extracted the zip-file

```
"CD_FluidEXL_Graphics_LibHuGas_Eng.zip" (for English version of Windows)
"CD_FluidEXL_Graphics_LibHuGas.zip" (for German version of Windows)
```

you will see the folder

```
CD_FluidEXL_Graphics_LibHuGas_Eng (for English version of Windows)
CD_FluidEXL_Graphics_LibHuGas (for German version of Windows)
```

in your Windows Explorer, Norton Commander etc.

Now, open this folder by double-clicking on it.

Within this folder you will see the following files:

```
FluidEXL_Graphics_LibHuGas_Docu_Eng.pdf
FluidEXL_Graphics_Eng_Setup.exe (for English version of Windows)
FluidEXL_Graphics_Setup.exe (for German version of Windows)
FluidEXL_Graphics_Eng.xla (for English version of Windows)
FluidEXL_Graphics.xla (for German version of Windows)
LibHuGas.dll
LibHuGas.hlp.
```

In order to run the installation of FluidEXL *Graphics* double-click the file

```
FluidEXL_Graphics_Eng_Setup.exe (for English version of Windows)
FluidEXL_Graphics_Setup.exe (for German version of Windows).
```

Installation may start with a window noting that all Windows programs should be closed. When this is the case, the installation can be continued. Click the "Next >" button.

In the following dialog box, "Choose Destination Location" the standard path offered automatically for the installation of FluidEXL*Graphics* is

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows) (for German version of Windows).

By clicking the "Browse..." button, you can change the installation directory before installation (see Figure 2.1).

Figure 2.1: Choose Destination Location

Finally, click on "Next >" to continue installation; click "Next >" again in the "Start Installation" window which follows in order to start the installation of FluidEXL *Graphics*.

After FluidEXLGraphics has been installed, you will see the sentence

"FluidEXL Graphics English has been successfully installed."

"FluidEXL Graphics wurde erfolgreich installiert."

Confirm this by clicking the "Finish" button.

The installation of FluidEXL^{Graphics} has been completed.

During the installation process the following files

Advapi32.dll LC.dll
DFORMD.dll Msvcp60.dll
Dforrt.dll Msvcrt.dll

UNWISE.EXE INSTALL EXL.LOG

UNWISE.INI

FluidEXL_Graphics_Eng.xla (for English version of Windows)
FluidEXL_Graphics.xla (for German version of Windows)

have been copied into the chosen destination folder, in the standard case

In addition, the two subdirectories \Formulation97 and \FLuft have been compiled in the destination folder.

In the next step, the following files from the extracted folder

CD_FluidEXL_Graphics_LibHuGas_Eng (for English version of Windows)
CD_FluidEXL_Graphics_LibHuGas (for German version of Windows)

must be copied into the chosen destination folder (the standard being

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL_Graphics (for German version of Windows)

using an appropriate program such as Explorer or Norton Commander:

FluidEXL_Graphics_Eng.xla (for English version of Windows)
FluidEXL_Graphics.xla (for German version of Windows)

LibHuGas.dll LibHuGas.hlp.

Installing FluidEXL Graphics for 64-bit Office®

In this section, the installation of FluidEXL^{Graphics} for a 64-bit Office[®] version is described. Before you begin, it is best to uninstall any trial version or full version of FluidEXL^{Graphics} delivered before June 2010.

After you have downloaded and extracted the zip-file

```
"CD_FluidEXL_Graphics_LibHuGas_x64_Eng.zip" (for English version of Windows)

"CD_FluidEXL_Graphics_LibHuGas_x64.zip" (for German version of Windows)

you will see the folder
```

```
CD_FluidEXL_Graphics_LibHuGas_Eng (for English version of Windows)
CD_FluidEXL_Graphics_LibHuGas (for German version of Windows)
```

in your Windows Explorer, Norton Commander etc.

Now, open this folder by double-clicking on it.

Within this folder you will see the following files

```
FluidEXL_Graphics_LibHuGas_Docu_Eng.pdf
```

FluidEXL_Graphics_Eng.xla (for English version of Windows)
FluidEXL_Graphics.xla (for German version of Windows)

FluidEXL_Graphics_Eng_Setup_64.msi (for English version of Windows)
FluidEXL_Graphics_Setup_64.msi (for German version of Windows)

LibHuGas.dll LibHuGas.hlp Setup.exe

and the folders

vcredist_x64

WindowsInstaller3_1.

In order to run the installation of FluidEXL*Graphics* double-click the file Setup.exe.

If the "Microsoft Visual C++ 2010 x64 Redistributable Pack" is not running on your computer yet, installation will start with a window noting that the "Visual C++ 2010 runtime library (x64)" will be installed on your machine (see Figure 2.2).



Figure 2.2: Installing the "Visual C++ 2010 runtime library (x64)"

Click on "Install" to continue.

In the following window you are required to accept the Microsoft[®] license terms to install the "Microsoft Visual C++ 2010 x64 Redistributable Pack" by ticking the box next to "I have read and accept the license terms" (see Figure 2.3).

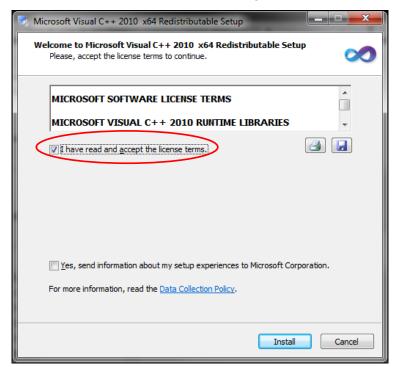


Figure 2.3: Accepting the license terms

Now click on "Install" to continue installation.

After the "Microsoft Visual C++ 2010 x64 Redistributable Pack" has been installed, you will see the sentence "Microsoft Visual C++ 2010 x64 Redistributable has been installed." Confirm this by clicking "Finish."

Now the installation of FluidEXL*Graphics* starts with a window noting that the installer will guide you through the installation. Click the "Next >" button to continue.

In the following dialog box, "Select Installation Folder," the default path offered automatically for the installation of FluidEXL^{Graphics} is

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL_Graphics (for German version of Windows).



Figure 2.4: Choosing the Installation Folder of FluidEXL Graphics

Finally, click on "Next >" to continue installation; click "Next >" again in the "Confirm Installation" window which follows in order to start the installation of FluidEXL *Graphics*.

After FluidEXLGraphics has been installed, you will see the sentence

"FluidEXL Graphics English has been successfully installed."

"FluidEXL Graphics wurde erfolgreich installiert."

Confirm this by clicking the "Close" button.

During the installation process the following files

capt_ico_big.ico libmmd.dll libifcoremd.dll LC.dll

libiomp5md.dll

will have been copied into the destination folder chosen, the standard being

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL_Graphics (for German version of Windows).

In addition, the two subdirectories \FORMULATION97 and \FLuft were created in the destination folder.

In the next step, the following files

FluidEXL_Graphics_Eng.xla (for English version of Windows)
FluidEXL_Graphics.xla (for German version of Windows)

LibHuGas.dll LibHuGas.hlp,

which can be found in your CD folder must be copied into the chosen destination folder (the standard being

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL_Graphics (for German version of Windows))

using an appropriate program such as Explorer or Norton Commander.

2.2 Registering FluidEXL^{Graphics} as Add-In in Excel[®]

Registering FluidEXL^{Graphics} as Add-In in Excel[®], versions 2003 or earlier

After the installation of FluidEXL*Graphics*, the program must be registered as an Add-In in Excel[®]. In order to do so, start Excel and carry out the following steps:

- Click "Tools" in the upper Menu bar in Excel
- Here, click the "Add-Ins..." menu item

After a short delay, the dialog box "Add-Ins" will appear

- Click "Browse..."
- In the following dialog box, click your chosen destination folder (the standard being C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows) C:\Programme\FluidEXL_Graphics (for German version of Windows))
- Here click the file

```
"FluidEXL_Graphics_Eng.xla" (for English version of Windows) or 
"FluidEXL_Graphics.xla" (for German version of Windows)
```

and afterwards click "OK".

Now, the entry

```
"FluidEXL Graphics Eng" (for English version of Windows)
"FluidEXL Graphics" (for German version of Windows)
```

occurs in the Add-Ins list.

Note:

As long as the check box next to the file name

```
"FluidEXL Graphics Eng" (for English version of Windows) or 
"FluidEXL Graphics" (for German version of Windows),
```

is ticked, this Add-In will be loaded automatically every time you start Excel until you untick the box by clicking on it again.

- In order to register FluidEXL Graphics as an Add-In click "OK" in the "Add-Ins" dialog box.

Now, the new FluidEXL^{Graphics} menu bar will appear in the upper menu area of your Excel screen, marked with a red circle in the next figure.

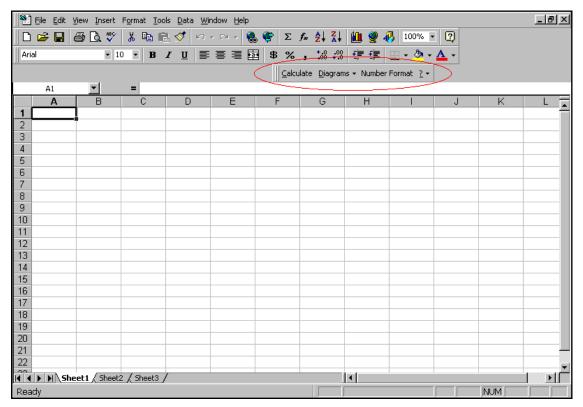


Figure 2.5: Menu bar of FluidEXLGraphics

From within Excel you can now select the "Humid Gas LibHuGas" DLL library property functions via the FluidEXL*Graphics* menu bar (the example calculation can be found in chapter 2.5 on page 2/19).

Registering FluidEXL^{Graphics} as Add-In in Excel[®] 2007 (or later versions)

After installation in Windows[®], FluidEXL^{Graphics} must be registered in Excel[®] as from version 2007 as an Add-In. For this, start Excel and carry out the following steps:

- Click the Windows Office button in the upper left corner of Excel
- Click on the "Excel Options" button in the menu which pops up (see figure below)

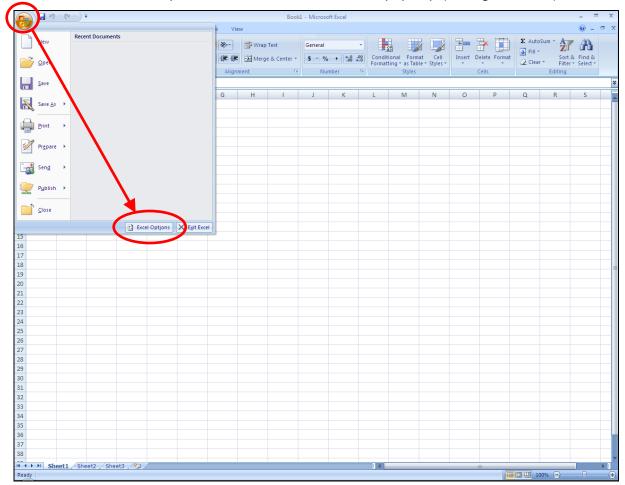


Figure 2.6: Registering FluidEXL Graphics as Add-In in Excel® 2007

Click on "Add-Ins" in the next menu

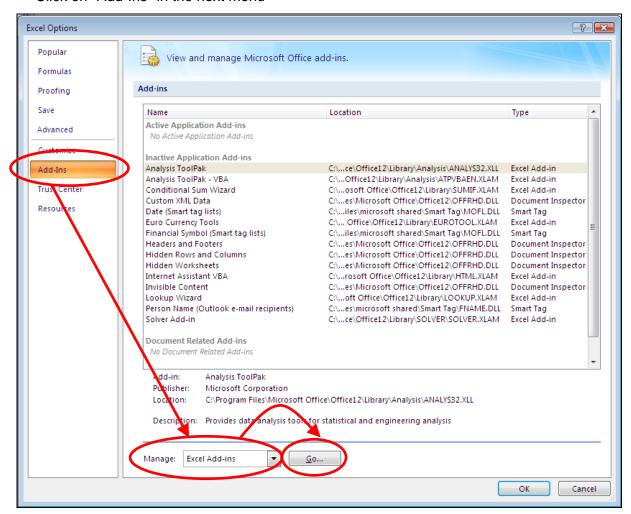


Figure 2.7: Dialog window "Excel Options"

- Should it not be shown in the list automatically, choose and click on "Excel Add-ins" (found next to "Manage:" in the lower area of the menu)
- Then click the "Go..." button
- Click "Browse" in the following window and locate the destination folder, the standard being

```
C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows) C:\Programme\FluidEXL_Graphics (for German version of Windows);
```

within that folder click on the file named

```
"FluidEXL_Graphics_Eng.xla" (for English version of Windows)
"FluidEXL_Graphics.xla" (for German version of Windows)
```

and then click the "OK" button.

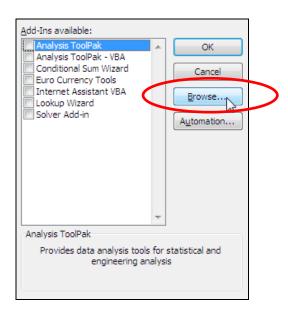


Figure 2.8: Dialog window "Add-Ins available"

Now, "FluidEXL Graphics Eng" is shown in the Add-Ins list.
 (If a check-mark is situated in the box next to the name "FluidEXL Graphics", this Add-In will automatically be loaded whenever Excel starts. This will continue to occur unless the check-mark is removed from the box by clicking on it.)

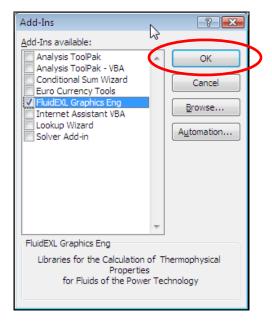


Figure 2.9: Dialog window "Add-Ins"

- In order to register the Add-In click the "OK" button in the "Add-Ins" window.

In order to use FluidEXL*Graphics* in the following example, click on the menu item "Add-Ins" which is shown in the next image.

Figure 2.10: Menu item "Add-Ins"

In the upper menu region of Excel, the FluidEXL^{Graphics} menu bar will appear as marked with the red circle in the next image.

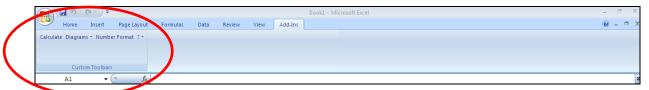


Figure 2.11: FluidEXL Graphics menu bar

Installation of FluidEXL^{Graphics} in Excel (versions 2007 and later) is now finished. FluidEXL^{Graphics} can be used analogous to the description for using with earlier Excel versions.

Adding the LibHuGas library (FluidEXL^{Graphics} is already installed)

If FluidEXL*Graphics* has already been installed in the June 2010 version, you only have to copy the following files provided in the extracted folder

```
CD_FluidEXL_Graphics_LibHuGas_Eng (for English version of Windows®)
CD_FluidEXL_Graphics_LibHuGas (for German version of Windows®)
```

into the folder you have chosen for the installation of FluidEXL Graphics (the standard being

```
C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows) or C:\Programme\FluidEXL_Graphics (for German version of Windows)),
```

using an appropriate program such as Explorer, Windows or Norton Commander:

```
FluidEXL_Graphics_Eng.xla (for English version of Windows)
FluidEXL_Graphics.xla (for German version of Windows)
LibHuGas.dll
```

LibHuGas.hlp.

From within Excel you can now select the "Humid Gas LibHuGas" DLL library property functions via the FluidEXL*Graphics* menu bar (the example calculation can be found in chapter 2.5 on page 2/19).

2.3 The FluidEXL Graphics Help System

As mentioned earlier, FluidEXL^{Graphics} also provides detailed online help functions. If you are running Windows Vista or Windows 7, please note the paragraph "Using the FluidEXL^{Graphics} Online-Help in Windows Vista or Windows 7." For general information in Excel[®]

- Click on "?" and then "Help" in the FluidEXL^{Graphics} menu bar. Information on individual property functions may be accessed via the following steps:
- Click "Calculate" in the FluidEXL Graphics menu bar.
- Click on the "Humid Gas LibHuGas" library under "Or select a <u>category</u>:" in the "Insert Function" window which will appear.
- Click the "Help on this function" button in the lower left-hand edge of the "Insert Function" window.
- If the "Office Assistant" is active, first double-click "Help on this feature" and in the next menu click "Help on selected function".

If the LibHuGas.hlp function help cannot be found, confirm the question whether you want to

look for it yourself with "Yes". Select the LibHuGas.hlp file in the installation folder of FluidEXL*Graphics* in the window which is opened, in the standard case

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL_Graphics (for German version of Windows)

and click "Yes" in order to complete the search.

Using the FluidEXL Graphics Online Help in Windows Vista or Windows 7

If you are running Windows Vista or Windows 7 on your computer, you might not be able to open Help files. To view these files you have to install the Microsoft[®] Windows Help program which is provided by Microsoft[®]. Please carry out the following steps in order to download and install the Windows Help program.

Open Microsoft Internet Explorer® and go to the following address:

http://support.microsoft.com/kb/917607/

You will see the following web page:

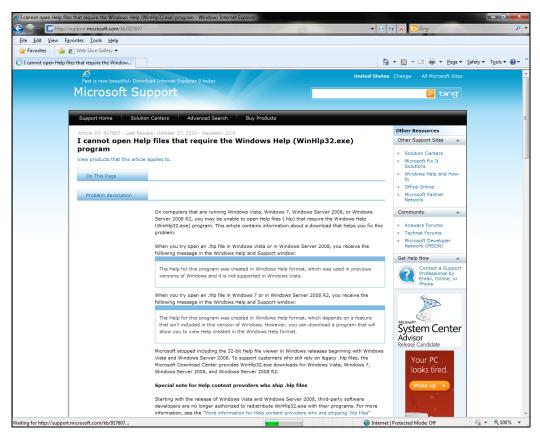


Figure 2.12: Microsoft® Support web page

Scroll down until you see the headline "Resolution." Here you can see the bold hint:

"Download the appropriate version of Windows Help program (WinHlp32.exe), depending on the operating system that you are using:"

The following description relates to Windows[®] 7. The procedure is analogous for Windows[®] Vista.

Click on the link "Windows Help program (WinHlp32.exe) for Windows 7" (see Figure 2.13).

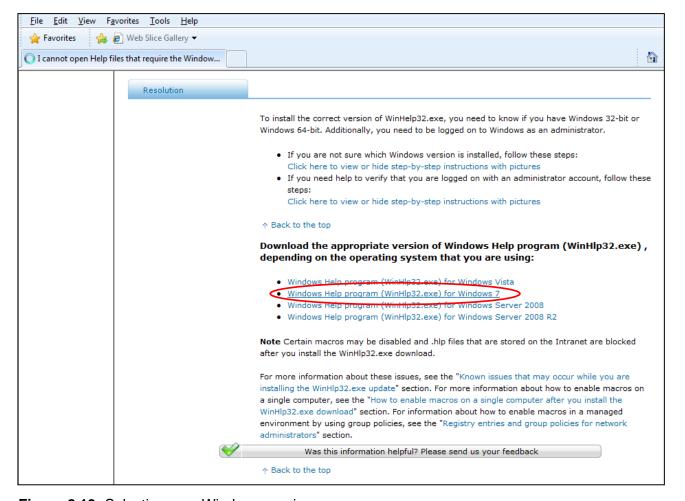


Figure 2.13: Selecting your Windows version

You will be forwarded to the Microsoft Download Center where you can download the Microsoft Windows Help program.

First, a validation of your Windows License is required.

To do this click on the "Continue" button (see Figure 2.14).

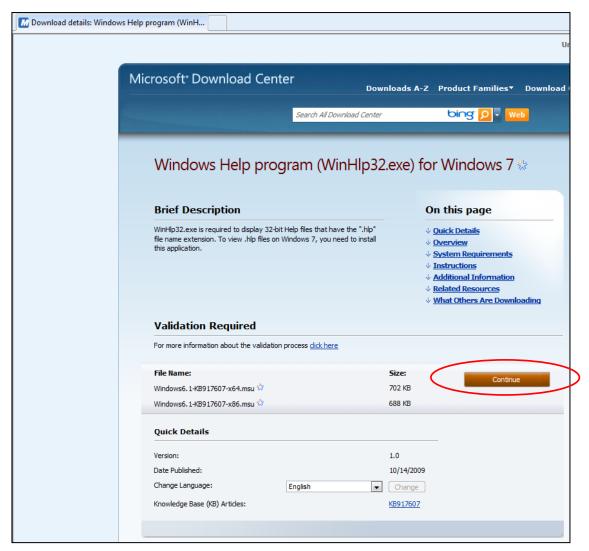


Figure 2.14: Microsoft® Download Center

You will be forwarded to a web page with instructions on how to install the Genuine Windows Validation Component.

At the top of your Windows Internet Explorer you will see a yellow information bar. Right-click this bar and select "Install ActiveX Control" in the context menu (see Figure 2.15).

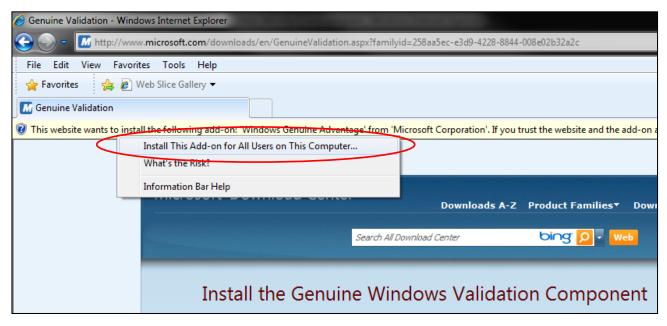


Figure 2.15: Installing the Genuine Windows Validation Component

A dialog window appears in which you will be asked if you want to install the software. Click the "Install" button to continue (see Figure 2.16).

Figure 2.16: Internet Explorer – Security Warning

After the validation has been carried out you will be able to download the appropriate version of Windows Help program (see Figure 2.17).

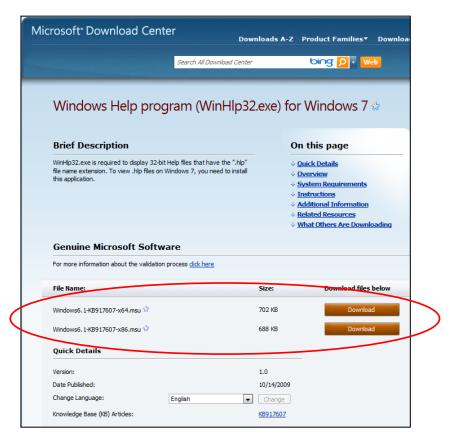


Figure 2.17: Downloading the Windows Help program

To download and install the correct file you need to know which Windows version (32-bit or 64-bit) you are running on your computer.

If you are running a 64-bit operating system, please download the file Windows6.1-KB917607-x64.msu.

If you are running a 32-bit operating system, please download the file

Windows6.1-KB917607-x86.msu.

In order to run the installation of the Windows Help program double-click the file you have just downloaded on your computer:

Windows6.1-KB917607-x64.msu (for 64-bit operating system) Windows6.1-KB917607-x86.msu. (for 32-bit operating system).

Installation starts with a window searching for updates on your computer. After the program has finished searching you may see the following window.

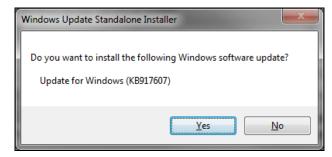


Figure 2.18: Windows Update Standalone Installer

In this case, the installation can be continued by clicking the "Yes" button. (If you have already installed this update, you will see the message "Update for Windows (KB917607) is already installed on this computer.")

In the next window you have to accept the Microsoft license terms before installing the update by clicking on "I Accept" (see Figure 2.19)

Figure 2.19: Windows License Terms

Installation starts once you have clicked the "I Accept" button (see Figure 2.20).

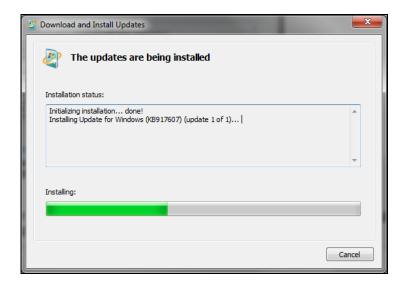


Figure 2.20: Installation process

After the Windows Help program has been installed, the notification "Installation complete" will appear. Confirm this by clicking the "Close" button.

The installation of the Windows Help program has been completed and you will now be able to open the Help files.

2.4 Licensing the LibHuGas Property Library

The licensing procedure has to be carried out when Excel[®] starts up and a FluidEXL^{Graphics} prompt message appears. In this case, you will see the "License Information" window (see figure below).



Figure 2.21: "License Information" window

Here you will have to type in the license key which you have obtained from the Zittau/Goerlitz University of Applied Sciences. You can find contact information on the "Content" page of this User's Guide or by clicking the yellow question mark in the "License Information" window. Then the following window will appear:

Figure 2.22: "Help" window

If you do not enter a valid license it is still possible to start Excel by clicking "Cancel" twice. In this case, the LibHuGas property library will display the result "-11111111" for every calculation.

The "License Information" window will appear every time you start Excel unless you uninstall FluidEXL*Graphics* according to the description in section 2.6 of this User's Guide.

Should you not wish to license the LibHuGas property library, you have to delete the files

LibHuGas.dll LibHuGas.hlp

in the installation folder of FluidEXLGraphics (the standard being

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows) or C:\Programme\FluidEXL_Graphics (for English version of Windows)),

using an appropriate program such as Explorer® or Norton Commander.

2.5 Example: Calculation of h = f(p,t,t)

Now we will calculate, step by step, the specific enthalpy h as function of pressure, temperature, type (composition as mole or mass fractions) and composition vector using FluidEXLGraphics.

The description is based on Excel[®] 2000. But the instructions are similar in Excel 97, XP, and 2007. Carry out the following steps:

- Start Excel®
- Prepare a worksheet as shown in Figure 2.23

	Α	В	С	D	E	
1	Input:					
2	Pressure		р=		bar	
3	Temperature		t=		°C	
4	Туре		type=			
5	composition	Ar	Psi=		kmol/kmol	
6		Ne	Psi=		kmol/kmol	
7		N2	Psi=		kmol/kmol	
8		02	Psi=		kmol/kmol	
9		CO	Psi=		kmol/kmol	
10		CO2	Psi=		kmol/kmol	
11		H2O	Psi=		kmol/kmol	
12		S02	Psi=		kmol/kmol	
13						
14	Output:					
15	Specific Enth	alpy	h(p,t,comp)=		kJ/kg	
16						

Figure 2.23: Example worksheet for the calculation of specific enthalpy

- Enter the value for pressure *p* in bar into a cell (Range of validity of LibHuGas: p = 0.01 bar ... 1000 bar)
 - ⇒ e.g.: Enter the value 10 into cell D2
- Enter the value for temperature *t* in °C in a cell (Range of validity of LibHuGas: t = 70 °C ... 3026.15 °C)
 - ⇒ e.g.: Enter the value 500 into cell D3
- Enter the value for type into a cell
 (Definition of type: 0 composition as mole fractions)

1 – composition as mass fractions)

⇒ e.g.: Enter the value 0 into cell D4

- Enter the composition vector into 8 successive cells, either within a column or within a row

```
\psi_1 for Argon
                              Ar
                                       ⇒ e.g.: Enter the value 0.0088 in Cell D5
\psi_2 for Neon
                              Ne
                                       \Rightarrow e.g.: Enter the value 0
                                                                         in Cell D6
\psi_3 for Nitrogen
                              N2
                                       ⇒ e.g.: Enter the value 0.7480 in Cell D7
                              Ο2
\psi_4 for Oxygen
                                       ⇒ e.g.: Enter the value 0.1352 in Cell D8
\psi_5 for Carbon monoxide CO
                                       \Rightarrow e.g.: Enter the value 0
                                                                         in Cell D9
\psi_6 for Carbon dioxide
                              CO2 \Rightarrow e.g.: Enter the value 0.0330 in Cell D10
\psi_7 for Water
                              H2O
                                      ⇒ e.g.: Enter the value 0.0750 in Cell D11
\psi_8 for Sulfur dioxide
                              SO2
                                      \Rightarrow e.g.: Enter the value 0
                                                                         in Cell D12
```

The Excel sheet should now look as shown in Figure 2.24.

	Α	В	С	D	Е
1	Input:				
2	Pressure		р=	10	bar
3	Temperature		t=	500	°C
4	Туре		type=	0	
5	composition	Ar	Psi=	0.0088	kmol/kmol
6		Ne	Psi=	0	kmol/kmol
7		N2	Psi=	0.7480	kmol/kmol
8		02	Psi=	0.1352	kmol/kmol
9		CO	Psi=	0	kmol/kmol
10		CO2	Psi=	0.0330	kmol/kmol
11		H20	Psi=	0.0750	kmol/kmol
12		S02	Psi=	0	kmol/kmol
13					
14	Output:				
15	Specific Enth	alpy	h(p,t,comp)=		l kJ/kg
16					

Figure 2.24: Example sheet after input of the given parameters

- Click the cell in which the calculated enthalpy *h* in kJ/kg is to be displayed ⇒ e.g.: Click the cell D15
- Click "Calculate" in the menu bar of FluidEXL*Graphics*Now the "Insert Function" window appears.
- Search and click the "Humid Gas LibHuGas" library under "Or select a category:" (see Figure 2.25)
- Search and click the "h_ptcomp_HuGas" function under "Select a function:"

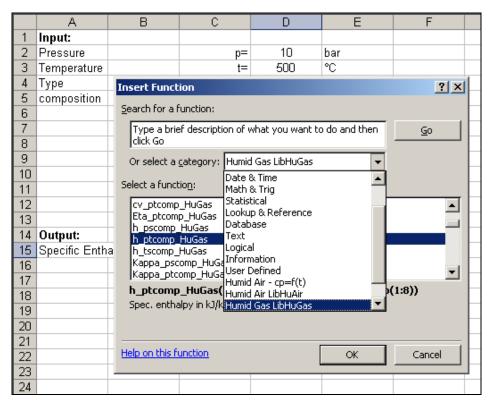


Figure 2.25: Choice of library and function name

Click the "OK" button
 The "Function Arguments" window will now appear (Figure 2.26).

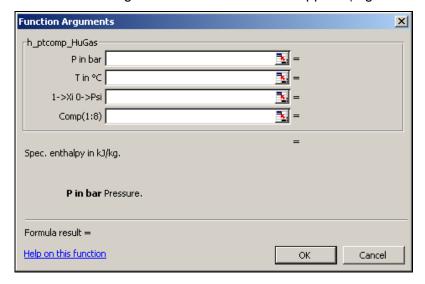


Figure 2.26: Input menu for the function h_ptcomp_HuGas

- The cursor is situated on the line next to "P in bar". You can now enter the value for *p* either by clicking the cell with the value for *p*, by entering the name of the cell with the value for *p*, or by entering the value for *p* directly.
 - ⇒ e.g.: Click on cell D2
- Situate the cursor on the line next to "T in °C". You can now enter the value for *t* either by clicking the cell with the value for *t*, by entering the name of the cell with the value for *t*, or by entering the value for *t* directly.
 - ⇒ e.g.: Type D3 into the window next to "t in °C"

- Situate the cursor on the line next to "1→Xsi 0→Psi". You can now enter the value for type either by clicking the cell with the value for type, by entering the name of the cell with the value for type, or by entering the value for type directly.

type = 0 for input of mole fractions

type = 1 for input of mass fractions

- ⇒ e.g.: Click on cell D4
- Situate the cursor on the line next to "comp(1:8)". Now the composition as mole or mass fractions must be entered.
- Click on the cell including the mole or mass fraction of the first gas Ar
 - ⇒ e.g.: Click the cell D5
- The mouse arrow changes into a cross.

By pressing the left mouse button, mark the other cells including mole or mass fractions for Ne, N_2 , O_2 , CO, CO_2 , H_2O and SO_2 and let the mouse button go after that.

⇒ e.g.:Mark the cells D5 to D12 by pressing the left mouse button and let the mouse button go

The marked range "D5:D12" appears in the window next to "comp(1:8)".

Alternatively, the range can be set directly by entering the numbers of the first and last cells separated by a colon in the window next to "comp(1:8)", for example enter "D5:D12".

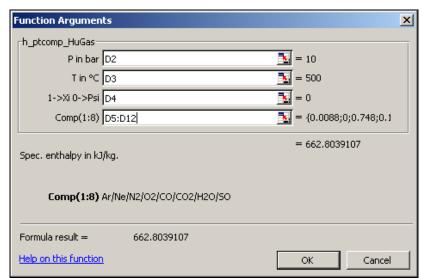


Figure 2.27: Input menu showing the result

- Click "OK"

The result for h in kJ/kg appears in the cell selected above.

⇒ The result in our sample calculation here is: h = 662.8039107 kJ/kg.

The calculation of h = f(p,t,type,comp(1:8)) has thus been completed.

You can now arbitrarily change the values for p, t, type, and comp(1:8) in the appropriate cells. The specific enthalpy is recalculated and updated every time you change the data. This shows that the Excel data flow and the DLL calculations are working together successfully.

Number Formats

When using FluidEXL^{Graphics} you have the option of choosing special number formats in advance.

- Click the cell or select and click on the cells you wish to format
- Click "Number Format" in the FluidEXL Graphics menu bar
- Select the desired number format in the dialog box which appears:

"STD - Standard" - Insignificant zeros behind the decimal point are not shown

"FIX - Fix Number of Digits" - All set decimal places are shown, including insignificant

zeros.

"SCI - Scientific Format" - Numbers are always shown in the exponential form with

the set number of decimal places

- Set the number of decimal places by entering the number into the appropriate window

- Confirm this by clicking the "OK" button

As an example, the table below shows the three formats for the number 1.230 adjusted for three decimal places:

STD	1.23
FIX	1.230
SCI	1.230E+00

This formatting can also be applied to cells which have already been calculated.

2.6 Removing FluidEXL Graphics

Should you wish to remove only the library LibHuGas the files

LibHuGas.dll LibHuGas.hlp

in the directory selected for the installation of FluidEXL Graphics , in the standard case C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows $^{\mathbb{R}}$) C:\Programme\FluidEXL_Graphics (for German version of Windows)

by using an appropriate program such as Explorer® or Norton Commander.

Unregistering FluidEXL^{Graphics} as Add-In in Excel[®], versions 2003 or earlier

To remove FluidEXL Graphics completely, proceed as follows: First, the registration of

FluidEXL_Graphics_Eng.xla (for English version of Windows®) or FluidEXL Graphics.xla (for German version of Windows)

has to be canceled in Excel.

In order to do that, click "Tools" in the upper menu bar of Excel and here "Add-Ins...". Untick the box on the left-hand side of

"FluidEXL Graphics Eng" (for English version of Windows) or "FluidEXL Graphics" (for German version of Windows)

in the window that appears and click the "OK" button. The additional menu bar of FluidEXL*Graphics* disappears from the upper part of the Excel window. Afterwards, we recommend closing Excel.

Click "View" in the upper menu bar of Excel, then "Toolbars" and then "Customize..." in the list box which appears.

"FluidEXL Graphics Eng" (for English version of Windows) or "FluidEXL Graphics" (for German version of Windows)

is situated at the bottom of the "Toolbars" entries, which must be selected by clicking on it. Delete the entry by clicking "Delete". You will be asked whether you really want to delete the toolbar – click "OK". Afterwards, we recommend closing Excel.

Within the next step delete the files

LibHuGas.dll LibHuGas.hlp

in the directory selected for the installation of $FluidEXL^{Graphics}$ (in the standard case

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL_Graphics (for German version of Windows)),

using an appropriate program such as $\mathsf{Explorer}^{\texttt{®}}$ or Norton Commander.

In order to remove FluidEXL*Graphics* from Windows and the hard disk drive, click "Start" in the Windows task bar, select "Settings" and click "Control Panel". Now double-click on "Add or Remove Programs". In the list box of the "Add/Remove Programs" window that appears select

"FluidEXL Graphics Eng" (for English version of Windows) or "FluidEXL Graphics" (for German version of Windows) by clicking on it and click the "Add/Remove..." button. In the following dialog box click "Automatic" and thereafter "Next >". Click "Finish" in the "Perform Uninstall" window. Answer the question whether all shared components shall be removed with "Yes to All". Finally, close the "Add/Remove Programs" and "Control Panel" windows.

Now FluidEXLGraphics has been removed.

Unregistering FluidEXL Graphics as Add-In in Excel® 2007 (or later versions)

In order to unregister the FluidEXL^{Graphics} Add-In in Excel[®] 2007 start Excel and carry out the following commands:

- Click the Windows Office® button in the upper left corner of Excel
- Click on the "Excel Options" button in the menu which appears

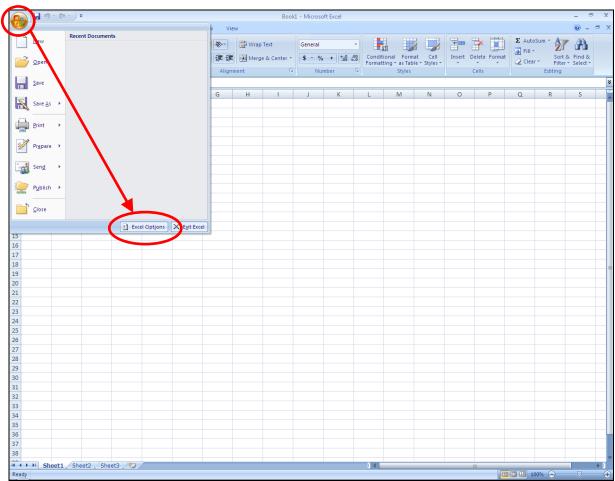


Figure 2.28: Unregistering FluidEXL Graphics as Add-In in Excel® 2007

Click on "Add-Ins" in the next menu

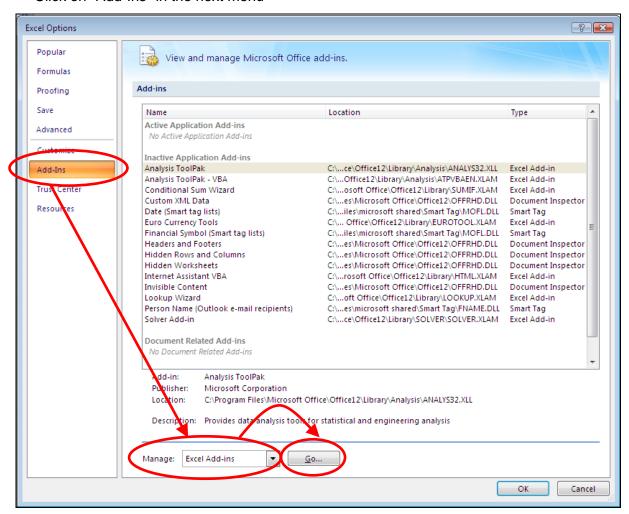


Figure 2.29: Dialog window "Add-Ins"

- If it is not shown in the list automatically, choose and click "Excel Add-ins" next to "Manage:" in the lower area of the menu
- Afterwards click the "Go..." button
- Remove the checkmark in front of

"FluidEXL Graphics Eng" (for English version of Windows)
"FluidEXL Graphics" (for German version of Windows)

in the window which now appears. Click the "OK" button to confirm your entry.

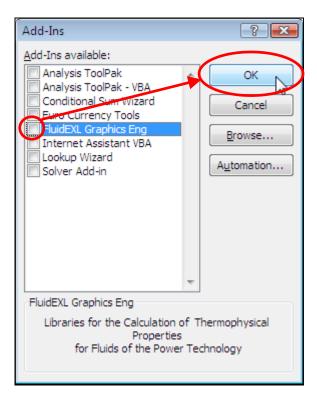


Figure 2.30: Dialog window "Add-Ins"

In order to remove FluidEXL^{Graphics} from Windows and the hard drive, click "Start" in the Windows task bar, select "Settings" and click "Control Panel."

Now, double click on "Add or Remove Programs."

In the list box of the "Add or Remove Programs" window that appears, select

"FluidEXL Graphics Eng" (for English version of Windows)
"FluidEXL Graphics" (for German version of Windows)

by clicking on it and then clicking the "Add/Remove..." button.

Click "Automatic" in the following dialog box and then the "Next >" button.

Click "Finish" in the "Perform Uninstall" window.

Answer the question of whether all shared components should be removed with "Yes to All." Finally, close the "Add or Remove Programs" and "Control Panel" windows.

Now FluidEXL *Graphics* has been completely removed from your computer.

3. Program Documentation

3.1 Documentation of FluidEXL^{Graphics} including LibHuGas for Excel[®]

Thermal Diffusivity a = f(p,t,t)

Function Name:

a_ptcomp_HuGas

Input values:

p - Pressure p in bar

t - Temperature t in °C

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp $\,$ - Vector of composition (Ar, Ne, N2, O2, CO, CO2, H2O, SO2)

Result:

a_ptcomp_HuGas - Thermal diffusivity in m²/s

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

- Thermal diffusivity $a = \frac{\lambda}{\rho \cdot c_p}$, model of ideal mixture of real fluids
- Valid only for unsaturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$)

Result for incorrect input values:

a ptcomp HuGas =
$$-1 \cdot 10^{100}$$

Gas	$ ho$, $\emph{c}_{\emph{p}}$ - ideal part	$ ho$, $\emph{c}_{\emph{p}}$ - real part	λ
Ar	[26]	[27]	[33]
Ne	[26]	-	[34],[35],[40],[41]
N_2	[26]	[28]	[42]
O_2	[26]	[29]	[37]
CO	[26]	-	[38]
CO_2	[26]	[30]	[43]
$\rm H_2O$	[26]	[31]	[16]
SO_2	[26]	-	[34],[35],[40]

Specific Isobaric Heat Capacity $c_p = f(h, s, type, comp(1:8))$

Function Name:

cp_hscomp_HuGas

Input values:

h - Specific enthalpy h in kJ/kg

s - Specific entropy s in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - vector of composition (Ar ,Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

cp_hscomp_HuGas - specific isobaric heat capacity in kJ/(kg K)

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of p and t from h(p,t,comp) and s(p,t,comp) and calculation of c_p from $c_p(p,t,comp)$

Calculation:

- Valid only for unsaturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$)
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

cp hscomp
$$HuGas = -1 \cdot 10^{100}$$

Gas	c _p ,h,s - ideal part	c _p ,h,s - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]
SO_2	[26]	-

Specific Isobaric Heat Capacity $c_p = f(p,h,type,comp(1:8))$

Function Name:

cp_phcomp_HuGas

Input values:

p - Pressure p in bar

h - Specific enthalpy h in kJ/kg

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

cp_phcomp_HuGas - specific isobaric heat capacity in kJ/(kg K)

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of t from h(p,t,comp) and calculation of c_p from $c_p(p,t,comp)$

Calculation:

- Valid only for unsaturated humid gas $(\psi_{w} \leq \psi_{w,sat})$
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

cp phcomp HuGas =
$$-1.10^{100}$$

Gas	<i>c_p,h</i> - ideal part	<i>c_p,h</i> - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO ₂	[26]	[30]
H_2O	[26]	[31]
SO ₂	[26]	-

Specific Isobaric Heat Capacity $c_p = f(p, s, type, comp(1:8))$

Function Name:

cp_pscomp_HuGas

Input values:

p - Pressure p in bar

s - Specific entropy s in kJ/(kg K)

type = $0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

cp_pscomp_HuGas - specific isobaric heat capacity in kJ/(kg K)

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of t from s(p,t,comp) and calculation of c_p from c_p (p,t,comp)

Calculation:

- Valid only for unsaturated humid gas $(\psi_{w} \leq \psi_{w,sat})$
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

$$cp_pscomp_HuGas = -1 \cdot 10^{100}$$

Gas	c_p ,s - ideal part	c_p ,s - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]
SO_2	[26]	-

Specific Isobaric Heat Capacity $c_p = f(p, t, type, comp(1:8))$

Function Name:

cp_ptcomp_HuGas

Input values:

p - Pressure p in bar

t - Temperature t in °C

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

cp_ptcomp_HuGas - specific isobaric heat capacity in kJ/(kg K)

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Calculation:

- Valid only for unsaturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$)
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

$$cp_ptcomp_HuGas = -1.10^{100}$$

Gas	$c_{ ho}$ - ideal part	$c_{ ho}$ - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]
H ₂ O SO ₂	[26]	-

Specific Isobaric Heat Capacity $c_p = f(t, s, type, comp(1:8))$

Function Name:

cp_tscomp_HuGas

Input values:

t - Temperature t in °C

s - Specific entropy s in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

cp_tscomp_HuGas - specific isobaric heat capacity in kJ/(kg K)

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of p from s(p,t,comp) and calculation of c_p from c_p(p,t,comp)

Calculation:

- Valid only for unsaturated humid gas $(\psi_{w} \leq \psi_{w,sat})$
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

$$cp_tscomp_HuGas = -1.10^{100}$$

Gas	c_{p} ,s - ideal part	c_p ,s - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]
SO_2	[26]	-

Specific Isochoric Heat Capacity $c_V = f(p, t, type, comp(1:8))$

Function Name:

cv_ptcomp_HuGas

Input values:

p - Pressure p in bar

t - Temperature *t* in °C

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

cv_ptcomp_HuGas - Specific isochoric heat capacity in kJ/(kg K)

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \leq t \leq 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \leq p \leq 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Calculation:

- Valid only for unsaturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$)
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

$$cv_ptcomp_HuGas = -1 \cdot 10^{100}$$

Gas	$c_{\scriptscriptstyle V}$ - ideal part	$c_{\scriptscriptstyle V}$ - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO ₂	[26]	[30]
H ₂ O	[26]	[31]
SO_2	[26]	-

Dynamic Viscosity $\eta = f(p,t,t)$, type, comp(1:8))

Function Name:

Eta_ptcomp_HuGas

Input values:

p - Pressure p in bar

t - Temperature *t* in °C

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

Eta_ptcomp_HuGas - Dynamic viscosity in Pa s

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \leq t \leq 3026.85 \,^{\circ}\text{C}$

Pressure p: 0.01 bar $\leq p \leq 1000$ bar

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for liquid fog ($\psi_{\rm W}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water
- for ice fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$, t < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

Eta_ptcomp_HuGas =
$$-1 \cdot 10^{100}$$

Gas	η
Ar	[33]
Ne	[34]
N_2	[36]
O_2	[37]
CO	[38]
CO_2	[39]
H_2O	[17]
SO ₂	[34]

Specific Enthalpy h = f(p, s, type, comp(1:8))

Function Name:

h_pscomp_HuGas

Input values:

p - Pressure p in bar

s - Specific entropy s in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N_2 , O_2 , CO, CO_2 , H_2O , SO_2)

Result:

h_pscomp_HuGas - specific enthalpy in kJ/kg

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of *t* from s(p,t,comp) and calculation of *h* from h(p,t,comp) Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

h pscomp HuGas =
$$-1 \cdot 10^{100}$$

Gas	h,s - ideal part	h,s - real part	ice
Ar	[26]	[27]	-
Ne	[26]	-	-
N_2	[26]	[28]	-
O_2	[26]	[29]	-
CO	[26]	-	-
CO_2	[26]	[30]	-
H_2O	[26]	[31]	[25]
SO_2	[26]	-	-

Specific Enthalpy h = f(p,t,t)

Function Name:

h_ptcomp_HuGas

Input values:

p - Pressure p in bar

- Temperature *t* in °C

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

h_ptcomp_HuGas - Specific enthalpy in kJ/kg

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

h ptcomp HuGas =
$$-1 \cdot 10^{100}$$

Gas	h - ideal part	h - real part	ice	
Ar	[26]	[27]	-	
Ne	[26]	-	-	
N_2	[26]	[28]	-	
O_2	[26]	[29]	-	
CO	[26]	-	-	
CO ₂	[26]	[30]	-	
H ₂ O	[26]	[31]	[25]	
SO_2	[26]	-	-	

Specific Enthalpy h = f(t, s, type, comp(1:8))

Function Name:

h_tscomp_HuGas

Input values:

t - Temperature t in °C

s - Specific entropy s in kJ/(kg K)

type = $0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

h_tscomp_HuGas - Specific enthalpy in kJ/kg

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of p from s(p,t,comp) and calculation h from h(p,t,comp) Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$) as ideal mixture of real gases (dry gas and steam)
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice, calculation is not possible for liquid-ice fog at 0.01 °C
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

h tscomp HuGas =
$$-1 \cdot 10^{100}$$

Gas	h,s ideal part	h,s real part	ice
Ar	[26]	[27]	-
Ne	[26]	-	-
N_2	[26]	[28]	-
O_2	[26]	[29]	-
CO	[26]	-	-
CO_2	[26]	[30]	-
H_2O	[26]	[31]	[25]
SO_2	[26]	-	-

Isentropic Exponent $\kappa = f(p,t,type,comp(1:8))$

Function Name:

Kappa_ptcomp_HuGas

Input values:

p - Pressure p in bar

t - Temperature *t* in °C

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

Kappa_ptcomp_HuGas - Isentropic exponent

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \leq t \leq 3026.85 \,^{\circ}\text{C}$

Pressure p: 0.01 bar $\leq p \leq 1000$ bar

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$):

$$\kappa = -\frac{v}{\rho} \cdot \left(\frac{\partial \rho}{\partial v}\right)_{T} \cdot \frac{c_{\rho}}{c_{v}}$$

- for liquid fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water
- for ice fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$, t < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

kappa_ptcomp_HuGas =
$$-1 \cdot 10^{100}$$

Gas	v , c_p , c_v - ideal part	v , c_p , c_v - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]
SO ₂	[26]	-

Isentropic Exponent $\kappa = f(p, s, type, comp(1:8))$

Function Name:

Kappa_pscomp_HuGas

Input values:

p - Pressure p in bar

s - Specific entropy s in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

Kappa_pscomp_HuGas - Isentropic exponent

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of t from s(p,t,comp) and calculation of κ from kappa(p,t,comp) :

- for unsaturated and saturated humidity gas ($\psi_{
m w} \leq \psi_{
m w.sat}$)

$$\kappa = -\frac{v}{\rho} \cdot \left(\frac{\partial p}{\partial v}\right)_{T} \cdot \frac{c_{\rho}}{c_{v}}$$

- for liquid fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water
- for ice fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$, t < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

kappa_pscomp_HuGas =
$$-1 \cdot 10^{100}$$

Gas	v , c_p , c_v - ideal part	v , c_p , c_v - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]
SO ₂	[26]	-

Thermal Conductivity $\lambda = f(p,t,t)$

Function Name:

Lambda_ptcomp_HuGas

Input values:

p - Pressure p in bar

t - Temperature *t* in °C

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N_2 , O_2 , CO, CO_2 , H_2O , SO_2)

Result:

Lambda_ptcomp_HuGas - Thermal conductivity in W/(m K)

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for liquid fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water
- for ice fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$, t < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

$$lambda ptcomp HuGas = -1 \cdot 10^{100}$$

Gas	λ
Ar	[33]
Ne	[34],[35],[40],[41]
N_2	[42]
O_2	[37]
CO	[38]
CO_2	[43]
H_2O	[16]
SO ₂	[34],[35],[40]

Molar Mass M = f(type,comp(1:8))

Function Name:

M_comp_HuGas

Input values:

```
type = 0 \rightarrow composition as mole fraction
= 1 \rightarrow composition as mass fraction
comp - Vector of composition (Ar, Ne, N<sub>2</sub>, O<sub>2</sub>, CO, CO<sub>2</sub>, H<sub>2</sub>O, SO<sub>2</sub>)
```

Result:

M_comp_HuGas - Molar mass in kg/kmol

Result for incorrect input values:

$$M_comp_HuGas = -1 \cdot 10^{100}$$

Kinematic Viscosity v = f(p,t,t), type, comp(1:8))

Function Name:

Ny_ptcomp_HuGas

Input values:

p - Pressure p in bar

t - Temperature *t* in °C

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

Ny_ptcomp_HuGas - Kinematic viscosity in m²/s

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \leq t \leq 3026.85 \,^{\circ}\text{C}$

Pressure p: 0.01 bar $\leq p \leq 1000$ bar

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

- Kinematic viscosity $v = \frac{\eta}{\rho} = \eta \cdot \mathbf{V}$
- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for liquid fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water
- for ice fog ($\psi_{\rm w}$ > $\,\psi_{\rm w,sat}$, $\it t$ < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

Ny ptcomp HuGas =
$$-1 \cdot 10^{100}$$

Gas	v - ideal part	v - real part	λ
Ar	[26]	[27]	[33]
Ne	[26]	-	[34],[35],[40],[41]
N_2	[26]	[28]	[42]
O_2	[26]	[29]	[37]
CO	[26]	-	[38]
CO_2	[26]	[30]	[43]
$\rm H_2O$	[26]	[31]	[16]
SO ₂	[26]	-	[34],[35],[40]

Pressure p = f(h, s, type, comp(1:8))

Function Name:

p_hscomp_HuGas

Input values:

h - Specific enthalpy h in kJ/kg

s - Specific entropy s in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

p_hscomp_HuGas - Pressure in bar

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of t and p from h(p,t,comp) and s(p,t,comp) and calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$) as ideal mixture of real gases (dry gas and steam)
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice, calculation is not possible for liquid-ice fog at 0.01 °C
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

p hscomp HuGas =
$$-1 \cdot 10^{100}$$

Gas	h, s - ideal part	h, s - real part	ice
Ar	[26]	[27]	-
Ne	[26]	-	-
N_2	[26]	[28]	-
O_2	[26]	[29]	-
CO	[26]	-	-
CO_2	[26]	[30]	-
H_2O	[26]	[31]	[25]
SO_2	[26]	-	-

Pressure p = f(t, s, type, comp(1:8))

Function Name:

p_tscomp_HuGas

Input values:

t - Temperature t in °C

s - Specific entropy s in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

p_tscomp_HuGas - Pressure in bar

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of p from s(p,t,comp) and calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$) as ideal mixture of real gases (dry gas and steam)
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice, calculation is not possible for liquid-ice fog at 0.01 °C
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

$$p_tscomp_HuGas = -1 \cdot 10^{100}$$

	Gas	s - ideal part	s - real part	ice	
_	Ar	[26]	[27]	-	
	Ne	[26]	-	-	
	N_2	[26]	[28]	-	
	O_2	[26]	[29]	-	
	CO	[26]	-	-	
	CO_2	[26]	[30]	-	
	H_2O	[26]	[31]	[25]	
	SO_2	[26]	-	-	

Saturation Pressure of Water $p_{dsat} = f(p,t)$

Function Name:

pdsat_pt_HuGas

Input values:

p - Pressure p in bar

t - Temperature t in °C

Result:

pdsat_pt_HuGas - Saturation pressure of water in bar

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Comments:

 $p_{\text{dsat}}(p,t)$ for $t \ge 0.01 \, ^{\circ}\text{C}$ – Vapour pressure of water in gas mixtures

for t < 0.01 °C – Sublimation pressure of water in gas mixtures

Result for incorrect input values:

$$pdsat pt HuGas = -1 \cdot 10^{100}$$

Reference:

 $p_{dsat}(p,t)$ for $t \ge 0.01$ °C from IAPWS-IF97 [1], [2], [3], [4]

 $p_{\text{dsat}}(p,t)$ for t < 0.01 °C from IAPWS-92 [24]

Relative Humidity $\varphi = f(p,t,t)$, type, comp(1:8))

Function Name:

Phi_ptcomp_HuGas

Input values:

p - Pressure p in bar

t - Temperature t in °C

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

Phi_ptcomp_HuGas - Relative humidity in %

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \leq t \leq 3026.85 \,^{\circ}\text{C}$

Pressure p: 0.01 bar $\leq p \leq 1000$ bar

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Relative humidity
$$\varphi = \frac{X_{\text{W}}}{\frac{R_{\text{I}}}{R_{\text{W}}} + X_{\text{W}}} \frac{p}{p_{\text{dsat}}(p, t)} \cdot 100\%$$

with $p_{dsat}(p,t)$ for $t \ge 0.01$ °C - Vapour pressure of water in gas mixtures

for t < 0.01 °C - Sublimation pressures of water in gas mixtures

Result for incorrect input values:

$$Phi_ptcomp_HuGas = -1.10^{100}$$

Reference:

 $p_{dsat}(p,t)$ for $t \ge 0.01$ °C from IAPWS-IF97 [1], [2], [3], [4]

 $p_{dsat}(p,t)$ for t < 0.01 °C from IAPWS-92 [24]

Prandtl Number Pr = f(p,t,t)

Function Name:

Pr_ptcomp_HuGas

Input values:

p - Pressure p in bar

t - Temperature t in °C

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

Pr_ptcomp_HuGas - Prandtl-number

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \leq t \leq 3026.85 \,^{\circ}\text{C}$

Pressure p: 0.01 bar $\leq p \leq 1000$ bar

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

- Prandtl-number $Pr = \frac{v}{a} = \frac{\eta \cdot c_p}{\lambda}$
- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for liquid fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water
- for ice fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$, t < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

$$Pr_ptcomp_HuGas = -1 \cdot 10^{100}$$

Gas	$c_{ ho}$ - ideal part	c_p - real part	η	λ
Ar	[26]	[27]	[33]	[33]
Ne	[26]	-	[34]	[34],[35],[40],[41]
N_2	[26]	[28]	[36]	[42]
O_2	[26]	[29]	[37]	[37]
CO	[26]	-	[38]	[38]
CO_2	[26]	[30]	[39]	[43]
H_2O	[26]	[31]	[17]	[16]
SO_2	[26]	-	[34]	[34],[35],[40]

Gas Constant R = f(type,comp(1:8))

Function Name:

R_comp_HuGas

Input values:

```
type = 0 \rightarrow composition as mole fraction
= 1 \rightarrow composition as mass fraction
comp - Vector of composition (Ar, Ne, N<sub>2</sub>, O<sub>2</sub>, CO, CO<sub>2</sub>, H<sub>2</sub>O, SO<sub>2</sub>)
```

Result:

R_comp_HuGas - Gas constant in kJ/(kg K)

Result for incorrect input values:

$$R _comp_HuGas = -1 \cdot 10^{100}$$

Reference: [32]

Region = f(h, s, type, comp(1:8))

Function Name:

Region_hscomp_HuGas

Input values:

h - Specific enthalpy h in kJ/kg

s - Specific entropy s in kJ/(kg K)

type = $0 \rightarrow$ composition as mole fraction

 $= 1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

Region_hscomp_HuGas - State point of humid gas mixture

= 0 → Out of range of validity	= 6 → Pure liquid water
= 1 → Dry gas mixture	= 7 → Pure water-wet steam
= 2 → Unsaturated Gas mixture	= 8 → Pure steam
= 3 → Liquid fog	$= 10 \rightarrow$ The CO2 in the gas mixture would be
$=4 \rightarrow lce fog$	partly liquid. Calculation is terminated.
= 5 → Liquid-ice fog at 0.01 °C exactly	= 11 → The SO2 in the gas mixture would be
	partly liquid. Calculation is terminated.

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \leq t \leq 3026.85 \,^{\circ}\text{C}$

Pressure p: 0.01 bar $\leq p \leq 1000$ bar

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of *p* and *t* from s(p,t,comp) and h(p,t,comp) and calculation of *Region* from Region(p,t,comp)

Result for incorrect input values:

Region_hscomp_HuGas = 0

Gas	h, s - ideal part	h, s - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]
SO_2	[26]	-

Region = f(p,h,type,comp(1:8))

Function Name:

Region_phcomp_HuGas

Input values:

p - Pressure p in bar

h - Specific enthalpy h in kJ/kg

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

Region_phcomp_HuGas - State point of humid gas mixture

= 0 → Out of range of validity	= 6 → Pure liquid water
= 1 → Dry gas mixture	= 7 → Pure water-wet steam
= 2 → Unsaturated Gas mixture	= 8 → Pure steam
= 3 → Liquid fog	$= 10 \rightarrow$ The CO2 in the gas mixture would be
$= 4 \rightarrow lce fog$	partly liquid. Calculation is terminated.
= 5 → Liquid-ice fog at 0.01 °C exactly	= 11 → The SO2 in the gas mixture would be
	partly liquid. Calculation is terminated.

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \leq t \leq 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \leq p \leq 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of *t* from h(p,t,comp) and calculation of *Region* from Region(p,t,comp)

Result for incorrect input values:

Region_phcomp_HuGas = 0

Gas	h - ideal part	h - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO ₂	[26]	[30]
H ₂ O	[26]	[31]
SO_2	[26]	-

Region = f(p, s, type, comp(1:8))

Function Name:

Region_pscomp_HuGas

Input values:

p - Pressure p in bar

s - Specific entropy s in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

 $= 1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

Region_pscomp_HuGas - State point of humid gas mixture

= 0 → Out of range of validity	= 6 → Pure liquid water
= 1 → Dry gas mixture	= 7 → Pure water-wet steam
= 2 → Unsaturated Gas mixture	= 8 → Pure steam
= 3 → Liquid fog	= $10 \rightarrow$ The CO2 in the gas mixture would be
$=4 \rightarrow lce fog$	partly liquid. Calculation is terminated.
= 5 → Liquid-ice fog at 0.01 °C exactly	= 11 \rightarrow The SO2 in the gas mixture would be
	partly liquid. Calculation is terminated.

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of *t* from s(p,t,comp) and calculation of *Region* from Region(p,t,comp)

Result for incorrect input values:

Region_pscomp_HuGas = 0

Gas	s - ideal part	s - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]
SO_2	[26]	-

Region = f(p,t,type,comp(1:8))

Function Name:

Region_ptcomp_HuGas

Input values:

p - Pressure p in bar

t - Temperature t in °C

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

Region_ptcomp_HuGas - State point of humid gas mixture

= 0 → Out of range of validity	= 6 → Pure liquid water
= 1 → Dry gas mixture	= 7 → Pure water-wet steam
= 2 → Unsaturated Gas mixture	= 8 → Pure steam
= 3 → Liquid fog	= $10 \rightarrow$ The CO2 in the gas mixture would be
= 4 → Ice fog	partly liquid. Calculation is terminated.
= 5 → Liquid-ice fog at 0.01 °C exactly	= 11 → The SO2 in the gas mixture would be
	partly liquid. Calculation is terminated.

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice

Result for incorrect input values:

Region_ptcomp_HuGas = 0

Region = f(t, s, type, comp(1:8))

Function Name:

Region_tscomp_HuGas

Input values:

t - Temperature *t* in °C

s - Specific entropy s in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

Region_tscomp_HuGas - State point of humid gas mixture

= 0 → Out of range of validity	= 6 → Pure liquid water
= 1 → Dry gas mixture	= 7 → Pure water-wet steam
= 2 → Unsaturated Gas mixture	= 8 → Pure steam
= 3 → Liquid fog	= $10 \rightarrow$ The CO2 in the gas mixture would be
$=4 \rightarrow lce fog$	partly liquid. Calculation is terminated.
= 5 → Liquid-ice fog at 0.01 °C exactly	= 11 → The SO2 in the gas mixture would be
	partly liquid. Calculation is terminated.

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of *p* from s(p,t,comp) and calculation of *Region* from Region(p,t,comp)

Result for incorrect input values:

Region_tscomp_HuGas = 0

Gas	s - ideal part	s - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]
SO_2	[26]	-

Density $\rho = f(p,t,type,comp(1:8))$

Function Name:

rho_ptcomp_HuGas

Input values:

p - Pressure p in bar

t - Temperature t in °C

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

rho_ptcomp_HuGas - Density in kg/m³

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \leq t \leq 3026.85 \,^{\circ}\text{C}$

Pressure p: 0.01 bar $\leq p \leq 1000$ bar

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice

Result for incorrect input values:

rho ptcomp HuGas =
$$-1 \cdot 10^{100}$$

Gas	ho - ideal part	ho - real part	ice	
Ar	[26]	[27]	-	_
Ne	[26]	-	-	
N_2	[26]	[28]	-	
O_2	[26]	[29]	-	
CO	[26]	-	-	
CO ₂	[26]	[30]	-	
H_2O	[26]	[31]	[25]	
SO ₂	[26]	-	-	

Specific Entropy s = f(p,h,type,comp(1:8))

Function Name:

s_phcomp_HuGas

Input values:

p - Pressure p in bar

h - Specific enthalpy h in kJ/kg

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

s_phcomp_HuGas - Specific entropy in kJ/(kg K)

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of *t* from h(p,t,comp) and calculation of *s* from s(p,t,comp) Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \le \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w.sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

s phcomp HuGas =
$$-1 \cdot 10^{100}$$

Gas	h,s - ideal part	h,s - real part	ice
Ar	[26]	[27]	-
Ne	[26]	-	-
N_2	[26]	[28]	-
O_2	[26]	[29]	-
CO	[26]	-	-
CO_2	[26]	[30]	-
H_2O	[26]	[31]	[25]
SO_2	[26]	-	-

Specific Entropy s = f(p,t,t), type, comp(1:8))

Function Name:

s_ptcomp_HuGas

Input values:

p - Pressure p in bar

t - Temperature t in °C

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

s_ptcomp_HuGas - Specific entropy in kJ/(kg K)

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

s ptcomp HuGas =
$$-1 \cdot 10^{100}$$

Gas	s - ideal part	s - real part	ice	
Ar	[26]	[27]	-	
Ne	[26]	-	-	
N_2	[26]	[28]	-	
O_2	[26]	[29]	-	
CO	[26]	-	-	
CO_2	[26]	[30]	-	
H ₂ O	[26]	[31]	[25]	
SO ₂	[26]	-	-	

Surface Tension of Water $\sigma_{\rm w}$ = f(t)

Function Name:

Sigmaw_t_HuGas

Input values:

t - Temperature t in °C

Result:

Sigmaw_t_HuGas - Surface tension of water $\sigma_{\scriptscriptstyle W}$ in N/m

Range of validity:

Temperature t: 0 °C $\leq t \leq 373.946$ °C

Comments:

Calculation for pure water from IAPWS-IF97

Result for incorrect input values:

sigmaw $_{t}$ HuGas $= -1 \cdot 10^{100}$

References: [8]

Temperature t = f(h, s, type, comp(1:8))

Function Name:

t_hscomp_HuGas

Input values:

h - Specific enthalpy h in kJ/kg

s - Specific entropy s in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

t_hscomp_HuGas - Temperature t in °C

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of *p* and *t* from h(p,t,comp) and s(p,t,comp)

Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$)as ideal mixture of real fluids
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

t hscomp HuGas =
$$-1 \cdot 10^{100}$$

Gas	h,s - ideal part	h,s - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H ₂ O	[26]	[31]
SO_2	[26]	-

Temperature t = f(p,h,type,comp(1:8))

Function Name:

t_phcomp_HuGas

Input values:

p - Pressure p in bar

h - Specific enthalpy h in kJ/kg

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

t_phcomp_HuGas - Temperature in °C

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of *t* from h(p,t,comp)

Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

t phcomp
$$HuGas = -1 \cdot 10^{100}$$

Gas	h - ideal part	h - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]
SO_2	[26]	-

Temperature t = f(p, s, type, comp(1:8))

Function Name:

t_pscomp_HuGas

Input values:

p - Pressure *p* in bar

s - Specific entropy s in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

t_pscomp_HuGas - Temperature t in °C

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of *t* from s(p,t,comp)

Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

t pscomp HuGas =
$$-1 \cdot 10^{100}$$

Gas	h,s - ideal part	h,s - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H ₂ O	[26]	[31]
SO_2	[26]	-

Dew Point Temperature of Water $t_{w,dew} = f(p,type,comp(1:8))$

Function Name:

twdew_pcomp_HuGas

Input values:

p - Pressure p in bar

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

twdew_pcomp_HuGas - Dew point temperature of water twdew in °C

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \leq t \leq 3026.85 \,^{\circ}\text{C}$

Pressure p: 0.01 bar $\leq p \leq 1000$ bar

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Dew point temperature of water $t_{w,dew} = t_s(p, p_d)$ for $t \ge 0.01$ °C

 $(t_s$ – Saturation temperature of water in gas mixtures)

 $t_{
m w,dew} = t_{
m sub}(
ho,
ho_{
m d})\,{
m for}\,\,\,t < 0.01\,{
m ^{\circ}C}$

 $(t_{sub}$ – Sublimation temperature of water in gas mixtures)

Result for incorrect input values:

twdew_pcomp_HuGas =
$$-1 \cdot 10^{100}$$

References:

 $t_s(p, p_d)$ for $t \ge 0.01$ °C from IAPWS-IF97 [1], [2], [3], [4]

 $t_{\text{sub}}(p, p_d)$ for $t < 0.01 \,^{\circ}\text{C}$ from IAPWS-92 [24]

Internal Energy u = f(p,t,type,comp(1:8))

Function Name:

u_ptcomp_HuGas

Input values:

p - Pressure p in bar

- Temperature t in °C

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

u_ptcomp_HuGas - Internal energy in kJ/kg

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures greater than 500 °C

Result for incorrect input values:

u ptcomp HuGas =
$$-1 \cdot 10^{100}$$

Gas	u - ideal part	u - real part	ice	
Ar	[26]	[27]	-	
Ne	[26]	-	-	
N_2	[26]	[28]	-	
O_2	[26]	[29]	-	
CO	[26]	-	-	
CO_2	[26]	[30]	-	
H_2O	[26]	[31]	[25]	
SO_2	[26]	-	-	

Specific Volume v = f(h, s, type, comp(1:8))

Function Name:

v_hscomp_HuGas

Input values:

h - Specific enthalpy *h* in kJ/kg

s - Specific entropy s in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

v_hscomp_HuGas - Specific volume in m³/kg

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of p and t from h(p,t,comp) and s(p,t,comp) and calculation of v from v(p,t,comp) Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for fog (ψ_w > $\psi_{w,\mathrm{sat}}$) as ideal mixture of saturated humid gas and liquid water or water ice

Result for incorrect input values:

v hscomp HuGas =
$$-1 \cdot 10^{100}$$

Gas	<i>v,h,s</i> - ideal part	<i>v,h,s</i> - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO ₂	[26]	[30]
H_2O	[26]	[31]
SO_2	[26]	-

Specific Volume v = f(p,h,type,comp(1:8))

Function Name:

v_phcomp_HuGas

Input values:

p - Pressure p in bar

h - Specific enthalpy h in kJ/kg

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

v_phcomp_HuGas - Specific volume in m³/kg

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of t from h(p,t,comp) and calculation of v from v(p,t,comp) Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice

Result for incorrect input values:

v phcomp
$$HuGas = -1 \cdot 10^{100}$$

Gas	<i>v,h</i> - ideal part	<i>v,h</i> - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H ₂ O	[26]	[31]
SO_2	[26]	-

Specific Volume v = f(p, s, type, comp(1:8))

Function Name:

v_pscomp_HuGas

Input values:

p - Pressure p in bar

s - Specific entropy s in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

v_pscomp_HuGas - Specific volume in m³/kg

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of t from s(p,t,comp) and calculation of v from v(p,t,comp) Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice

Result for incorrect input values:

v pscomp HuGas =
$$-1 \cdot 10^{100}$$

Gas	v,s - ideal part	v,s - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]
SO_2	[26]	-

Specific Volume v = f(p,t,type,comp(1:8))

Function Name:

v_ptcomp_HuGas

Input values:

p - Pressure p in bar

t - Temperature *t* in °C

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

v_ptcomp_HuGas - Specific volume in m³/kg

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice

Result for incorrect input values:

$$v_ptcomp_HuGas = -1.10^{100}$$

Gas	v - ideal part	v - real part	ice	
Ar	[26]	[27]	-	
Ne	[26]	-	-	
N_2	[26]	[28]	-	
O_2	[26]	[29]	-	
CO	[26]	-	-	
CO_2	[26]	[30]	-	
H ₂ O	[26]	[31]	[25]	
SO_2	[26]	-	-	

Specific Volume v = f(t, s, type, comp(1:8))

Function Name:

v_tscomp_HuGas

Input values:

t - Temperature t in °C

s - Specific entropy s in kJ/(kg K)

type $= 0 \rightarrow$ composition as mole fraction

= $1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

v_tscomp_HuGas - Specific volume in m³/kg

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of p from s(p,t,comp) and calculation v from v(p,t,comp) Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \le \psi_{\rm w,sat}$) as ideal mixture of real gases (dry gas and steam)
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice, calculation is not possible for liquid-ice fog at 0.01 °C

Result for incorrect input values:

v tscomp HuGas =
$$-1 \cdot 10^{100}$$

Gas	v,h,s ideal part	v,h,s real part	ice
Ar	[26]	[27]	-
Ne	[26]	-	-
N_2	[26]	[28]	-
O_2	[26]	[29]	-
CO	[26]	-	-
CO_2	[26]	[30]	-
H ₂ O	[26]	[31]	[25]
SO ₂	[26]	-	-

Isentropic Speed of Sound w = f(p,t,t)

Function Name:

w_ptcomp_HuGas

Input values:

p - Pressure p in bar

t - Temperature t in °C

type $= 0 \rightarrow$ composition as mole fraction

 $= 1 \rightarrow$ composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

w_ptcomp_HuGas - Isentropic speed of sound in m/s

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \leq t \leq 3026.85 \,^{\circ}\text{C}$

Pressure p: 0.01 bar $\leq p \leq 1000$ bar

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w.sat}$)

$$W = \sqrt{-v^2 \cdot \left(\frac{\partial p}{\partial v}\right)_T \cdot \frac{c_p}{c_v}}$$

- for liquid fog ($\psi_{\rm W}$ > $\psi_{\rm w.sat}$) as ideal mixture of saturated humid gas and liquid water
- for ice fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$, t < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

w ptcomp HuGas =
$$-1 \cdot 10^{100}$$

Gas	v , c_p , c_v - ideal part	v , c_p , c_v - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]
SO_2	[26]	-

Humidity Ratio (Absolute Humidity) $x_w = f(type,comp(1:8))$

Function Name:

xw_comp_HuGas

Input values:

type = 0 \rightarrow composition as mole fraction = 1 \rightarrow composition as mass fraction comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

 xw_comp_HuGas - $Humidity\ ratio\ in\ g_{Water}/kg_{Gas}$

Comments:

Humidity ratio of water
$$x_{\rm w} = \frac{\psi_{\rm w}}{\frac{R_{\rm w}}{R_{\rm mix}} - \psi_{\rm w}}$$

Result for incorrect input values:

$$xw _comp _HuGas = -1 \cdot 10^{100}$$

Mole Fraction of Liquid Water $\psi_{Wl} = f(p,t,type,comp(1:8))$

Function Name:

Psiwl_ptcomp_HuGas

Input values:

p - Pressure p in bar

t - Temperature t in °C

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N_2 , O_2 , CO, CO_2 , H_2O , SO_2)

Result:

Psiwl_ptcomp_HuGas - Mole fraction of water in kmol/kmol

Range of validity:

Temperature t: $t_{\tau}(p,\text{comp}) \leq t \leq t_{s}(p,p_{d})$

 $(t_s$ – Saturation temperature of water in gas mixtures)

Pressure p: 0.01 bar $\leq p \leq 1000$ bar

Comments:

Mole fraction of liquid water: $\psi_{wl} = \psi_{w} - \psi_{wsat}$

with
$$\psi_{\text{wsat}} = \frac{p_{\text{dsat}}(p,t)}{p}$$

with $p_{dsat}(p,t)$ for $t \ge 0.01 \, ^{\circ}\text{C}$ – Vapour pressure of water in gas mixtures

for t < 0.01 °C – Sublimation pressure of water in gas mixtures

Result for incorrect input values:

$$Psiwl_ptcomp_HuGas = -1 \cdot 10^{100}$$

Reference:

 $p_{dsat}(p,t)$ for $t \ge 0.01$ °C from IAPWS-IF97 [1], [2], [3], [4]

 $p_{dsat}(p,t)$ for t < 0.01 °C from IAPWS-92 [24]

Mole Fraction of Water of Saturated Gas

 $\psi_{w,sat} = f(p,t,type,comp(1:8))$

Function Name:

Psiwsat_ptcomp_HuGas

Input values:

p - Pressure p in bar

t - Temperature t in °C

type $= 0 \rightarrow$ composition as mole fraction

= 1 \rightarrow composition as mass fraction

comp - Vector of composition (Ar, Ne, N₂, O₂, CO, CO₂, H₂O, SO₂)

Result:

Psiwsat_ptcomp_HuGas – Mole fraction of water of saturated gas $\psi_{w,sat}$ in kmol/ kmol

Range of validity:

Temperature t: $-70 \, ^{\circ}\text{C} \leq t \leq t_{\text{s}}(\rho, \rho_{\text{d}})$

 $(t_s$ – Saturation temperature of water in gas mixtures)

Pressure p: 0.01 bar $\leq p \leq 1000$ bar

Comments:

Mole fraction of liquid water:

$$\psi_{\text{wsat}} = \frac{p_{\text{dsat}}(p,t)}{p}$$

with $p_{dsat}(p,t)$

for $t \ge 0.01$ °C – Vapour pressure of water in gas mixtures

for t < 0.01 °C – Sublimation pressure of water in gas mixtures

Result for incorrect input values:

Psiwsat ptcomp HuGas =
$$-1 \cdot 10^{100}$$

Reference:

 $p_{dsat}(p,t)$ for $t \ge 0.01$ °C from IAPWS-IF97 [1], [2], [3], [4]

 $p_{dsat}(p,t)$ for t < 0.01 °C from IAPWS-92 [24]

3.2 Documentation of the Fortran Source Code of LibHuGas

Thermal Diffusivity a = f(p, t, type, comp)

Name in Fortran:

REAL*8 FUNCTION A_PT_HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure *p* in bar

T - Temperature t in °C

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

a_pt_HuGas - Thermal diffusivity in m²/s

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

- Thermal diffusivity $a = \frac{\lambda}{\rho \cdot c_p}$, model of ideal mixture of real fluids
- Valid only for unsaturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$)

Result for incorrect input values:

Gas	$ ho$, c_p - ideal part	$ ho$, $\emph{c}_{\emph{p}}$ - real part	λ
 Ar	[26]	[27]	[33]
Ne	[26]	-	[34],[35],[40],[41]
N_2	[26]	[28]	[42]
O_2	[26]	[29]	[37]
CO	[26]	-	[38]
CO_2	[26]	[30]	[43]
H_2O	[26]	[31]	[16]
SO_2	[26]	-	[34],[35],[40]

Specific Isobaric Heat Capacity $c_D = f(h, s, type, comp)$

Name in Fortran:

REAL*8 FUNCTION CP_HS_HUGAS (REAL*8 H, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

H - Enthalpy h in kJ/kg

S - Entropy s in kJ/(kg K)

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

cp_hs_HuGas - Specific isobaric heat capacity in kJ/(kg K)

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of p and t from h(p,t,type,comp) and s(p,t,type,comp) and calculation of c_p from $c_p(p,t,type,comp)$

Calculation:

- Valid only for unsaturated humid gas ($\psi_{w} \leq \psi_{w,sat}$)
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

$$cp_hs_HuGas = -1.10^{100}$$

Gas	c_p , h , s - ideal part	c _p ,h,s - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
$\rm H_2O$	[26]	[31]
SO_2	[26]	-

Specific Isobaric Heat Capacity $c_p = f(p, h, type, comp)$

Name in Fortran:

REAL*8 FUNCTION CP_PH_HUGAS (REAL*8 P, REAL*8 H, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure *p* in bar

H - Enthalpy *h* in kJ/kg

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

cp_ph_HuGas - Specific isobaric heat capacity in kJ/(kg K)

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of t from h(p,t,type,comp) and calculation of c_p from c_p(p,t,type,comp)

Calculation:

- Valid only for unsaturated humid gas ($\psi_{w} \leq \psi_{w,sat}$)
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

$$cp_ph_HuGas = -1.10^{100}$$

Gas	c_p , h - ideal part	<i>c_p,h</i> - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]
SO_2	[26]	-

Specific Isobaric Heat Capacity $c_p = f(p, s, type, comp)$

Name in Fortran:

REAL*8 FUNCTION CP_PS_HUGAS (REAL*8 P, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure *p* in bar

S - Entropy s in kJ/(kg K)

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

cp_ps_HuGas - Specific isobaric heat capacity in kJ/(kg K)

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of t from s(p,t,type,comp) and calculation of c_p from c_p(p,t,type,comp)

Calculation:

- Valid only for unsaturated humid gas ($\psi_{w} \leq \psi_{w,sat}$)
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

$$cp_ps_HuGas = -1.10^{100}$$

Gas	c_p ,s - ideal part	<i>c_p</i> ,s - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]
SO_2	[26]	-

Specific Isobaric Heat Capacity $c_p = f(p,t,type,comp)$

Name in Fortran:

REAL*8 FUNCTION CP_PT _HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure *p* in bar

T - Temperature t in °C

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

cp_pt_HuGas - Specific isobaric heat capacity in kJ/(kg K)

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Calculation:

- Valid only for unsaturated humid gas $(\psi_{w} \leq \psi_{w,sat})$
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

$$cp_pt_HuGas = -1.10^{100}$$

Gas	c_p - ideal part	$c_{ ho}$ - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]
SO ₂	[26]	-

Specific Isobaric Heat Capacity $c_p = f(t, s, type, comp)$

Name in Fortran:

REAL*8 FUNCTION CP_T S_HUGAS (REAL*8 T, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

T - Temperature *t* in °C

S - Entropy s in kJ/(kg K)

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

cp_ts_HuGas - Specific isobaric heat capacity in kJ/(kg K)

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of p from s(p,t,type,comp) and calculation of c_p from c_p(p,t,type,comp)

Calculation:

- Valid only for unsaturated humid gas ($\psi_{\rm w} \le \psi_{\rm w,sat}$)
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

cp ts
$$HuGas = -1.10^{100}$$

Gas	c_p ,s - ideal part	<i>c_p</i> ,s - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]
SO_2	[26]	-

Specific Isochoric Heat Capacity $c_v = f(p,t,t)$

Name in Fortran:

REAL*8 FUNCTION CV_PT _HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure *p* in bar

T - Temperature *t* in °C

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

cv_pt_HuGas - Specific isochoric heat capacity in kJ/(kg K)

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Calculation:

- Valid only for unsaturated humid gas $(\psi_{w} \leq \psi_{w,sat})$
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

$$cv_pt_HuGas = -1.10^{100}$$

Gas	$c_{\scriptscriptstyle V}$ - ideal part	$c_{\scriptscriptstyle V}$ - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]

Dynamic Viscosity $\eta = f(p,t,t)$

Name in Fortran:

REAL*8 FUNCTION ETA_PT_HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure *p* in bar

T - Temperature *t* in °C

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

eta_pt_HuGas - Dynamic viscosity in Pa s

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \le \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for liquid fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water
- for ice fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$, t<0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

eta_pt_HuGas =
$$-1.10^{100}$$

Gas	η
Ar	[33]
Ne	[34]
N_2	[36]
O_2	[37]
CO	[38]
CO_2	[39]
H_2O	[17]
SO_2	[34]

Specific Enthalpy h = f(p, s, type, comp)

Name in Fortran:

REAL*8 FUNCTION H_PS_HUGAS (REAL*8 P, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure p in bar

S - Entropy s in kJ/(kg K)

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

h_ps_HuGas - Specific enthalpy in kJ/kg

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of *t* from s(p,t,type,comp) and calculation of *h* from h(p,t,type,comp) Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \le \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

h ps $HuGas = -1.10^{100}$

Gas	h,s - ideal part	h,s - real part	Ice
Ar	[26]	[27]	-
Ne	[26]	-	-
N_2	[26]	[28]	-
O_2	[26]	[29]	-
CO	[26]	-	-
CO_2	[26]	[30]	-
H_2O	[26]	[31]	[25]
SO_2	[26]	-	-

Specific Enthalpy h = f(p,t,t)

Name in Fortran:

REAL*8 FUNCTION H_PT_HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure p in bar

T - Temperature *t* in °C

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

h_pt_HuGas - Specific enthalpy in kJ/kg

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \le \psi_{\rm w.sat}$) as ideal mixture of real fluids
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w.sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

 $h_pt_HuGas = -1.10^{100}$

Gas	h - ideal part	h - real part	ice
Ar	[26]	[27]	-
Ne	[26]	-	-
N_2	[26]	[28]	-
O_2	[26]	[29]	-
CO	[26]	-	-
CO ₂	[26]	[30]	-
H ₂ O	[26]	[31]	[25]
SO_2	[26]	-	-

Specific Enthalpy h = f(t, s, type, comp)

Name in Fortran:

REAL*8 FUNCTION H_TS_HUGAS (REAL*8 T, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

T - Temperature *t* in °C

S - Entropy s in kJ/(kg K)

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

h_ts_HuGas - Specific enthalpy in kJ/kg

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of *p* from s(p,t,type,comp) and calculation h from h(p,t,type,comp) Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \le \psi_{\rm w,sat}$) as ideal mixture of real gases (dry gas and steam)
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice, calculation is not possible for liquid-ice fog at 0.01 °C
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

h ts $HuGas = -1.10^{100}$

Gas	h,s - ideal part	h,s - real part	ice
Ar	[26]	[27]	-
Ne	[26]	-	-
N_2	[26]	[28]	-
O_2	[26]	[29]	-
CO	[26]	-	-
CO_2	[26]	[30]	-
H_2O	[26]	[31]	[25]
SO_2	[26]	-	-

Isentropic Exponent $\kappa = f(p,t,t)$

Name in Fortran:

REAL*8 FUNCTION KAPPA_PT_HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure *p* in bar
T - Temperature *t* in °C
TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction $\psi_1...$ ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

Kappa_pt_HuGas - Isentropic exponent

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w.sat}$)

$$\kappa = -\frac{\mathbf{v}}{\mathbf{p}} \cdot \left(\frac{\partial \mathbf{p}}{\partial \mathbf{v}}\right)_{T} \cdot \frac{\mathbf{c}_{\mathbf{p}}}{\mathbf{c}_{\mathbf{v}}}$$

- for liquid fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water
- for ice fog ($\psi_w > \psi_{w,sat}$, t < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

 $Kappa_pt_HuGas = -1.10^{100}$

Gas	v , c_p , c_v - ideal part	v , c_p , c_v - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]
SO_2	[26]	-

Isentropic Exponent $\kappa = f(p, s, type, comp)$

Name in Fortran:

REAL*8 FUNCTION KAPPA_PS_HUGAS (REAL*8 P, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure *p* in bar

S - Entropy s in kJ/(kg K)

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

Kappa_ps_HuGas - Isentropic exponent

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of t from s(p,t,type,comp) and calculation of κ from kappa(p,t,type,comp):

- for unsaturated and saturated humidity gas ($\psi_{\rm w} \le \psi_{\rm w,sat}$)

$$\kappa = -\frac{\mathbf{v}}{\mathbf{p}} \cdot \left(\frac{\partial \mathbf{p}}{\partial \mathbf{v}}\right)_{T} \cdot \frac{\mathbf{c}_{\mathbf{p}}}{\mathbf{c}_{\mathbf{v}}}$$

- for liquid fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water
- for ice fog ($\psi_w > \psi_{w,sat}$, t < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

 $Kappa_ps_HuGas = -1.10^{100}$

Gas	v , c_p , c_v , s - ideal part	v , c_p , c_v , s - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]
SO ₂	[26]	-

Thermal Conductivity $\lambda = f(p, t, type, comp)$

Name in Fortran:

REAL*8 FUNCTION LAMBDA_PT_HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure p in bar

T - Temperature *t* in °C

TYPE - composition:

TYPE=1 for composition as mass fraction ξ

TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

Lambda_pt_HuGas - Thermal conductivity in W/(m K)

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \le \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for liquid fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water
- for ice fog ($\psi_w > \psi_{w,sat}$, t < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

Lambda_pt_HuGas = -1.10^{100}

Gas	λ
Ar	[33]
Ne	[34],[35],[40],[41]
N_2	[42]
O_2	[37]
CO	[38]
CO_2	[43]
H_2O	[16]
SO_2	[34],[35],[40]

Molar mass M = f(type,comp)

Name in Fortran:

REAL*8 FUNCTION M_HUGAS (INTEGER*4 TYPE, REAL*8 COMP)

Input values:

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction $\psi_1...$ ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

M_HuGas - Molar mass in kg/kmol

Result for incorrect input values:

 $M_{\text{HuGas}} = -1.10^{100}$

Kinematic Viscosity v = f(p,t,t)

Name in Fortran:

REAL*8 FUNCTION NY_PT_HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure p in bar
T - Temperature t in °C
TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction $\psi_1...$ ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

Ny_pt _HuGas - Kinematic viscosity in m²/s

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

- Kinematic viscosity $v = \frac{\eta}{\rho} = \eta \cdot V$
- for unsaturated and saturated humid gas ($\psi_{\rm w} \le \psi_{\rm w.sat}$) as ideal mixture of real fluids
- for liquid fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water
- for ice fog (ψ_w > $\psi_{w,sat}$, t< 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

$$Ny_pt_HuGas = -1.10^{100}$$

Gas	v - ideal part	v - real part	λ
Ar	[26]	[27]	[33]
Ne	[26]	-	[34],[35],[40],[41]
N_2	[26]	[28]	[42]
02	[26]	[29]	[37]
CO	[26]	-	[38]
CO_2	[26]	[30]	[43]
H_2O	[26]	[31]	[16]
SO_2	[26]	-	[34],[35],[40]

Pressure p = f(h, s, type, comp)

Name in Fortran:

REAL*8 FUNCTION P_HS_HUGAS (REAL*8 H, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

H - Enthalpy h in kJ/kg
S - Entropy s in kJ/(kg K)
TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

p_hs_HuGas - Pressure in bar

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 16.5 \cdot 10^6 \, \text{bar}$ Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of t and p from h(p,t,type,comp) and s(p,t,type,comp) and calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$) as ideal mixture of real gases (dry gas and steam)
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice, calculation is not possible for liquid-ice fog at 0.01 °C
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

p hs
$$HuGas = -1.10^{100}$$

Gas	h, s - ideal part	h, s - real part	ice
Ar	[26]	[27]	-
Ne	[26]	-	-
N_2	[26]	[28]	-
O_2	[26]	[29]	-
CO	[26]	-	-
CO_2	[26]	[30]	-
H_2O	[26]	[31]	[25]
SO_2	[26]	-	-

Pressure p = f(t, s, type, comp)

Name in Fortran:

REAL*8 FUNCTION P_HS_HUGAS (REAL*8 H, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

T - Temperature *t* in °C S - Entropy s in kJ/(kg K)

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

p_t s_HuGas - Pressure in bar

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of *p* from s(p,t,type,comp) and calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$) as ideal mixture of real gases (dry gas and steam)
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice, calculation is not possible for liquid-ice fog at 0.01 °C
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

p hs
$$HuGas = -1.10^{100}$$

Gas	s - ideal part	s - real part	ice
Ar	[26]	[27]	-
Ne	[26]	-	-
N_2	[26]	[28]	-
O_2	[26]	[29]	-
CO	[26]	-	-
CO ₂	[26]	[30]	-
H ₂ O	[26]	[31]	[25]
SO ₂	[26]	-	-

Saturation Pressure of Water $p_{dsat} = f(p,t)$

Name in Fortran:

REAL*8 FUNCTION PDSAT_PT_HUGAS (REAL*8 P, REAL*8 T)

Input values:

P - Pressure p in bar

T - Temperature *t* in °C

Result:

pdsat_pt_HuGas - Saturation pressure of water in bar

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Comments:

 $p_{dsat}(p,t)$ for $t \ge 0.01 \, ^{\circ}\text{C}$ – Vapour pressure of water in gas mixtures

for t < 0.01 °C – Sublimation pressure of water in gas mixtures

Result for incorrect input values:

$$pdsat_pt_HuGas = -1.10^{100}$$

Reference:

 $p_{dsat}(p,t)$ for $T \ge 273,16$ K from IAPWS-IF97 [1], [2], [3], [4]

 $p_{dsat}(p,t)$ for T < 273,16 K from IAPWS-92 [24]

Relative Humidity $\varphi = f(p, t, type, comp)$

Name in Fortran:

REAL*8 FUNCTION PHI_PT_HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure p in bar

T - Temperature *t* in °C

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction $\psi_1...$ ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

Phi_pt_HuGas - Relative humidity in %

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Relative humidity
$$\varphi = \frac{X_{\text{W}}}{\frac{R_{\text{I}}}{R_{\text{W}}} + X_{\text{W}}} \frac{p}{p_{\text{dsat}}(p,T)} \cdot 100 \%$$

with $p_{dsat}(p,T)$ for $T \ge 273.16 \, K$ - Vapour pressure of water in gas mixtures

for T < 273.16 K - Sublimation pressures of water in gas mixtures

Result for incorrect input values:

$$Phi_pt_HuGas = -1.10^{100}$$

Reference:

 $p_{dsat}(p,t)$ for $T \ge 273,16$ K from IAPWS-IF97 [1], [2], [3], [4]

 $p_{dsat}(p,t)$ for T < 273,16 K from IAPWS-92 [24]

Prandtl Number Pr = f(p, t, type, comp)

Name in Fortran:

REAL*8 FUNCTION PR_PT_HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure p in bar
T - Temperature t in °C
TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

Pr_pt_HuGas - Prandtl-number

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

- *Prandtl*-number $Pr = \frac{v}{a} = \frac{\eta \cdot c_p}{\lambda}$
- for unsaturated and saturated humid gas ($\psi_{\rm w} \le \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for liquid fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water
- for ice fog ($\psi_w > \psi_{w,sat}$, t < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

$$Pr_pt_HuGas = -1.10^{100}$$

Gas	c_p - ideal part	c_p - real part	η	λ
Ar	[26]	[27]	[33]	[33]
Ne	[26]	-	[34]	[34],[35],[40],[41]
N_2	[26]	[28]	[36]	[42]
O_2	[26]	[29]	[37]	[37]
CO	[26]	-	[38]	[38]
CO_2	[26]	[30]	[39]	[43]
H_2O	[26]	[31]	[17]	[16]
SO_2	[26]	-	[34]	[34],[35],[40]

Gas constant R = f(type,comp)

Name in Fortran:

REAL*8 FUNCTION R_HUGAS (INTEGER*4 TYPE, REAL*8 COMP)

Input values:

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction $\psi_1...$ ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

R_HuGas - Gas constant in kJ/(kg K)

Result for incorrect input values:

R HuGas = -1.10^{100}

Reference: [32]

Region = f(h, s, type, comp)

Name in Fortran:

INTEGER*4 FUNCTION REGION_TS_HUGAS (REAL*8 T, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

H - Enthalpy h in kJ/kgS - Entropy s in kJ/(kg °C)

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

Region_hs_HuGas - State point of humid gas mixture

= 0 → Out of range of validity	= 6 → Pure liquid water
= 1 → Dry gas mixture	= 7 → Pure water-wet steam
= 2 → Unsaturated Gas mixture	= 8 → Pure steam
= 3 → Liquid fog	= $10 \rightarrow$ The CO2 in the gas mixture would be
$=4 \rightarrow lce fog$	partly liquid. Calculation is terminated.
= 5 → Liquid-ice fog at 0.01 °C exactly	= 11 \rightarrow The SO2 in the gas mixture would be
	partly liquid. Calculation is terminated.

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of p and t from s(p,t,type,comp) and h(p,t,type,comp) and calculation of Region from Region(p,t,type,comp)

Result for incorrect input values:

Region_hs_HuGas = 0

Gas	h, s - ideal part	h, s - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H ₂ O	[26]	[31]
SO ₂	[26]	-

Region = f(p,h,type,comp)

Name in Fortran:

INTEGER*4 FUNCTION REGION_PH_HUGAS (REAL*8 P, REAL*8 H, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure *p* in bar H - Enthalpy *h* in kJ/kg TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction $\psi_1...$ ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

Region_ph_HuGas - State point of humid gas mixture

= 0 → Out of range of validity	= 6 → Pure liquid water
= 1 → Dry gas mixture	= 7 → Pure water-wet steam
= 2 → Unsaturated Gas mixture	= 8 → Pure steam
= 3 → Liquid fog	= $10 \rightarrow$ The CO2 in the gas mixture would be
$=4 \rightarrow lce fog$	partly liquid. Calculation is terminated.
= 5 → Liquid-ice fog at 0.01 °C exactly	= 11 \rightarrow The SO2 in the gas mixture would be
	partly liquid. Calculation is terminated.

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of *t* from h(p,t,type,comp) and calculation of *Region* from Region(p,t,type,comp)

Result for incorrect input values:

Region_ph_HuGas = 0

Gas	h - ideal part	h - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]
SO ₂	[26]	-

Region = f(p, s, type, comp)

Name in Fortran:

INTEGER*4 FUNCTION REGION_PS_HUGAS (REAL*8 P, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure p in bar

S - Entropy s in kJ/(kg K)

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction $\psi_1...$ ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

Region_ps_HuGas - State point of humid gas mixture

= 0 → Out of range of validity	= 6 → Pure liquid water
= 1 → Dry gas mixture	= 7 → Pure water-wet steam
= 2 → Unsaturated Gas mixture	= 8 → Pure steam
= 3 → Liquid fog	= $10 \rightarrow$ The CO2 in the gas mixture would be
$=4 \rightarrow lce fog$	partly liquid. Calculation is terminated.
= 5 → Liquid-ice fog at 0.01 °C exactly	= 11 \rightarrow The SO2 in the gas mixture would be
	partly liquid. Calculation is terminated.

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of *t* from s(p,t,type,comp) and calculation of *Region* from Region(p,t,type,comp)

Result for incorrect input values:

Region_ps_HuGas = 0

Gas	s - ideal part	s - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]
SO ₂	[26]	-

Region = f(p,t,type,comp)

Name in Fortran:

INTEGER*4 FUNCTION REGION_PT_HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure p in bar

T - Temperature *t* in °C

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

Region_pt_HuGas - State point of humid gas mixture

= 0 → Out of range of validity	= 6 → Pure liquid water
= 1 → Dry gas mixture	= 7 → Pure water-wet steam
= 2 → Unsaturated Gas mixture	= 8 → Pure steam
= 3 → Liquid fog	= $10 \rightarrow$ The CO2 in the gas mixture would be
$=4 \rightarrow lce fog$	partly liquid. Calculation is terminated.
= 5 → Liquid-ice fog at 0.01 °C exactly	= 11 → The SO2 in the gas mixture would be
	partly liquid. Calculation is terminated.

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \le \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w.sat}$) as ideal mixture of saturated humid gas and liquid water or water ice

Result for incorrect input values:

Region_pt_HuGas = 0

Region = f(t, s, type, comp)

Name in Fortran:

INTEGER*4 FUNCTION REGION_TS_HUGAS (REAL*8 T, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

T - Temperature *t* in °C S - Entropy *s* in kJ/(kg K) TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction $\psi_1...$ ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

Region_ts_HuGas - State point of humid gas mixture

= 0 → Out of range of validity	= 6 → Pure liquid water
= 1 → Dry gas mixture	= 7 → Pure water-wet steam
= 2 → Unsaturated Gas mixture	= 8 → Pure steam
= 3 → Liquid fog	= $10 \rightarrow$ The CO2 in the gas mixture would be
$=4 \rightarrow lce fog$	partly liquid. Calculation is terminated.
= 5 → Liquid-ice fog at 0.01 °C exactly	= 11 \rightarrow The SO2 in the gas mixture would be
	partly liquid. Calculation is terminated.

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of *p* from s(p,t,type,comp) and calculation of *Region* from Region(p,t,type,comp)

Result for incorrect input values:

Region_ts_HuGas = 0

Gas	s - ideal part	s - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]
SO ₂	[26]	-

Density $\rho = f(p,t,type,comp)$

Name in Fortran:

REAL*8 FUNCTION rho_pTcomp_HuGas (p,T,type,comp (REAL*8 P, REAL*8 T, INTEGER*4 Type, REAL*8 COMP)

Input values:

P - Pressure p in bar

T - Temperature *t* in °C

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

rho_pt_HuGas - Density in kg/m³

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \le \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice

Result for incorrect input values:

rho_pt_HuGas =
$$-1.10^{100}$$

Gas	ho - ideal part	ho - real part	ice	
Ar	[26]	[27]	-	
Ne	[26]	-	-	
N_2	[26]	[28]	-	
O_2	[26]	[29]	-	
CO	[26]	-	-	
CO_2	[26]	[30]	-	
H_2O	[26]	[31]	[25]	
SO_2	[26]	-	-	

Specific Entropy s = f(p,h,type,comp)

Name in Fortran:

REAL*8 FUNCTION s_phcomp_HuGas (REAL*8 P, REAL*8 H, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure *p* in bar H - Enthalpy *h* in kJ/kg TYPE - composition:

> TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

s_ph_HuGas - Specific entropy in kJ/(kg K)

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of *t* from h(p,t,type,comp) and calculation of *s* from s(p,t,type,comp) Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \le \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

s ph HuGas =
$$-1.10^{100}$$

Gas	h, s - ideal part	h, s - real part	ice	
Ar	[26]	[27]	-	
Ne	[26]	-	-	
N_2	[26]	[28]	-	
O_2	[26]	[29]	-	
CO	[26]	-	-	
CO_2	[26]	[30]	-	
H_2O	[26]	[31]	[25]	
SO_2	[26]	-	-	

Specific Entropy s = f(p, t, type, comp)

Name in Fortran:

REAL*8 FUNCTION s_pTcomp_HuGas (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure *p* in bar

T - Temperature *t* in °C

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction $\psi_1...$ ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

s_pt_HuGas - Specific entropy in kJ/(kg K)

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \le \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

s pt HuGas =
$$-1.10^{100}$$

Gas	s - ideal part	s - real part	ice	
Ar	[26]	[27]	-	_
Ne	[26]	-	-	
N_2	[26]	[28]	-	
O_2	[26]	[29]	-	
CO	[26]	-	-	
CO_2	[26]	[30]	-	
H ₂ O	[26]	[31]	[25]	
SO ₂	[26]	-	-	

Surface Tension of Water $\sigma_{w} = f(t, type, comp)$

Name in Fortran:

REAL*8 FUNCTION sigmaw_T_HuGas (REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

T - Temperature t in °C

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

Sigmaw_t_HuGas - Surface tension of water $\sigma_{\rm w}$ in N/m

Range of validity:

Temperature t: 0 °C $\leq t \leq 373.946$ °C

Comments:

Calculation for pure water from IAPWS-IF97

Result for incorrect input values:

Sigmaw_t _HuGas = -1.10^{100}

Reference: [8]

Temperature t = f(h, s, type, comp)

Name in Fortran:

REAL*8 FUNCTION T_hscomp_HuGas (REAL*8 H, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

H - Enthalpy h in kJ/kg

S - Entropy s in kJ/(kg K)

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

t hs HuGas - Temperature t in °C

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of p and t from h(p,t,type,comp) and s(p,t,type,comp)

Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \le \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for fog $(\psi_w > \psi_{w,sat})$ as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

t hs
$$HuGas = -1.10^{100}$$

Gas	h, s - ideal part	h, s - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H ₂ O SO ₂	[26]	[31]
SO_2	[26]	-

Temperature t = f(p, h, type, comp)

Name in Fortran:

REAL*8 FUNCTION T_phcomp_HuGas (REAL*8 P, REAL*8 H, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure *p* in bar

H - Enthalpy h in kJ/kg

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_{10}$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_{10} in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

t_ph_HuGas - Temperature in °C

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of *t* from h(p,t,type,comp)

Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \le \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w.sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

t ph HuGas =
$$-1.10^{100}$$

Gas	h - ideal part	<i>h</i> - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H ₂ O	[26]	[31]
SO_2	[26]	-

Temperature t = f(p, s, type, comp)

Name in Fortran:

REAL*8 FUNCTION T_pscomp_HuGas (REAL*8 P, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure p in bar

S - Entropy s in kJ/(kg K)

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction $\psi_1...$ ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

t_ps_HuGas - Temperature *t* in °C

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of *t* from s(p,t,type,comp)

Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \le \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w.sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

t ps
$$HuGas = -1.10^{100}$$

Gas	h, s - ideal part	h, s - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]
SO_2	[26]	-

Dew Point Temperature of Water $T_{w,dew} = f(p,type,comp)$

Name in Fortran:

REAL*8 FUNCTION Twdew_pcomp_HuGas (REAL*8 P, INTEGER*4 TYPE, REAL*8 COMP) Input values:

P - Pressure p in bar

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

twdew_p_HuGas - Dew point temperature of water $T_{w,dew}$ in °C

Range of validity:

Pressure p: 0.01 bar $\leq p \leq 1000$ bar

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Dew point temperature of water $T_{w,dew} = T_{s}(p, p_{d})$ for $T \ge 273.16$ K

 $(t_{\rm S}$ – Boiling temperature of water in gas mixtures)

 $T_{\text{w dew}} = T_{\text{sub}}(p, p_{\text{d}}) \text{ for } T < 273.16 \text{ K}$

 $(t_{\text{Sub}} - \text{Sublimation temperature of water in gas mixtures})$

Result for incorrect input values:

twdew_p_HuGas = -1.10^{100}

Reference:

 $T_{S}(p, p_{d})$ for $T \ge 273.16$ K from IAPWS-IF97 [1], [2], [3], [4]

 $T_{SUD}(p, p_d)$ for T < 273.16 K from IAPWS-92 [24]

Specific Internal Energy u = f(p,t,type,comp)

Name in Fortran:

REAL*8 FUNCTION u_pTcomp_HuGas (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure p in bar

T - Temperature *t* in °C

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction $\psi_1...$ ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

u_pt_HuGas - Specific internal energy in kJ/kg

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \le \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice
- Effects of dissociation are considered for temperatures higher than 500 °C

Result for incorrect input values:

u pt HuGas =
$$-1.10^{100}$$

Gas	u - ideal part	u - real part	ice
Ar	[26]	[27]	-
Ne	[26]	-	-
N_2	[26]	[28]	-
O_2	[26]	[29]	-
CO	[26]	-	-
CO_2	[26]	[30]	-
H ₂ O	[26]	[31]	[25]
SO_2	[26]	-	-

Specific Volume v = f(h, s, type, comp)

Name in Fortran:

REAL*8 FUNCTION v_hscomp_HuGas (REAL*8 H, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

H - Enthalpy h in kJ/kg

S - Entropy s in kJ/(kg K)

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

v_hs_HuGas - Specific volume in m³/kg

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of p and t from h(p,t,type,comp) and s(p,t,type,comp) and calculation of v from v(p,t,type,comp)

Calculation:

- for unsaturated and saturated humid gas ($\psi_w \le \psi_{w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice

Result for incorrect input values:

v hs
$$HuGas = -1.10^{100}$$

Gas	v,h,s - ideal part	v,h,s - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]
SO_2	[26]	-

Specific Volume v = f(p,h,type,comp)

Name in Fortran:

REAL*8 FUNCTION v_phcomp_HuGas (REAL*8 P, REAL*8 H, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure *p* in bar

H - Enthalpy h in kJ/kg

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction $\psi_1...$ ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

v_ph_HuGas - Specific volume in m³/kg

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of t from h(p,t,type,comp) and calculation of v from v(p,t,type,comp) Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \le \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w.sat}$) as ideal mixture of saturated humid gas and liquid water or water ice

Result for incorrect input values:

$$v ph HuGas = -1.10^{100}$$

Gas	v,h - ideal part	v,h - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]
SO ₂	[26]	-

Specific Volume v = f(p, s, type, comp)

Name in Fortran:

REAL*8 FUNCTION v_pscomp_HuGas (REAL*8 P, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure p in bar

S - Entropy s in kJ/(kg K)

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

v_ps_HuGas - Specific volume in m³/kg

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of t from s(p,t,type,comp) and calculation of v from v(p,t,type,comp) Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \le \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for fog $(\psi_w > \psi_{w,sat})$ as ideal mixture of saturated humid gas and liquid water or water ice

Result for incorrect input values:

$$v ps HuGas = -1.10^{100}$$

Gas	v,s - ideal part	v,s - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H ₂ O	[26]	[31]
SO_2	[26]	-

Specific Volume v = f(p, t, type, comp)

Name in Fortran:

REAL*8 FUNCTION v_pTcomp_HuGas (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure *p* in bar

T - Temperature *t* in °C

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction $\psi_1...$ ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

v_pt_HuGas - Specific volume in m³/kg

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \le \psi_{\rm w,sat}$) as ideal mixture of real fluids
- for fog ($\psi_{\rm w}$ > $\psi_{\rm w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice

Result for incorrect input values:

$$v_pt_HuGas = -1.10^{100}$$

Gas	v - ideal part	v - real part	ice
Ar	[26]	[27]	-
Ne	[26]	-	-
N_2	[26]	[28]	-
O_2	[26]	[29]	-
CO	[26]	-	-
CO_2	[26]	[30]	-
H ₂ O	[26]	[31]	[25]
SO ₂	[26]	-	-

Specific Volume v = f(t, s, type, comp)

Name in Fortran:

REAL*8 FUNCTION v_Tscomp_HuGas (REAL*8 T, REAL*8 S, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

T - Temperature *t* in °C S - Entropy s in kJ/(kg K)

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

v_ts_HuGas - Specific volume in m³/kg

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Iteration of p from s(p,t,type,comp) and calculation v from v(p,t,type,comp) Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \leq \psi_{\rm w,sat}$) as ideal mixture of real gases (dry gas and steam)
- for fog ($\psi_w > \psi_{w,sat}$) as ideal mixture of saturated humid gas and liquid water or water ice, calculation is not possible for liquid-ice fog at 0.01 °C

Result for incorrect input values:

$$v ts HuGas = -1.10^{100}$$

Gas	v,s ideal part	v,s real part	ice
Ar	[26]	[27]	-
Ne	[26]	-	-
N_2	[26]	[28]	-
O_2	[26]	[29]	-
CO	[26]	-	-
CO_2	[26]	[30]	-
H_2O	[26]	[31]	[25]
SO_2	[26]	-	-

Isentropic Speed of Sound w = f(p,t,type,comp)

Name in Fortran:

REAL*8 FUNCTION w_pTcomp_HuGas (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure *p* in bar

T - Temperature *t* in °C

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

w_pt_HuGas - Speed of sound in m/s

Range of validity:

Temperature t: $-70 \,^{\circ}\text{C} \le t \le 3026.85 \,^{\circ}\text{C}$ Pressure p: $0.01 \, \text{bar} \le p \le 1000 \, \text{bar}$

Partial pressures of CO₂ and SO₂ less than saturation pressures

Comments:

Calculation:

- for unsaturated and saturated humid gas ($\psi_{\rm w} \le \psi_{\rm w,sat}$)

$$W = \sqrt{-V^2 \cdot \left(\frac{\partial p}{\partial V}\right)_T \cdot \frac{c_p}{c_V}}$$

- for liquid fog $(\psi_w > \psi_{w,sat})$ as ideal mixture of saturated humid gas and liquid water
- for ice fog ($\psi_w > \psi_{w,sat}$, t < 0.01 °C) as saturated humid gas mixture

Result for incorrect input values:

w pt HuGas =
$$-1.10^{100}$$

Gas	v , c_p , c_v - ideal part	v , c_p , c_v - real part
Ar	[26]	[27]
Ne	[26]	-
N_2	[26]	[28]
O_2	[26]	[29]
CO	[26]	-
CO_2	[26]	[30]
H_2O	[26]	[31]
SO_2	[26]	-

Humidity Ratio (Absolute Humidity) $x_W = f(type,comp)$

Name in Fortran:

REAL*8 FUNCTION xw_comp_HuGas (INTEGER*4 TYPE, REAL*8 COMP)

Input values:

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

xw_HuGas - Humidity ratio in g water / kg gas

Comments:

Humidity ratio of water
$$x_{\rm w} = \frac{\psi_{\rm w}}{\frac{R_{\rm w}}{R_{\rm mix}} - \psi_{\rm w}}$$

Result for incorrect input values:

$$xw_HuGas = -1.10^{100}$$

Mole Fraction of Liquid Water $\psi_{wl} = f(p,t,type,comp)$

Name in Fortran:

REAL*8 FUNCTION PSIWL_PT_HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure *p* in bar

T - Temperature t in °C

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction ψ_1 ... ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

Psiwl_pt_HuGas - Mole fraction of water in kmol/kmol

Range of validity:

Temperature t: t_{τ} (p,type,comp) $\leq t \leq t_{s}(p,p_{d})$

 $(t_{\rm S}$ – Boiling temperature of water in gas mixtures)

Pressure p: 0.01 bar $\leq p \leq 1000$ bar

Comments:

Mole fraction of liquid water: $\psi_{wl} = \psi_{w} - \psi_{wsat}$

with
$$\psi_{\text{wsat}} = \frac{p_{\text{dsat}}(p, T)}{p}$$

with $p_{dsat}(p,t)$ for $t \ge 0.01$ °C – Vapour pressure of water in gas mixtures

for t < 0.01 °C – Sublimation pressure of water in gas mixtures

Result for incorrect input values:

Psiwl pt HuGas =
$$= -1.10^{100}$$

Reference:

 $p_{\text{dsat}}(p,t)$ for $T \ge 273,16$ K from IAPWS-IF97 [1], [2], [3], [4]

 $p_{dsat}(p,t)$ for T < 273,16 K from IAPWS-92 [24]

Mole Fraction of Water of Saturated Gas $\psi_{w,sat} = f(p,t,type,comp)$

Name in Fortran:

REAL*8 FUNCTION PSIWSAT_PT_HUGAS (REAL*8 P, REAL*8 T, INTEGER*4 TYPE, REAL*8 COMP)

Input values:

P - Pressure *p* in bar

T - Temperature *t* in °C

TYPE - composition:

TYPE=1 for composition as mass fraction ξ TYPE=0 for composition as mole fraction ψ

COMP(0:8) - composition as mass fraction $\xi_1...\xi_8$ in kg/kg when TYPE=1

- composition as mole fraction $\psi_1...$ ψ_8 in kmol/kmol when TYPE=0

COMP(0) - Dummy

COMP(1)...COMP(8) mass or mole fraction of mixture components

Result:

Psiwsat_pt_HuGas - Mole fraction of water of saturated gas $\psi_{w \, \text{sat}}$ in kmol/ kmol

Range of validity:

Temperature t: $-70 \, ^{\circ}\text{C} \leq t \leq T_{\text{s}}(p, p_{\text{d}})$

 $(t_{\rm S}$ – Boiling temperature of water in gas mixtures)

Pressure p: 0.01 bar $\leq p \leq 1000$ bar

Comments:

Mole fraction of water of saturated gas: $\psi_{\text{wsat}} = \frac{p_{\text{dsat}}(p,T)}{p}$

with $p_{dsat}(p,t)$ for $t \ge 0.01 \, ^{\circ}\text{C}$ – Vapour pressure of water in gas mixtures

for t < 0.01 °C – Sublimation pressure of water in gas mixtures

Result for incorrect input values:

Psiwsat_pt_HuGas = -1·10¹⁰⁰

Reference:

 $p_{dsat}(p,t)$ for $T \ge 273,16$ K from IAPWS-IF97 [1], [2], [3], [4]

 $p_{dsat}(p,t)$ for T < 273,16 K from IAPWS-92 [24]

ZITTAU/GOERLITZ UNIVERSITY OF APPLIED SCIENCES

Department of Technical Thermodynamics www.thermodynamics-zittau.de

4. Property Libraries for Calculating Heat Cycles, Boilers, Turbines and Refrigerators

Water and Steam

Library LibIF97

- Industrial Formulation IAPWS-IF97 (Revision 2007)
- Supplementary Standards
- IAPWS-IF97-S01
- IAPWS-IF97-S03rev
- IAPWS-IF97-S04
- IAPWS-IF97-S05
- IAPWS Revised Advisory Note No. 3 on Thermodynamic Derivatives (2008)

Humid Combustion Gas Mixtures

Library LibHuGas

Model: Ideal mixture of the real fluids:

CO₂ - Span and Wagner O₂ - Schmidt and Wagner

H₂O - IAPWS-95

Ar - Tegeler et al.

N₂ - Span et al.

and of the ideal gases:

SO₂, CO, Ne (Scientific Formulation of Bücker et al.)

Consideration of:

Dissociation from VDI 4670 and Poynting effect

Humid Air

Library LibHuAir

Model: Ideal mixture of the real fluids:

- Dry air from Lemmon et al.
- Steam, water and ice from IAPWS-IF97 and IAPWS-06

Consideration of:

- Condensation and freezing of steam
- Dissociation from the VDI 4670
- Poynting effect from ASHRAE RP-1485

Carbon Dioxide Including Dry Ice

Library LibCO2

Formulation of Span and Wagner (1996)

Seawater

Library LibSeaWa

IAPWS Industrial Formulation 2013

Ice

Library LibICE

Ice from IAPWS-06, Melting and sublimation pressures from IAPWS-08, Water from IAPWS-IF97, Steam from IAPWS-95 and -IF97

Ideal Gas Mixtures

Library LibldGasMix

Model: Ideal mixture of the ideal gases:

Ar	NO	не	Propylene
Ne	H ₂ O	F_2	Propane
N_2	SO ₂	NH ₃	Iso-Butane
O_2	H ₂	Methane	n-Butane
CO	H ₂ S	Ethane	Benzene
CO ₂	OH	Ethylene	Methanol
Air			

Consideration of:

Dissociation from the VDI Guideline 4670

Library LibIDGAS

Model: Ideal gas mixture from VDI Guideline 4670

Consideration of:

Dissociation from the VDI Guideline 4670

Humid Air Library ASHRAE LibHuAirProp

Model: Virial Equation from ASHRAE Report RP-1485 for real mixture of the real fluids:

- Dry air

- Steam

Consideration of:

 Enhancement of the partial saturation pressure of water vapor at elevated total pressures

www.ashrae.org/bookstore

Dry Air Including Liquid Air Library LibRealAir

Formulation of Lemmon et al. (2000)

Refrigerants

Ammonia

Library LibNH3

Formulation of Tillner-Roth et al. (1993)

R134a

Library LibR134a

Formulation of Tillner-Roth and Baehr (1994)

Iso-Butane

Library LibButane_Iso

Formulation of Bücker and Wagner (2006)

n-Butane

Library LibButane_n

Formulation of Bücker and Wagner (2006)

Mixtures for Absorption Processes

Ammonia/Water Mixtures

Library LibAmWa

IAPWS Guideline 2001 of Tillner-Roth and Friend (1998)

Helmholtz energy equation for the mixing term (also useable for calculating Kalina Cycle)

Water/Lithium Bromide Mixtures

Library LibWaLi

Formulation of Kim and Infante Ferreira (2004)
Gibbs energy equation for the mixing term

Liquid Coolants

Liquid Secondary Refrigerants

Library LibSecRef

Liquid solutions of water with

 $C_2H_6O_2$ Ethylene glycol $C_3H_8O_2$ Propylene glycol C_2H_5OH Ethyl alcohol CH_3OH Methyl alcohol $C_2H_9O_3$ Glycerol

K2CO3Potassium carbonateCaCl2Calcium chlorideMgCl2Magnesium chlorideNaClSodium chloride

NaCl Sodium chloride $C_2H_3KO_2$ Potassium acetate

Formulation of the International Institute of Refrigeration (1997)

Ethanol

Library LibC2H5OH

Formulation of Schroeder (2012)

Methanol **Library LibCH3OH**

Formulation of de Reuck and Craven (1993)

Propane

Library LibPropane

Formulation of Lemmon et al. (2009)

Siloxanes as ORC Working Fluids

Octamethylcyclotetrasiloxane C₈H₂₄O₄Si₄ Library LibD4

Decamethylcyclopentasiloxane C₁₀H₃₀O₅Si₅ Library LibD5

Tetradecamethylhexasiloxane C₁₄H₄₂O₅Si₆ Library LibMD4M

Hexamethyldisiloxane C₆H₁₈OSi₂ Library LibMM

Formulation of Colonna et al. (2006)

Dodecamethylcyclohexasiloxane C₁₂H₃₆O₆Si₆ Library LibD6

Decamethyltetrasiloxane C₁₀H₃₀O₃Si₄ Library LibMD2M

Dodecamethylpentasiloxane C₁₂H₃₆O₄Si₅ Library LibMD3M

Octamethyltrisiloxane C₈H₂₄O₂Si₃ Library LibMDM

Formulation of Colonna et al. (2008)

Nitrogen

Library LibN2

Formulation of Span et al. (2000)

Hydrogen **Library LibH2**

Formulation of Leachman et al. (2009)

Helium

Library LibHe

Formulation of Arp et al. (1998)

Hydrocarbons

Decane C₁₀H₂₂ Library LibC10H22

Isopentane C₅H₁₂ Library LibC5H12_ISO

Neopentane C₅H₁₂ Library LibC5H12_NEO

Isohexane C₆H₁₄ Library LibC6H14

Toluene C₇H₈ Library LibC7H8

Formulation of Lemmon and Span (2006)

Further Fluids

Carbon monoxide CO Library LibCO

Carbonyl sulfide COS Library LibCOS

Hydrogen sulfide H₂S Library LibH2S

Dinitrogen monooxide N₂O Library LibN2O

Sulfur dioxide SO₂ Library LibSO2

Acetone C₃H₆O Library LibC3H6O

Formulation of Lemmon and Span (2006)

For more information please contact:

Zittau/Goerlitz University of Applied Sciences Department of Technical Thermodynamics Professor Hans-Joachim Kretzschmar Dr. Ines Stoecker

Theodor-Koerner-Allee 16 02763 Zittau, Germany

Internet: www.thermodynamics-zittau.de

E-mail: hj.kretzschmar@hszg.de

Phone: +49-3583-61-1846 Fax.: +49-3583-61-1846

The following thermodynamic and transport properties can be calculated^a:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature T_s
- Density ρ
- Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_p
- Isochoric heat capacity c_v
- Isentropic exponent κ Speed of sound w
- Surface tension σ

Transport Properties

- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl number Pr

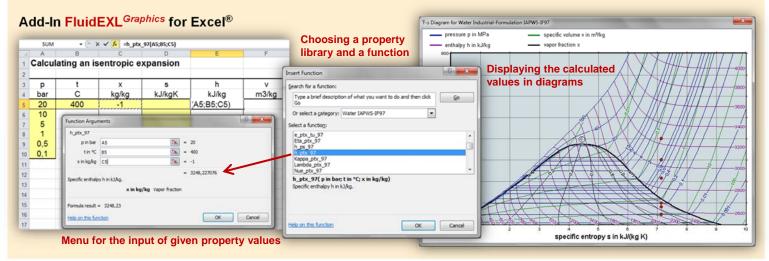
Backward Functions

- T, v, s (p,h)
- T, v, h (p,s)
- p, T, v (h,s)
- p, T (v,h)
- p, T (v,u)

Thermodynamic Derivatives

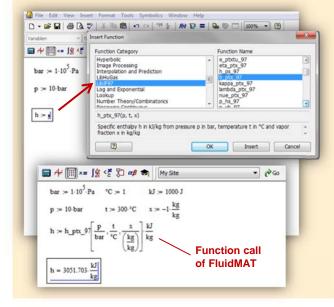
· Partial derivatives can be calculated.

^a Not all of these property functions are available in all property libraries.

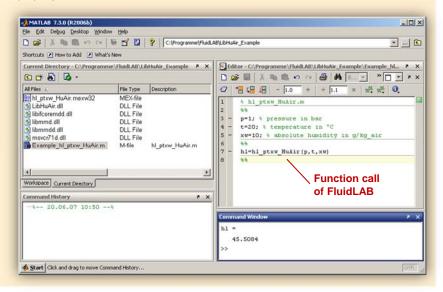


ZITTAU/GOERLITZ UNIVERSITY OF APPLIED SCIENCES

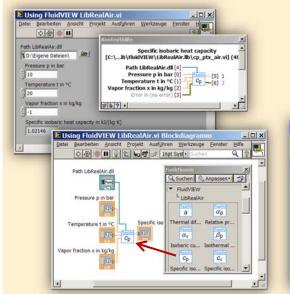
Department of Technical Thermodynamics www.thermodynamics-zittau.de



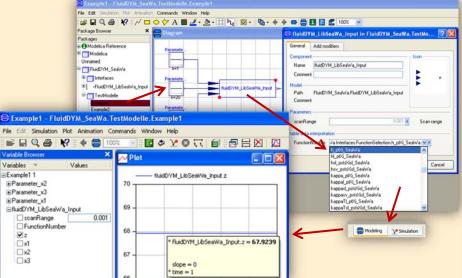
Property Software for Calculating Heat Cycles, Boilers, Turbines and Refrigerators


Add-In FluidMAT for Mathcad®

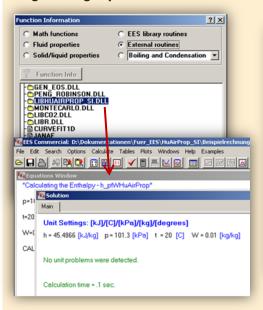
The property libraries can be used in Mathcad®.


Add-In FluidLAB for MATLAB®

Using the Add-In FluidLAB the property functions can be called in MATLAB®.

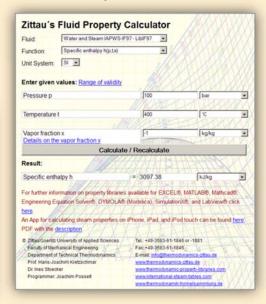

Add-On FluidVIEW for LabVIEW®

The property functions can be calculated in LabVIEW®.



Add-In FluidDYM for DYMOLA® (Modelica) and SimulationX®

The property functions can be called in DYMOLA® and SimulationX®


Add-In FluidEES for Engineering Equation Solver®

App International Steam Tables for iPhone, iPad, iPod touch, Android smart phones and tablets

Online Property Calculator at www.thermodynamics-zittau.de

Property Software for Pocket Calculators

For more information please contact:

Zittau/Goerlitz University of Applied Sciences Department of Technical Thermodynamics Professor Hans-Joachim Kretzschmar Dr. Ines Stoecker Theodor-Koerner-Allee 16 02763 Zittau, Germany E-mail: hj.kretzschmar@hs-zigr.de Internet: www.thermodynamics-zittau.de

Phone: +49-3583-61-1846 Fax.: +49-3583-61-1846

The following thermodynamic and transport properties^a can be calculated in Excel[®], MATLAB[®], Mathcad[®], Engineering Equation Solver[®] EES, DYMOLA[®] (Modelica), SimulationX[®], and LabVIEW[®]:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature T_s
- $\bullet \ {\rm Density} \ \rho$
- · Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_p
- Isochoric heat capacity c_v
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Transport Properties

- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Thermal conductivity
- Prandtl-number Pr

Backward Functions

- T, v, s (p,h)
- T, v, h (p,s)
- p, T, v (h,s)
- p, T (v,h)
- p, T (v,u)

Thermodynamic Derivatives

 Partial derivatives can be calculated.

^a Not all of these property functions are available in all property libraries.

5. References

- [1] Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam IAPWS-IF97.
 IAPWS Sekretariat, Dooley, B, EPRI, Palo Alto CA (1997)
- [2] Wagner, W.; Kruse, A.: Zustandsgrößen von Wasser und Wasserdampf. Springer-Verlag, Berlin (1998)
- [3] Wagner, W.; Cooper, J.R.; Dittmann, A.; Kijima, J.; Kretzschmar, H.-J.; Kruse, A.; Mares, R.; Oguchi, K.; Sato, H.; Stöcker, I.; Sifner, O.; Takaishi, Y.; Tanishita, I.; Trübenbach, J.; Willkommen, Th.: The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam.

 ASME Journal of Eng. for Gas Turbines and Power 122 (2000) Nr. 1, S. 150-182
- [4] Kretzschmar, H.-J.; Stöcker, I.; Klinger, J.; Dittmann, A.: Calculation of Thermodynamic Derivatives for Water and Steam Using the New Industrial Formulation IAPWS-IF97. in: Steam, Water and Hydrothermal Systems: Physics and Chemistry Meeting the Needs of Industry, Proceedings of the 13th International Conference on the Properties of Water and Steam, Eds. P.G. Hill et al., NRC Press, Ottawa, 2000
- [5] Kretzschmar, H.-J.:Mollier h,s-Diagramm.Springer-Verlag, Berlin (1998)
- [6] Revised Release on the IAPS Formulation 1985 for the Thermal Conductivity of Ordinary Water Substance. IAPWS Sekretariat, Dooley, B., EPRI, Palo Alto CA, (1997)
- [7] Revised Release on the IAPS Formulation 1985 for the Viscosity of Ordinary Water Substance.
 IAPWS Secretariat, Dooley, B., EPRI, Palo Alto CA, (1997)
- [8] IAPWS Release on Surface Tension of Ordinary Water Substance 1994. IAPWS Sekretariat, Dooley, B., EPRI, Palo Alto CA, (1994)
- [9] Kretzschmar, H.-J.; Stöcker, I.; Willkommen, Th.; Trübenbach, J.; Dittmann, A.: Supplementary Equations v(p, T) for the Critical Region to the New Industrial Formulation IAPWS-IF97 for Water and Steam. in: Steam, Water and Hydrothermal Systems: Physics and Chemistry Meeting the Needs of Industry, Proceedings of the 13th International Conference on the Properties of Water and Steam, Eds. P.G. Hill et al., NRC Press, Ottawa, 2000
- [10] Kretzschmar, H.-J.; Stöcker, I.; Knobloch, K.; Trübenbach, J.; Willkommen, Th.; Dittmann, A.; Friend, D.: Supplementary Backward Equations p(h,s) to the Industrial Formulation IAPWS-IF97 for Water and Steam.
 ASME Journal of Engineering for Gas Turbines and Power is under way

[11] Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. IAPWS Sekretariat, Dooley, B., EPRI, Palo Alto CA, (1995)

[12] Grigull, U.:

Properties of Water and Steam in SI Units.

Springer-Verlag, Berlin (1989)

[13] Kretzschmar, H.-J.:

Zur Aufbereitung und Darbietung thermophysikalischer Stoffdaten für die Energietechnik.

Habilitation, TU Dresden, Fakultät Maschinenwesen (1990)

[14] Baehr, H.D.; Diederichsen, Ch.:

Berechnungsgleichungen für Enthalpie und Entropie der Komponenten von Luft und Verbrennungsgasen.

BWK 40 (1988) Nr. 1/2, S. 30-33

[15] Brandt, F.:

Wärmeübertragung in Dampferzeugern und Wärmetauschern.

FDBR-Fachbuchreihe, Bd. 2, Vulkan Verlag Essen (1985)

[16] Release on the IAPS Formulation 1985 for the Thermal Conductivity of Ordinary Water Substance.

IAPWS Sekretariat, Dooley, B., EPRI, Palo Alto CA, (1985)

- [17] Release on the IAPS Formulation 1985 for the Viscosity of Ordinary Water Substance. IAPWS Secretariat, Dooley, B., EPRI, Palo Alto CA, (1985)
- [18] Release on Surface Tension of Ordinary Water Substance 1975. IAPWS Sekretariat, Dooley, B., EPRI, Palo Alto CA, (1975)
- [19] VDI-Wärmeatlas, 7. Auflage. VDI-Verlag, Düsseldorf (1995)
- [20] Blanke, W.:

Thermophysikalische Stoffgrößen.

Springer-Verlag, Berlin (1989)

[21] VDI-Richtlinie 4670

Thermodynamische Stoffwerte von feuchter Luft und Verbrennungsgasen. VDI-Handbuch Energietechnik, VDI-Gesellschaft Energietechnik, Düsseldorf (2000)

[22] Lemmon, E. W.; Jacobsen, R. T.; Penoncello, S. G.; Friend, D. G.:

Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon and Oxygen from 60 to 2000 K at Pressures to 2000 MPa.

J. Phys. Chem. Ref. Data 29 (2000) Nr. 2, S. 331-385

[23] Lemmon, E. W.; Jacobsen, R. T:

Transport Properties of Air.

National Institute of Standards and Technology, Boulder CO, (2000),

private communication

- [24] Revised Release on Pressure along the Melting and Sublimation Curves of Ordinary Water Substance.
 IAPWS Sekretariat, Dooley, B., EPRI, Palo Alto CA (1993)
- [25] Hyland, R. W.; Wexler, A.:
 Formulations for the Thermodynamic Properties of Saturated Phases of H₂O from 173.15 K to 473.15 K.
 Report No. 2793 (RP-216), National Bureau of Standards, Washington, D.C. (1983)
- [26] Bücker, D.; Span, R.; Wagner, W.: Thermodynamic Property Models for Moist Air and Combustion Gases.J. Eng. Gas Turb. Power 125 (2003) 374-383.
- [27] Tegeler, Ch.; Span, R.; Wagner, W.:
 A New Equation of State for Argon Covering the Fluid Region for Temperatures From the Melting Line to 700 K at Pressure up to 1000 MPa.
 J. Phys. Chem. Ref. Data 28 (1999) 779-850.
- [28] Span, R.; Lemmon, E. W.; Jacobsen, R. T.; Wagner, W.; Yokozeki, A.: A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures from 63.151 to 1000 K and Pressures to 2200 MPa. J. Phys. Chem. Ref. Data 29 (2000) 1361-1433.
- [29] de Reuck, K. M.; Wagner, W.: Oxygen - International Thermodynamic Tables of the Fluid State – 9. IUPAC Thermodynamic Tables Project, Blackwell Scientific Publications, Oxford, UK, 1987.
- [30] Span, R.; Wagner, W.:
 A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa.
 J. Phys. Chem. Ref. Data 25 (1996) 1509-1596.
- [31] Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use.
 The Internal Association for the Properties of Water and Steam, Fredericia (1996)
- [32] Verein Deutscher Ingenieure
 Thermodynamische Stoffwerte von feuchter Luft und Verbrennungsgasen.
 VDI 4670, Entwurf (2000)
- [33] Lemmon, E. W.; Jacobsen, R. T.:
 Preliminary equation for viscosity and thermal conductivity of argon.
 NIST (2001)
- [34] Klein, S. A.; Mc Linden, M. O.; Laesecke, A.: An improved extended corresponding states method for estimation of viscosity of pure refrigerants and mixtures. International Journal of Refrigeration 20 (1997) p. 208-217
- [35] McLinden, M. O.; Klein, S. A.; and Perkins, R. A.:
 An extended corresponding states model for the thermal conductivity of refrigerants and refrigerant mixtures.
 Int. J. Refrigeration, 23 (2000) p. 43-63

- [36] Lemmon, E. W.; Jacobsen, R. T.:
 Preliminary equation for viscosity of nitrogen.
 NIST (1999)
- [37] Lemmon, E. W.; Jacobsen, R. T.:

 Preliminary equation for viscosity and thermal conductivity of oxygen.

 NIST (2001)
- [38] National Institute of Standards and Technology Viscosity and thermal conductivity of carbon monoxide. Coefficients are taken from NIST14, Version 9.08
- [39] Fenghour, A.; Wakeham, W. A.; Vesovic, V.:The viscosity of carbon dioxide.Journal of Physical and Chemical Reference Data 27 (1998) No. 1
- [40] Reid, R. C.; Prausnitz, J. M.; Poling, B. E.:The Properties of Gases and Liquids.4th edition, McGraw-Hill Book Company, New York (1987)
- [41] Rabinovich, V. A.; Vasserman, A. A.; Nedostup, V. I.; Veksler, L. S.: Thermophysical Properties of Neon, Argon, Krypton, and Xenon. Hemisphere Publishing Corp., New York (1988)
- [42] Lemmon, E. W.; Jacobsen, R. T.:
 Preliminary equation for thermal conductivity of nitrogen.
 NIST (1999)
- [43] Vesovic, V.; Wakeham, W. A.; Olchowy, G. A.; Sengers, J. V.; Watson, J. T. R.; Millat, J.:
 The transport properties of carbon dioxide.
 J. Phys. Chem. Ref. Data, 19 (1990) p. 763-808

6. Satisfied Customers

Date: 04/2014

The following companies and institutions use the property libraries

- FluidEXL^{Graphics} for Excel[®]
- FluidLAB for MATLAB®
- FluidMAT for Mathcad®
- FluidEES for Engineering Equation Solver® EES
- FluidDYM for Dymola $^{\mbox{\scriptsize R}}$ (Modelica) and Simulation $X^{\mbox{\scriptsize R}}$
- FluidVIEW for LabVIEW®:

2014

PROJEKTPLAN, Dohna	04/2014
Technical University of Vienna, Austria	04/2014
MTU Aero Engines AG, Munich	04/2014
GKS, Schweinfurt	03/2014
Technical University of Nurnberg	03/2014
EP-E, Niederstetten	03/2014
Rückert NatUrgas GmbH, Lauf	03/2014
YESS-World, South Korea	03/2014
ZAB, Dessau	02/2014
KIT-TVT, Karlsruhe	02/2014
Stadtwerke Neuburg	02/2014
COMPAREX, Leipzig for RWE Essen	02/2014
Technical University of Prague, Czech Republic	02/2014
HS Augsburg	02/2014
Envi-con, Nürnberg	01/2014
DLR, Stuttgart	01/2014
Doosan Lentjes, Ratingen	01/2014
Technical University of Berlin	01/2014
Technical University of Munich	01/2014
Technical University of Braunschweig	01/2014
M&M Turbinentechnik, Bielefeld	01/2014

2013

TRANTER-GmbH, Artern	12/2013
SATAKE, Shanghai, China	12/2013
VOITH, Kunshan, China	12/2013
ULT, Löbau	12/2013
MAN, Copenhagen, Dänemark	11/2013
DREWAG, Dresden	11/2013
Haarslev Industries, Herlev, Dänemark	11/2013
STEAG, Herne	11/2013, 12/2013
Ingersoll-Rand, Oberhausen	11/2013
Wilhelm-Büchner HS, Darmstadt	10/2013
IAV, Chemnitz	10/2013
Technical University of Regensburg	10/2013
PD-Energy, Bitterfeld	09/2013
Thermofin, Heinsdorfergrund	09/2013
SHI, New Jersey, USA	09/2013
M&M Turbinentechnik, Bielefeld	08/2013
BEG-BHV, Bremerhaven	08/2013
TIG-Group, Husum	08/2013
COMPAREX, Leipzig for RWE Essen	08/2013, 11/2013
101 1442 200011	12/2013
University of Budapest, Hungary	12/2013 08/2013
University of Budapest, Hungary	08/2013
University of Budapest, Hungary	08/2013 08/2013, 10/2013
University of Budapest, Hungary Siemens, Frankenthal	08/2013 08/2013, 10/2013 11/2013
University of Budapest, Hungary Siemens, Frankenthal VGB, Essen	08/2013 08/2013, 10/2013 11/2013 07/2013, 11/2013
University of Budapest, Hungary Siemens, Frankenthal VGB, Essen Brunner Energieberatung, Zurich, Switzerland	08/2013 08/2013, 10/2013 11/2013 07/2013, 11/2013 07/2013
University of Budapest, Hungary Siemens, Frankenthal VGB, Essen Brunner Energieberatung, Zurich, Switzerland Technical University of Deggendorf	08/2013 08/2013, 10/2013 11/2013 07/2013, 11/2013 07/2013
University of Budapest, Hungary Siemens, Frankenthal VGB, Essen Brunner Energieberatung, Zurich, Switzerland Technical University of Deggendorf University of Maryland, USA	08/2013 08/2013, 10/2013 11/2013 07/2013, 11/2013 07/2013 07/2013
University of Budapest, Hungary Siemens, Frankenthal VGB, Essen Brunner Energieberatung, Zurich, Switzerland Technical University of Deggendorf University of Maryland, USA University of Princeton, USA	08/2013 08/2013, 10/2013 11/2013 07/2013, 11/2013 07/2013 07/2013 07/2013
University of Budapest, Hungary Siemens, Frankenthal VGB, Essen Brunner Energieberatung, Zurich, Switzerland Technical University of Deggendorf University of Maryland, USA University of Princeton, USA NIST, Boulder, USA	08/2013 08/2013, 10/2013 11/2013 07/2013, 11/2013 07/2013 07/2013 07/2013 07/2013
University of Budapest, Hungary Siemens, Frankenthal VGB, Essen Brunner Energieberatung, Zurich, Switzerland Technical University of Deggendorf University of Maryland, USA University of Princeton, USA NIST, Boulder, USA IGUS GmbH, Dresden	08/2013 08/2013, 10/2013 11/2013 07/2013, 11/2013 07/2013 07/2013 07/2013 07/2013 06/2013
University of Budapest, Hungary Siemens, Frankenthal VGB, Essen Brunner Energieberatung, Zurich, Switzerland Technical University of Deggendorf University of Maryland, USA University of Princeton, USA NIST, Boulder, USA IGUS GmbH, Dresden BHR Bilfinger, Essen	08/2013 08/2013, 10/2013 11/2013 07/2013, 11/2013 07/2013 07/2013 07/2013 07/2013 06/2013 06/2013 06/2013

Schwing/Stetter GmbH, Memmingen	05/2013
Vattenfall, Berlin	05/2013
AUTARK, Kleinmachnow	05/2013
STEAG, Zwingenberg	05/2013
Hochtief, Düsseldorf	05/2013
University of Stuttgart	04/2013
Technical University -Bundeswehr, Munich	04/2013
Rerum Cognitio Forschungszentrum, Frankfurt	04/2013
Kältetechnik Dresen + Bremen, Alfhausen	04/2013
University Auckland, New Zealand	04/2013
MASDAR Institut, Abu Dhabi, United Arab Emirates	03/2013
Simpelkamp, Dresden	02/2013
VEO, Eisenhüttenstadt	02/2013
ENTEC, Auerbach	02/2013
Caterpillar, Kiel	02/2013
Technical University of Wismar	02/2013
Technical University of Dusseldorf	02/2013
ILK, Dresden	01/2013, 08/2013
Fichtner IT, Stuttgart	01/2013, 11/2013
Schnepf Ingeniuerbüro, Nagold	01/2013
Schütz Engineering, Wadgassen	01/2013
Endress & Hauser, Reinach, Switzerland	01/2013
Oschatz GmbH, Essen	01/2013
frischli Milchwerke, Rehburg-Loccum	01/2013
2012	
Voith, Bayreuth	12/2012
Technical University of Munich	12/2012
Dillinger Huette	12/2012
University of Stuttgart	11/2012
Siemens, Muehlheim	11/2012
Sennheiser, Hannover	11/2012
Oschatz GmbH, Essen	10/2012
Fichtner IT, Stuttgart	10/2012, 11/2012
Helbling Technik AG, Zurich, Switzerland	10/2012
University of Duisburg	10/2012

Rerum Cognitio Forschungszentrum, Frankfurt	09/2012
Pöyry Deutschland GmbH, Dresden	08/2012
Extracciones, Guatemala	08/2012
RWE, Essen	08/2012
Weghaus Consulting Engineers, Wuerzburg	08/2012
GKS, Schweinfurt	07/2012
COMPAREX, Leipzig for RWE Essen	07/2012
GEA, Nobitz	07/2012
Meyer Werft, Papenburg	07/2012
STEAG, Herne	07/2012
GRS, Cologne	06/2012
Fichtner IT Consult, Chennai, India	06/2012
Siemens, Freiburg	06/2012
Nikon Research of America, Belmont, USA	06/2012
Niederrhein University of Applied Sciences, Krefeld	06/2012
STEAG, Zwingenberg	06/2012
Mainova, Frankfurt on Main via Fichtner IT Consult	05/2012
Endress & Hauser	05/2012
PEU, Espenheim	05/2012
Luzern University of Applied Sciences, Switzerland	05/2012
BASF, Ludwigshafen (general license) via Fichtner IT Consult	05/2012
SPX Balcke-Dürr, Ratingen	05/2012, 07/2012
Gruber-Schmidt, Wien, Austria	04/2012
Vattenfall, Berlin	04/2012
ALSTOM, Baden	04/2012
SKW, Piesteritz	04/2012
TERA Ingegneria, Trento, Italy	04/2012
Siemens, Erlangen	04/2012, 05/2012
LAWI Power, Dresden	04/2012
Stadtwerke Leipzig	04/2012
SEITZ, Wetzikon, Switzerland	03/2012, 07/2012
M & M, Bielefeld	03/2012
Sennheiser, Wedemark	03/2012

	SPG, Montreuil Cedex, France	02/2012
	German Destilation, Sprendlingen	02/2012
	Lopez, Munguia, Spain	02/2012
	Endress & Hauser, Hannover	02/2012
	Palo Alto Research Center, USA	02/2012
	WIPAK, Walsrode	02/2012
	Freudenberg, Weinheim	01/2012
	Fichtner, Stuttgart	01/2012
	airinotec, Bayreuth	01/2012, 07/2012
	University Auckland, New Zealand	01/2012
	VPC, Vetschau	01/2012
	Franken Guss, Kitzingen	01/2012
2	011	10/0011
	XRG-Simulation, Hamburg	12/2011
	Smurfit Kappa PPT, AX Roermond, Netherlands	12/2011
	AWTEC, Zurich, Switzerland	12/2011
	eins-energie, Bad Elster	12/2011
	BeNow, Rodenbach	11/2011
	Luzern University of Applied Sciences, Switzerland	11/2011
	GMVA, Oberhausen	11/2011
	CCI, Karlsruhe	10/2011
	WBüchner University of Applied Sciences, Pfungstadt	10/2011
	PLANAIR, La Sagne, Switzerland	10/2011
	LAWI, Dresden	10/2011
	Lopez, Munguia, Spain	10/2011
	University of KwaZulu-Natal, Westville, South Africa	10/2011
	Voith, Heidenheim	09/2011
	SpgBe Montreal, Canada	09/2011
	SPG TECH, Montreuil Cedex, France	09/2011
	Voith, Heidenheim-Mergelstetten	09/2011
	MTU Aero Engines, Munich	08/2011
	MIBRAG, Zeitz	08/2011
	RWE, Essen	07/2011
	Fels, Elingerode	07/2011

Weihenstephan University of Applied Sciences	07/2011, 09/2011 10/2011
Forschungszentrum Juelich	07/2011
RWTH Aachen University	07/2011, 08/2011
INNEO Solutions, Ellwangen	06/2011
Caliqua, Basel, Switzerland	06/2011
Technical University of Freiberg	06/2011
Fichtner IT Consulting, Stuttgart	05/2011, 06/2011, 08/2011
Salzgitter Flachstahl, Salzgitter	05/2011
Helbling Beratung & Bauplanung, Zurich, Switzerland	05/2011
INEOS, Cologne	04/2011
Enseleit Consulting Engineers, Siebigerode	04/2011
Witt Consulting Engineers, Stade	03/2011
Helbling, Zurich, Switzerland	03/2011
MAN Diesel, Copenhagen, Denmark	03/2011
AGO, Kulmbach	03/2011
University of Duisburg	03/2011, 06/2011
CCP, Marburg	03/2011
BASF, Ludwigshafen	02/2011
ALSTOM Power, Baden, Switzerland	02/2011
Universität der Bundeswehr, Munich	02/2011
Calorifer, Elgg, Switzerland	01/2011
STRABAG, Vienna, Austria	01/2011
TUEV Sued, Munich	01/2011
ILK Dresden	01/2011
Technical University of Dresden	01/2011, 05/2011 06/2011, 08/2011
2010	
Umweltinstitut Neumarkt	12/2010
YIT Austria, Vienna, Austria	12/2010
MCI Innsbruck, Austria	12/2010
University of Stuttgart	12/2010
HS Cooler, Wittenburg	12/2010
Visteon, Novi Jicin, Czech Republic	12/2010
CompuWave, Brunntal	12/2010

Stadtwerke Leipzig	12/2010
MCI Innsbruck, Austria	12/2010
EVONIK Energy Services, Zwingenberg	12/2010
Caliqua, Basel, Switzerland	11/2010
Shanghai New Energy Resources Science & Technology, China	11/2010
Energieversorgung Halle	11/2010
Hochschule für Technik Stuttgart, University of Applied Sciences	11/2010
Steinmueller, Berlin	11/2010
Amberg-Weiden University of Applied Sciences	11/2010
AREVA NP, Erlangen	10/2010
MAN Diesel, Augsburg	10/2010
KRONES, Neutraubling	10/2010
Vaillant, Remscheid	10/2010
PC Ware, Leipzig	10/2010
Schubert Consulting Engineers, Weißenberg	10/2010
Fraunhofer Institut UMSICHT, Oberhausen	10/2010
Behringer Consulting Engineers, Tagmersheim	09/2010
Saacke, Bremen	09/2010
WEBASTO, Neubrandenburg	09/2010
Concordia University, Montreal, Canada	09/2010
Compañía Eléctrica de Sochagota, Bogota, Colombia	08/2010
Hannover University of Applied Sciences	08/2010
ERGION, Mannheim	07/2010
Fichtner IT Consulting, Stuttgart	07/2010
TF Design, Matieland, South Africa	07/2010
MCE, Berlin	07/2010, 12/2010
IPM, Zittau/Goerlitz University of Applied Sciences	06/2010
TUEV Sued, Dresden	06/2010
RWE IT, Essen	06/2010
Glen Dimplex, Kulmbach	05/2010, 07/2010 10/2010
Hot Rock, Karlsruhe	05/2010
Darmstadt University of Applied Sciences	05/2010
Voith, Heidenheim	04/2010
CombTec, Zittau	04/2010

	University of Glasgow, Great Britain	04/2010
	Universitaet der Bundeswehr, Munich	04/2010
	Technical University of Hamburg-Harburg	04/2010
	Vattenfall Europe, Berlin	04/2010
	HUBER Consulting Engineers, Berching	04/2010
	VER, Dresden	04/2010
	CCP, Marburg	03/2010
	Offenburg University of Applied Sciences	03/2010
	Technical University of Berlin	03/2010
	NIST Boulder CO, USA	03/2010
	Technical University of Dresden	02/2010
	Siemens Energy, Nuremberg	02/2010
	Augsburg University of Applied Sciences	02/2010
	ALSTOM Power, Baden, Switzerland	02/2010, 05/2010
	MIT Massachusetts Institute of Technology Cambridge MA, USA	02/2010
	Wieland Werke, Ulm	01/2010
	Siemens Energy, Goerlitz	01/2010, 12/2010
	Technical University of Freiberg	01/2010
	ILK, Dresden	01/2010, 12/2010
	Fischer-Uhrig Consulting Engineers, Berlin	01/2010
2	009	
	ALSTOM Power, Baden, Schweiz	01/2009, 03/2009
	,	05/2009
	Nordostschweizerische Kraftwerke AG, Doettingen, Switzerland	02/2009
	RWE, Neurath	02/2009
	Brandenburg University of Technology, Cottbus	02/2009
	Hamburg University of Applied Sciences	02/2009
	Kehrein, Moers	03/2009
	EPP Software, Marburg	03/2009
	Bernd Münstermann, Telgte	03/2009
	Suedzucker, Zeitz	03/2009
	CPP, Marburg	03/2009
	Gelsenkirchen University of Applied Sciences	04/2009
	Regensburg University of Applied Sciences	05/2009
	Gatley & Associates, Atlanta, USA	05/2009

BOSCH, Stuttgart	06/2009, 07/2009
Dr. Nickolay, Consulting Engineers, Gommersheim	06/2009
Ferrostal Power, Saarlouis	06/2009
BHR Bilfinger, Essen	06/2009
Intraserv, Wiesbaden	06/2009
Lausitz University of Applied Sciences, Senftenberg	06/2009
Nuernberg University of Applied Sciences	06/2009
Technical University of Berlin	06/2009
Fraunhofer Institut UMSICHT, Oberhausen	07/2009
Bischoff, Aurich	07/2009
Fichtner IT Consulting, Stuttgart	07/2009
Techsoft, Linz, Austria	08/2009
DLR, Stuttgart	08/2009
Wienstrom, Vienna, Austria	08/2009
RWTH Aachen University	09/2009
Vattenfall, Hamburg	10/2009
AIC, Chemnitz	10/2009
Midiplan, Bietigheim-Bissingen	11/2009
Institute of Air Handling and Refrigeration ILK, Dresden	11/2009
FZD, Rossendorf	11/2009
Techgroup, Ratingen	11/2009
Robert Sack, Heidelberg	11/2009
EC, Heidelberg	11/2009
MCI, Innsbruck, Austria	12/2009
Saacke, Bremen	12/2009
ENERKO, Aldenhoven	12/2009
2008	
Pink, Langenwang	01/2008
Fischer-Uhrig, Berlin	01/2008
University of Karlsruhe	01/2008
MAAG, Kuesnacht, Switzerland	02/2008
M&M Turbine Technology, Bielefeld	02/2008
Lentjes, Ratingen	03/2008
Siemens Power Generation, Goerlitz	04/2008
Evonik, Zwingenberg (general EBSILON program license)	04/2008

	WEBASTO, Neubrandenburg		04/2008
	CFC Solutions, Munich		04/2008
	RWE IT, Essen		04/2008
	Rerum Cognitio, Zwickau	04/2008,	05/2008
	ARUP, Berlin		05/2008
	Research Center, Karlsruhe		07/2008
	AWECO, Neukirch		07/2008
	Technical University of Dresden, Professorship of Building Services		07/2008
	Technical University of Cottbus, Chair in Power Plant Engineering	07/2008,	10/2008
	Ingersoll-Rand, Unicov, Czech Republic		08/2008
	Technip Benelux BV, Zoetermeer, Netherlands		08/2008
	Fennovoima Oy, Helsinki, Finland		08/2008
	Fichtner Consulting & IT, Stuttgart		09/2008
	PEU, Espenhain		09/2008
	Poyry, Dresden		09/2008
	WINGAS, Kassel		09/2008
	TUEV Sued, Dresden		10/2008
	Technical University of Dresden, Professorship of Thermic Energy Machines and Plants	10/2008,	11/2008
	AWTEC, Zurich, Switzerland		11/2008
	Siemens Power Generation, Erlangen		12/2008
20	007		
	Audi, Ingolstadt		02/2007
	ANO Abfallbehandlung Nord, Bremen		02/2007
	TUEV NORD SysTec, Hamburg		02/2007
	VER, Dresden		02/2007
	Technical University of Dresden, Chair in Jet Propulsion Systems		02/2007
	Redacom, Nidau, Switzerland		02/2007
	Universität der Bundeswehr, Munich		02/2007
	Maxxtec, Sinsheim		03/2007
	University of Rostock, Chair in Technical Thermodynamics		03/2007
	AGO, Kulmbach		03/2007
	University of Stuttgart, Chair in Aviation Propulsions		03/2007
	Siemens Power Generation, Duisburg		03/2007

ENTHAL Haustechnik, Rees	05/2007
AWECO, Neukirch	05/2007
ALSTOM, Rugby, Great Britain	06/2007
SAAS, Possendorf	06/2007
Grenzebach BSH, Bad Hersfeld	06/2007
Reichel Engineering, Haan	06/2007
Technical University of Cottbus, Chair in Power Plant Engineering	06/2007
Voith Paper Air Systems, Bayreuth	06/2007
Egger Holzwerkstoffe, Wismar	06/2007
Tissue Europe Technologie, Mannheim	06/2007
Dometic, Siegen	07/2007
RWTH Aachen University, Institute for Electrophysics	09/2007
National Energy Technology Laboratory, Pittsburg, USA	10/2007
Energieversorgung Halle	10/2007
AL-KO, Jettingen	10/2007
Grenzebach BSH, Bad Hersfeld	10/2007
Wiesbaden University of Applied Sciences, Department of Engineering Sciences	10/2007
Endress+Hauser Messtechnik, Hannover	11/2007
Munich University of Applied Sciences, Department of Mechanical Engineering	11/2007
Rerum Cognitio, Zwickau	12/2007
Siemens Power Generation, Erlangen	11/2007
University of Rostock, Chair in Technical Thermodynamics	11/2007, 12/2007
2006	
STORA ENSO Sachsen, Eilenburg	01/2006
Technical University of Munich, Chair in Energy Systems	01/2006
NUTEC Engineering, Bisikon, Switzerland	01/2006, 04/2006
Conwel eco, Bochov, Czech Republic	01/2006
Offenburg University of Applied Sciences	01/2006
KOCH Transporttechnik, Wadgassen	01/2006
BEG Bremerhavener Entsorgungsgesellschaft	02/2006
Deggendorf University of Applied Sciences, Department of Mechanical Engineering and Mechatronics	02/2006
University of Stuttgart, Department of Thermal Fluid Flow Engines	02/2006

Technical University of Munich, Chair in Apparatus and Plant Engineering	02/2006
Energietechnik Leipzig (company license),	02/2006
Siemens Power Generation, Erlangen	02/2006, 03/2006
RWE Power, Essen	03/2006
WAETAS, Pobershau	04/2006
Siemens Power Generation, Goerlitz	04/2006
Technical University of Braunschweig, Department of Thermodynamics	04/2006
EnviCon & Plant Engineering, Nuremberg	04/2006
Brassel Engineering, Dresden	05/2006
University of Halle-Merseburg, Department of USET Merseburg incorporated society	05/2006
Technical University of Dresden, Professorship of Thermic Energy Machines and Plants	05/2006
Fichtner Consulting & IT Stuttgart (company licenses and distribution)	05/2006
Suedzucker, Ochsenfurt	06/2006
M&M Turbine Technology, Bielefeld	06/2006
Feistel Engineering, Volkach	07/2006
ThyssenKrupp Marine Systems, Kiel	07/2006
Caliqua, Basel, Switzerland (company license)	09/2006
Atlas-Stord, Rodovre, Denmark	09/2006
Konstanz University of Applied Sciences, Course of Studies Construction and Development	10/2006
Siemens Power Generation, Duisburg	10/2006
Hannover University of Applied Sciences, Department of Mechanical Engineering	10/2006
Siemens Power Generation, Berlin	11/2006
Zikesch Armaturentechnik, Essen	11/2006
Wismar University of Applied Sciences, Seafaring Department	11/2006
BASF, Schwarzheide	12/2006
Enertech Energie und Technik, Radebeul	12/2006
2005	
TUEV Nord, Hannover	01/2005
J.H.K Plant Engineering and Service, Bremerhaven	01/2005
Electrowatt-EKONO, Zurich, Switzerland	01/2005

FCIT, Stuttgart	01/2005	
Energietechnik Leipzig (company license)	02/2005, 04/2005 07/2005	
eta Energieberatung, Pfaffenhofen	02/2005	
FZR Forschungszentrum, Rossendorf/Dresden	04/2005	
University of Saarbruecken	04/2005	
Technical University of Dresden Professorship of Thermic Energy Machines and Plants	04/2005	
Grenzebach BSH, Bad Hersfeld	04/2005	
TUEV Nord, Hamburg	04/2005	
Technical University of Dresden, Waste Management	05/2005	
Siemens Power Generation, Goerlitz	05/2005	
Duesseldorf University of Applied Sciences, Department of Mechanical Engineering and Process Engineering	05/2005 g	
Redacom, Nidau, Switzerland	06/2005	
Dumas Verfahrenstechnik, Hofheim	06/2005	
Alensys Engineering, Erkner	07/2005	
Stadtwerke Leipzig	07/2005	
SaarEnergie, Saarbruecken	07/2005	
ALSTOM ITC, Rugby, Great Britain	08/2005	
Technical University of Cottbus, Chair in Power Plant Engineering	ng 08/2005	
Vattenfall Europe, Berlin (group license)	08/2005	
Technical University of Berlin	10/2005	
Basel University of Applied Sciences, Department of Mechanical Engineering, Switzerland	10/2005	
Midiplan, Bietigheim-Bissingen	11/2005	
Technical University of Freiberg, Chair in Hydrogeology	11/2005	
STORA ENSO Sachsen, Eilenburg	12/2005	
Energieversorgung Halle (company license)	12/2005	
KEMA IEV, Dresden	12/2005	
2004		
Vattenfall Europe (group license)	01/2004	
TUEV Nord, Hamburg	01/2004	
University of Stuttgart, Institute of Thermodynamics and Heat En	igineering 02/2004	
MAN B&W Diesel A/S, Copenhagen, Denmark	02/2004	
Siemens AG Power Generation, Erlangen	02/2004	

	Ulm University of Applied Sciences	03/2004	
	Visteon, Kerpen	03/2004, 10/2004	
	Technical University of Dresden,		
	Professorship of Thermic Energy Machines and Plants	04/2004	
	Rerum Cognitio, Zwickau	04/2004	
	University of Saarbruecken	04/2004	
	Grenzebach BSH, Bad Hersfeld	04/2004	
	SOFBID Zwingenberg (general EBSILON program license)	04/2004	
	EnBW Energy Solutions, Stuttgart	05/2004	
	HEW-Kraftwerk, Tiefstack	06/2004	
	h s energieanlagen, Freising	07/2004	
	FCIT, Stuttgart	08/2004	
	Physikalisch Technische Bundesanstalt (PTB), Braunschweig	08/2004	
	Mainova Frankfurt	08/2004	
	Rietschle Energieplaner, Winterthur, Switzerland	08/2004	
	MAN Turbo Machines, Oberhausen	09/2004	
	TUEV Sued, Dresden	10/2004	
	STEAG Kraftwerk, Herne	10/2004, 12/2004	
	University of Weimar	10/2004	
	energeticals (e-concept), Munich	11/2004	
	SorTech, Halle	11/2004	
	Enertech EUT, Radebeul (company license)	11/2004	
	Munich University of Applied Sciences	12/2004	
	STORA ENSO Sachsen, Eilenburg	12/2004	
	Technical University of Cottbus, Chair in Power Plant Engineering	12/2004	
	Freudenberg Service, Weinheim	12/2004	
2003			
	Paper Factory, Utzenstorf, Switzerland	01/2003	
	MAB Plant Engineering, Vienna, Austria	01/2003	
	Wulff Energy Systems, Husum	01/2003	
	Technip Benelux BV, Zoetermeer, Netherlands	01/2003	
	ALSTOM Power, Baden, Switzerland	01/2003, 07/2003	
	VER, Dresden	02/2003	
	Rietschle Energieplaner, Winterthur, Switzerland	02/2003	
	DLR, Leupholdhausen	04/2003	

	Emden University of Applied Sciences, Department of Technology	05/2003	
	Petterssson+Ahrends, Ober-Moerlen	05/2003	
	SOFBID ,Zwingenberg (general EBSILON program license)	05/2003	
	Ingenieurbuero Ostendorf, Gummersbach	05/2003	
	TUEV Nord, Hamburg	06/2003	
	Muenstermann GmbH, Telgte-Westbevern	06/2003	
	University of Cali, Colombia	07/2003	
	Atlas-Stord, Rodovre, Denmark	08/2003	
	ENERKO, Aldenhoven	08/2003	
	STEAG RKB, Leuna	08/2003	
	eta Energieberatung, Pfaffenhofen	08/2003	
	exergie, Dresden	09/2003	
	AWTEC, Zurich, Switzerland	09/2003	
	Energie, Timelkam, Austria	09/2003	
	Electrowatt-EKONO, Zurich, Switzerland	09/2003	
	LG, Annaberg-Buchholz	10/2003	
	FZR Forschungszentrum, Rossendorf/Dresden	10/2003	
	EnviCon & Plant Engineering, Nuremberg	11/2003	
	Visteon, Kerpen	11/2003	
	VEO Vulkan Energiewirtschaft Oderbruecke, Eisenhuettenstadt	11/2003	
	Stadtwerke Hannover	11/2003	
	SaarEnergie, Saarbruecken	11/2003	
	Fraunhofer-Gesellschaft, Munich	12/2003	
	Erfurt University of Applied Sciences, Department of Supply Engineering	12/2003	
	SorTech, Freiburg	12/2003	
	Mainova, Frankfurt	12/2003	
	Energieversorgung Halle	12/2003	
2002			
	Hamilton Medical AG, Rhaezuens, Switzerland	01/2002	
	Bochum University of Applied Sciences, Department of Thermo- and Fluid Dynamics	01/2002	
	SAAS, Possendorf/Dresden	02/2002	
	Siemens, Karlsruhe (general license for the WinIS information system)	02/2002	
	FZR Forschungszentrum, Rossendorf/Dresden	03/2002	

CompAir, Simmern	03/2002	
GKS Gemeinschaftskraftwerk, Schweinfurt	04/2002	
ALSTOM Power Baden, Switzerland (group licenses)	05/2002	
InfraServ, Gendorf	05/2002	
SoftSolutions, Muehlhausen (company license)	05/2002	
DREWAG, Dresden (company license)	05/2002	
SOFBID, Zwingenberg (general EBSILON program license)	06/2002	
Kleemann Engineering, Dresden	06/2002	
Caliqua, Basel, Switzerland (company license)	07/2002	
PCK Raffinerie, Schwedt (group license)	07/2002	
Fischer-Uhrig Engineering, Berlin	08/2002	
Fichtner Consulting & IT, Stuttgart (company licenses and distribution)	08/2002	
Stadtwerke Duisburg	08/2002	
Stadtwerke Hannover	09/2002	
Siemens Power Generation, Goerlitz	10/2002	
Energieversorgung Halle (company license)	10/2002	
Bayer, Leverkusen	11/2002	
Dillinger Huette, Dillingen	11/2002	
G.U.N.T. Geraetebau, Barsbuettel (general license and training test benches)	12/2002	
VEAG, Berlin (group license)	12/2002	
2001		
ALSTOM Power, Baden, Switzerland	01/2001, 06/2001 12/2001	
KW2 B. V., Amersfoot, Netherlands	01/2001, 11/2001	
Eco Design, Saitamaken, Japan	01/2001	
M&M Turbine Technology, Bielefeld	01/2001, 09/2001	
MVV Energie, Mannheim	02/2001	
Technical University of Dresden, Department of Power Machinery and Plants	02/2001	
PREUSSAG NOELL, Wuerzburg	03/2001	
Fichtner Consulting & IT Stuttgart (company licenses and distribution)	04/2001	
Muenstermann GmbH, Telgte-Westbevern	05/2001	
SaarEnergie, Saarbruecken	05/2001	

	Ciamana Karlamika	00/0004
	Siemens, Karlsruhe (general license for the WinIS information system)	08/2001
	Neusiedler AG, Ulmerfeld, Austria	09/2001
	h s energieanlagen, Freising	09/2001
	Electrowatt-EKONO, Zurich, Switzerland	09/2001
	IPM Zittau/Goerlitz University of Applied Sciences (general license)	10/2001
	eta Energieberatung, Pfaffenhofen	11/2001
	ALSTOM Power Baden, Switzerland	12/2001
	VEAG, Berlin (group license)	12/2001
20	000	
	SOFBID, Zwingenberg (general EBSILON program license)	01/2000
	AG KKK - PGW Turbo, Leipzig	01/2000
	PREUSSAG NOELL, Wuerzburg	01/2000
	M&M Turbine Technology, Bielefeld	01/2000
	IBR Engineering Reis, Nittendorf-Undorf	02/2000
	GK, Hannover	03/2000
	KRUPP-UHDE, Dortmund (company license)	03/2000
	UMAG W. UDE, Husum	03/2000
	VEAG, Berlin (group license)	03/2000
	Thinius Engineering, Erkrath	04/2000
	SaarEnergie, Saarbruecken	05/2000, 08/2000
	DVO Data Processing Service, Oberhausen	05/2000
	RWTH Aachen University	06/2000
	VAUP Process Automation, Landau	08/2000
	Knuerr-Lommatec, Lommatzsch	09/2000
	AVACON, Helmstedt	10/2000
	Compania Electrica, Bogota, Colombia	10/2000
	G.U.N.T. Geraetebau, Barsbuettel (general license for training test benches)	11/2000
	Steinhaus Informationssysteme, Datteln (general license for process data software)	12/2000
19	999	
	Bayernwerk, Munich	01/1999
	DREWAG, Dresden (company license)	02/1999
	KEMA IEV, Dresden	03/1999

Regensburg University of Applied Sciences	04/1999
Fichtner Consulting & IT, Stuttgart (company licenses and distribution)	07/1999
Technical University of Cottbus, Chair in Power Plant Engineering	07/1999
Technical University of Graz, Department of Thermal Engineering, Austria	11/1999
Ostendorf Engineering, Gummersbach	12/1999
1998	
Technical University of Cottbus, Chair in Power Plant Engineering	05/1998
Fichtner Consulting & IT (CADIS information systems) Stuttgart (general KPRO program license)	05/1998
M&M Turbine Technology Bielefeld	06/1998
B+H Software Engineering Stuttgart	08/1998
Alfa Engineering, Switzerland	09/1998
VEAG Berlin (group license)	09/1998
NUTEC Engineering, Bisikon, Switzerland	10/1998
SCA Hygiene Products, Munich	10/1998
RWE Energie, Neurath	10/1998
Wilhelmshaven University of Applied Sciences	10/1998
BASF, Ludwigshafen (group license)	11/1998
Energieversorgung, Offenbach	11/1998
1997	
Gerb, Dresden	06/1997
Siemens Power Generation, Goerlitz	07/1997