

Faculty of MECHANICAL ENGINEERING

Department of TECHNICAL THERMODYNAMICS

Property Library for the Industrial Formulation IAPWS-IF97 for Water and Steam

FluidEXL^{Graphics}
with LibIF97
for Excel®

Prof. Hans-Joachim Kretzschmar

Dr. Ines Stoecker

Ines Jaehne

Matthias Kunick

Software for the Industrial Formulation IAPWS-IF97 of Water and Steam Including DLL and Add-In for Excel[®]

FluidEXL Graphics LibIF97

Contents

- 0. Package Contents
 - 0.1 Zip files for 32-bit Office®
 - 0.2 Zip files for 64-bit Office®
- 1. Property Functions
 - 1.1 Range of Validity
 - 1.2 Functions
 - 1.3 Thermodynamic Diagrams
- 2. Application of FluidEXLGraphics in Excel®
 - 2.1 Installing FluidEXLGraphics
 - 2.2 Registering FluidEXL Graphics as Add-In in Excel®
 - 2.3 The FluidEXLGraphics Help System
 - 2.4 Licensing the LibIF97 Property Library
 - 2.5 Example: Calculation of h = f(p,t,x) and s = f(p,t,x)
 - 2.6 Representation of Calculated Properties in Thermodynamic Diagrams
 - 2.7 Removing FluidEXLGraphics
- 3. Program Documentation
- 4. Property Libraries for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators
- 5. References
- 6. Satisfied Customers

© Zittau/Goerlitz University of Applied Sciences, Germany

Faculty of Mechanical Engineering

Department of Technical Thermodynamics

Professor Hans-Joachim Kretzschmar

Dr. Ines Stoecker

Phone: +49-3583-61-1846 or -1881

Fax: +49-3583-61-1846

E-mail: hj.kretzschmar@hs-zigr.de Internet: www.thermodynamics-zittau.de

0. Package Contents

0.1 Zip files for 32-bit Office®

LibIF97.dll

The following zip files are delivered for your computer running a 32-bit Office® version.

English zip file "CD_FluidEXL_Graphics_LibIF97_Eng.zip" including the following files:

FluidEXL_Graphics_Eng_Setup.exe - Self-extracting and self-installing program for FluidEXL^{Graphics}

FluidEXL_Graphics_Eng.xla - FluidEXLGraphics Add-In

LibIF97.hlp - Help file for the LibIF97 property library

LibIF97.dll - Dynamic link library with functions for

water and steam

FluidEXL_Graphics_LibIF97_Docu_Eng.pdf - User's Guide

German zip file "CD_FluidEXL_Graphics_LibIF97.zip" including the following files:

FluidEXL_Graphics_Setup.exe - Self-extracting and self-installing program for FluidEXL^{Graphics}

FluidEXL_Graphics.xla - German Add-In for FluidEXL*Graphics*

LibIF97.hlp - Help file for the LibIF97 property library

- Dynamic link library with functions for

water and steam FluidEXL_Graphics_LibIF97_Docu_Eng.pdf - User's Guide

0.2 Zip files for 64-bit Office®

The following zip files are delivered for your computer running a 64-bit Office® version.

English zip file "CD_FluidEXL_Graphics_LibIF97_x64_Eng.zip" including the following files and folders:

Fi	les	
	162	

Setup.exe - Self-extracting and self-installing

program for FluidEXL^{Graphics}

FluidEXL_Graphics_Eng_64_Setup.msi - Self-extracting and self-installing

program

FluidEXL_Graphics_Eng.xla - FluidEXLGraphics Add-In

FluidEXL_Graphics_LibIF97_Docu_Eng.pdf - User's Guide

LibIF97.dll - Dynamic link library with functions

for water and steam

LibIF97.hlp - Help file for the LibIF97 property

library

Folders:

\vcredist_x64 - Folder containing the "Microsoft

Visual C++ 2010 x64 Redistributable Pack"

\WindowsInstaller3_1 - Folder containing the "Microsoft

Windows Installer"

German zip file "CD_FluidEXL_Graphics_LibIF97_x64.zip" including the following files and folders:

Files:

Setup.exe - Self-extracting and self-installing

program for FluidEXL Graphics

FluidEXL_Graphics_64_Setup.msi - Self-extracting and self-installing

program

FluidEXL_Graphics.xla - German FluidEXL Graphics Add-In

FluidEXL_Graphics_LibIF97_Docu_Eng.pdf - User's Guide

LibIF97.dll - Dynamic link library for use in

Windows[®] programs

LibIF97.hlp - Help file for the LibIF97 property

library

Folders:

\vcredist_x64

 Folder containing the "Microsoft Visual C++ 2010 x64 Redistributable Pack"

\WindowsInstaller3_1

- Folder containing the "Microsoft Windows Installer"

1. Program Functions

1.1 Range of Validity

The International Association for the Properties of Water and Steam IAPWS issued the "Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam IAPWS-IF97"

in September 1997 [1], [2], [3]. It will be abbreviated as IAPWS-IF97. This new industrial standard must be applied worldwide in acceptance and guarantees calculations of facilities and plants working with water or steam. The IAPWS-IF97 Formulation replaces the former Industrial Formulation IFC-67 [12].

Figure 1.1 shows the entire range of validity for the equation set of the new Industrial Formulation IAPWS-IF97. It includes temperatures from 0 °C to 800 °C at pressures from 0.00611 bar to 1000 bar and temperatures to 2000 °C for pressures to 500 bar.

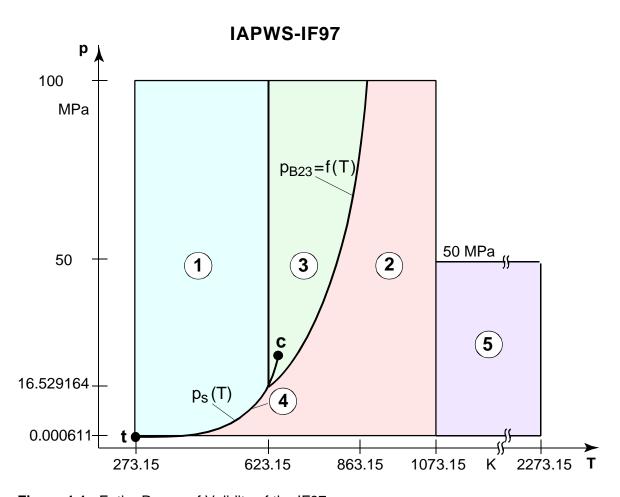


Figure 1.1 Entire Range of Validity of the IF97

The range of validity is divided into five calculation regions. Each of the calculation regions contains its own equations of state. They are described in detail in the official Release of the IAPWS [1] and in the publications by *Wagner et al.* [2] and [3].

The sub-programs of the LibIF97 DLL and the functions of the Add-In FluidEXL^{Graphics} for Excel are listed in the following section.

All sub-programs and functions can be applied in the entire range of validity of the IF97. The call of the necessary equation of state for each calculation region will be realized within the program.

1.2 Functions

Functional Dependence	Function Name	Call as Function from DLL LibIF97	Call from DLL LibIF97, Result as Parameter	Property or Function	Unit of the Result
a = f(p,t,x)	a_ptx_97	= APTX97(P,T,X)	= C_APTX97(A,P,T,X)	Thermal diffusivity	m ² /s
$\alpha_p = f(p,t,x)$	alphap_ptx_97	= ALPHAPPTX97(P,T,X)	=C_ALPHAPPTX97 (ALPHAP,P,T,X)	Relative pressure coefficient	K ⁻¹
$\alpha_V = f(\rho, t, x)$	alphav_ptx_97	= ALPHAVPTX97(P,T,X)	=C_ALPHAVPTX97 (ALPHAV,P,T,X)	Isobaric cubic expansion coefficient	K ⁻¹
b = f(p)	b_p_97	= BP97(P)	=C_BP97 (B,P)	Laplace coefficient	m
b = f(t)	b_t_97	= BT97(T)	=C_BT97 (B,T)	Laplace coefficient	m
$\beta_p = f(p,t,x)$	betap_ptx_97	= BETAPPTX97(P,T,X)	= C_BETAPPTX97 (BETAP,P,T,X)	Isothermal stress coefficient	kg/m³
$c_p = f(p,t,x)$	cp_ptx_97	= CPPTX97(P,T,X)	= C_CPPTX97(CP,P,T,X)	Specific isobaric heat capacity	kJ/(kg · K)
$c_V = f(p,t,x)$	cv_ptx_97	= CVPTX97(P,T,X)	= C_CVPTX97(CV,P,T,X)	Specific isochoric heat capacity	kJ/(kg · K)
$\delta_T = f(p,t,x)$	deltat_ptx_97	= DELTATPTX97 (P,T,X)	= C_DELTATPTX97 (DELTAT,P,T,X)	Isothermal throttling coefficient	kJ/(kg · kPa-1)
$ \left(\frac{\partial \mathbf{v}}{\partial \mathbf{p}}\right)_{T} = \mathbf{f}\left(\mathbf{p}, t, \mathbf{x}\right) $	dv_dp_T_ptx_97	= DVDPT97(P,T,X)	= C_DVDPT97(DVP,P,T,X)	Differential quotient $\left(\frac{\partial V}{\partial \rho}\right)_T (\rho, t, x)$	m ³ /(kg · kPa)
$\left(\frac{\partial V}{\partial T}\right)_{p} = f(p,t,x)$	dv_dT_p_ptx_97	= DVDTP97(P,T,X)	= C_DVDTP97(DVT,P,T,X)	Differential quotient $\left(\frac{\partial V}{\partial T}\right)_{D}(p,t,x)$	m ³ /(kg · K)
$e = f(p,t,x,t_{\bigcup})$	e_ptx_tu_97	= EPTXTU97(P,T,X,TU)	= C_EPTXTU97(E;P,T,X,TU)	Specific exergy	kJ/kg
$\mathcal{E} = f(p,t,x)$	epsilon_ptx_97	= EPSPTX97 (P,T,X)	= C_EPSPTX97(EPS,P,T,X)	Dielectric constant	-
$\eta = f(p,t,x)$	eta_ptx_97	= ETAPTX97(P,T,X)	= C_ETAPTX97(ETA,P,T,X)	Dynamic viscosity	Pa $s = kg/(m s)$
f = f(p,t,x)	f_ptx_97	= FPTX97 (P,T,X)	= C_FPTX97(F,P,T,X)	Specific Helmholtz energy	kJ/kg
$f^* = f(\rho, t, x)$	fug_ptx_97	= FUGPTX97 (P,T,X)	= C_FUGPTX97(FUG,P,T,X)	Fugacity	bar
g = f(p,t,x)	g_ptx_97	= GPTX97 (P,T,X)	= C_GPTX97(G,P,T,X)	Specific Gibbs energy	kJ/kg
h = f(p,s)	h_ps_97	= HPS97(P,S)	= C_HPS97(HPS,P,S)	Backward function: Specific enthalpy from pressure and entropy	kJ/kg
h = f(p,t,x)	h_ptx_97	= HPTX97(P,T,X)	= C_HPTX97(H,P,T,X)	Specific enthalpy	kJ/kg

Functional Dependence	Function Name	Call as Function from DLL LibIF97	Call from DLL LibIF97, Result as Parameter	Property or Function	Unit of the Result
$\kappa = f(\rho, t, x)$	kappa_ptx_97	= KAPPTX97(P,T,X)	= C_KAPPTX97(KAP,P,T,X)	Isentropic exponent	-
$\kappa_T = f(p,t,x)$	kappat_ptx_97	= KAPPATPTX97(P,T,X)	= C_KAPPATPTX97 (KAPPAT,P,T,X)	Isothermal compressibility	kPa ⁻¹
$\lambda = f(p,t,x)$	lambda_ptx_97	= LAMPTX97(P,T,X)	= C_LAMPTX97(LAM,P,T,X)	Heat conductivity	W/(m · K)
$\mu = f(p,t,x)$	my_ptx_97	= MYPTX97(P,T,X)	= C_ MYPTX97(MY,P,T,X)	Joule-Thomson coefficient	K kPa ⁻¹
n = f(p,t,x,wl)	n_ptxwl_97	= NPTXWL97(P,T,X,WL)	= C_NPTXWL97(N,P,T,X,WL)	Refractive index	-
V = f(p,t,x)	ny_ptx_97	= NYPTX97(P,T,X)	= C_NYPTX97(NUE,P,T,X)	Kinematic viscosity	m ² /s
p = f(h,s)	p_hs_97	= PHS97(H,S)	= C_PHS97(PHS,H,S)	Backward function: Pressure from enthalpy and entropy	bar
p = f(v,h)	p_vh_97	= PVH97(H,S)	= C_PVH97(PHS,H,S)	Backward function: Pressure from volume and enthalpy	bar
p = f(v,u)	p_vu_97	= PVU97(H,S)	= C_PVU97(PHS,H,S)	Backward function: Pressure from volume and internal energy	bar
Pr = f(p,t,x)	Pr_ptx_97	= PRPTX97(P,T,X)	= C_PRPTX97(PR,P,T,X)	Prandtl-number	-
$p_{s} = f(t)$	ps_t_97	= PST97(T)	= C_PST97(PS,T)	Vapor pressure	bar
$\rho = f(p,t,x)$	rho_ptx_97	= RHOPTX97(P,T,X)	= C_RHOPTX97(RHO,P,T,X)	Density	kg/m³
s = f(p,h)	s_ph_97	= SPH97(P,H)	= C_SPH97(SPH,P,H)	Backward function: Specific entropy from pressure and enthalpy	kJ/(kg · K)
s = f(p,t,x)	s_ptx_97	= SPTX97(P,T,X)	= C_SPTX97(S,P,T,X)	Specific entropy	kJ/(kg · K)
$\sigma = f(p)$	sigma_p_97	= SIGMAP97(P)	= C_SIGMAP97(SIG,P)	Surface tension from pressure	mN/m = mPa · m
$\sigma = f(t)$	sigma_t_97	= SIGMAT97(T)	= C_SIGMAT97(SIG,T)	Surface tension from temperature	mN/m = mPa · m
t = f(h,s)	t_hs_97	= THS97(H,S)	= C_THS97(THS,H,S)	Backward function: Temperature from enthalpy and entropy	°C
t = f(p,h)	t_ph_97	= TPH97(P,H)	= C_TPH97(TPH,P,H)	Backward function: Temperature from pressure and enthalpy	°C
t = f(p,s)	t_ps_97	= TPS97(P,S)	= C_TPS97(TPS,P,S)	Backward function: Temperature from pressure and entropy	°C

Functional Dependence	Function Name	Call as Function from DLL LiblF97	Call from DLL LibIF97, Result as Parameter	Property or Function	Unit of the Result
t = f(v,h)	t_vh_97	= TVH97(P,H)	= C_TVH97(TPH,P,H)	Backward function: Temperature from volume and enthalpy	°C
t = f(v,u)	t_vu_97	= TVU97(P,H)	= C_TVU97(TPH,P,H)	Backward function: Temperature from volume and internal energy	°C
$t_{\rm S} = f(p)$	ts_p_97	= TSP97(P)	= C_TSP97(TS,P)	Saturation temperature	°C
u = f(p,t,x)	u_ptx_97	= UPTX97(P,T,X)	= C_UPTX97(U,P,T,X)	Specific internal energy	kJ/kg
V = f(p,h)	v_ph_97	= VPH97(P,S)	= C_VPH97(VPS,P,S)	Backward function: Specific volume from pressure and enthalpy	m ³ /kg
V = f(p,s)	v_ps_97	= VPS97(P,S)	= C_VPS97(VPS,P,S)	Backward function: Specific volume from pressure and entropy	m ³ /kg
V = f(p,t,x)	v_ptx_97	= VPTX97(P,T,X)	= C_VPTX97(V,P,T,X)	Specific volume	m ³ /kg
W = f(p,t,x)	w_ptx_97	= WPTX97(P,T,X)	= C_WPTX97(W,P,T,X)	Isentropic speed of sound	m/s
x = f(h,s)	x_hs_97	= XHS97(H,S)	= C_XHS97(XHS,H,S)	Backward function: Vapor fraction from enthalpy and entropy	kg/kg
x = f(p,h)	x_ph_97	= XPH97(P,H)	= C_XPH97(XPH,P,H)	Backward function: Vapor fraction from pressure and enthalpy	kg/kg
x = f(p,s)	x_ps_97	= XPS97(P,S)	= C_XPS97(XPS,P,S)	Backward function: Vapor fraction from pressure and entropy	kg/kg
x = f(v,h)	x_vh_97	= XVH97(P,H)	= C_XVH97(XPH,P,H)	Backward function: Vapor fraction from volume and enthalpy	kg/kg
x = f(v,u)	x_vu_97	= XVU97(P,H)	= C_XVU97(XPH,P,H)	Backward function: Vapor fraction from volume and internal energy	kg/kg
z = f(p,t,x)	z_ptx_97	= ZPTX97(P,T,X)	= C_ZPTX97(Z,P,T,X)	Compression factor	-

Units: $t \text{ in } {}^{\circ}\text{C}$

p in bar

x in kg saturated steam/kg wet steam

Range of validity of IAPWS-IF97

Temperature: from 0 °C to 800 °C

Pressure: from 0.00611 bar to 1000 bar

High temperature region: to 2000 °C for pressures less than 500 bar

Exception to 900°C for the functions for a, η , λ , ν , Pr

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

Single-phase region

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

Wet-steam region

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered. In this case, the backward functions result in the appropriate value between 0 and 1 for x. When calculating wet steam either the given value for t = -1 and in both cases the value for t = -1 and 1 must be entered.

If *p* and *t* and *x* are entered as given values, the program considers *p* and *t* to be appropriate to represent the vapor pressure curve. If this is not the case the calculation for the property of the chosen function results in –1.

(Wet steam region of the IAPWS-IF97: $t_t = 0 \, ^{\circ}\text{C} \, \dots \, t_C = 373.946 \, ^{\circ}\text{C}$

 $p_t = 0.00611 \text{ bar } \dots p_C = 220.64 \text{ bar } (c - \text{critical point})$

Note.

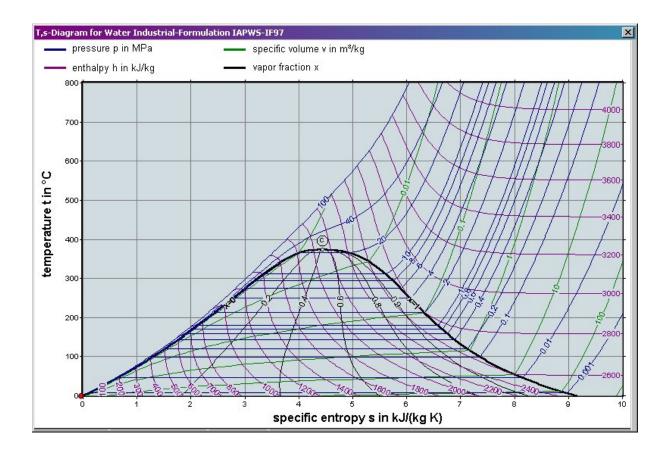
If the calculation results in -1, the values entered represent a state point beyond the range of validity of IAPWS-IF97. For further information on each function and its range of validity see Chapter 4. The same information may also be accessed via the online help pages.

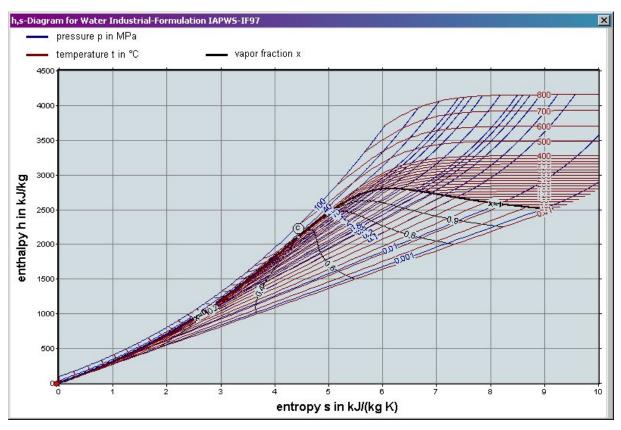
1.3 Thermodynamic Diagrams

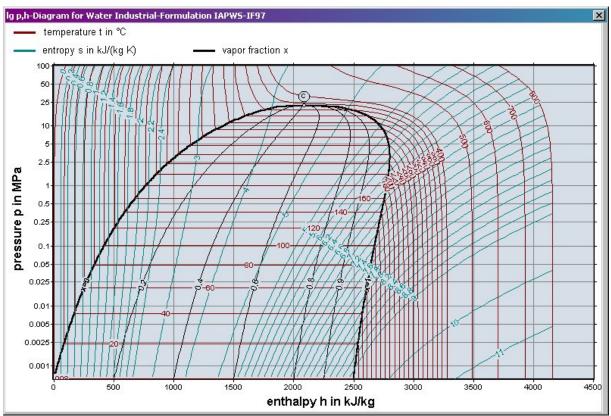
FluidEXL^{Graphics} enables the user to represent the calculated properties in the following thermodynamic diagrams:

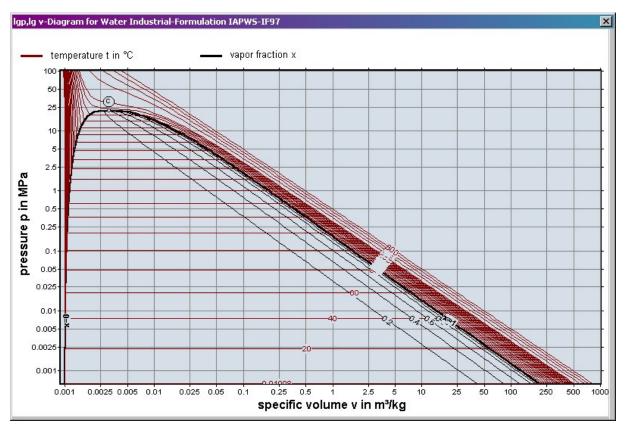
- *T-s* diagram - *T-h* diagram

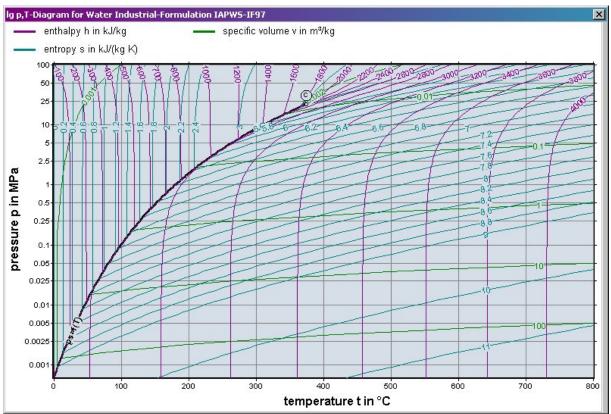
- h-s diagram - T-lg v diagram

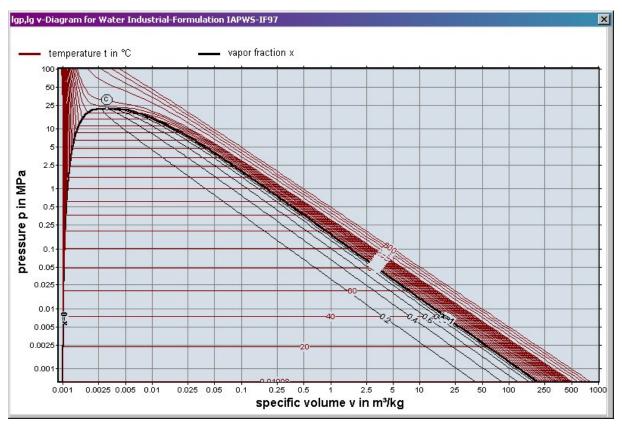

- *lg p-h* diagram - *lg p-s* diagram

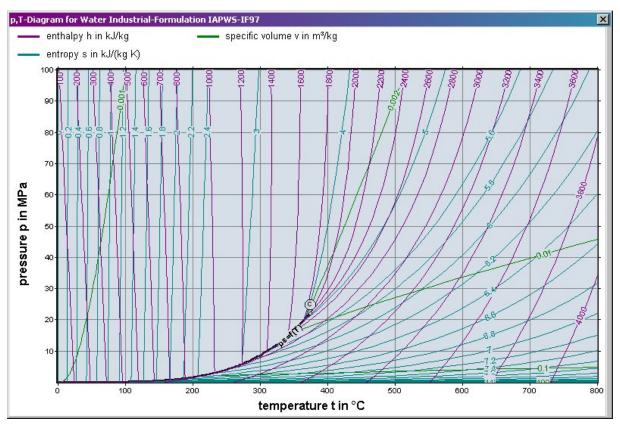

- *lg p-lg v* diagram - *h-lg v* diagram

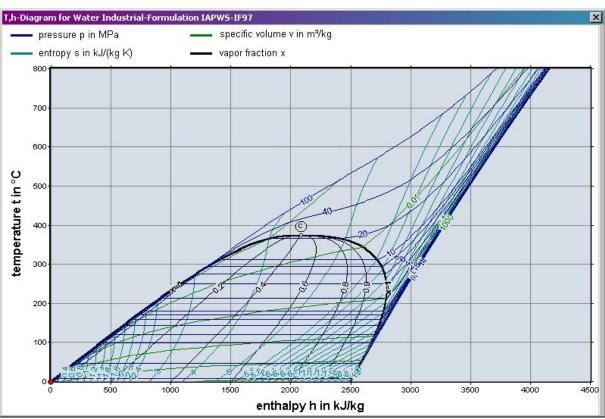

- *Ig p-T* diagram - *s-Ig v*-diagram

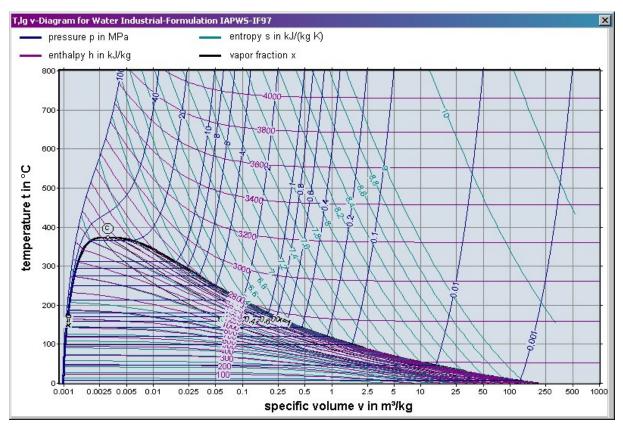

- p-T diagram

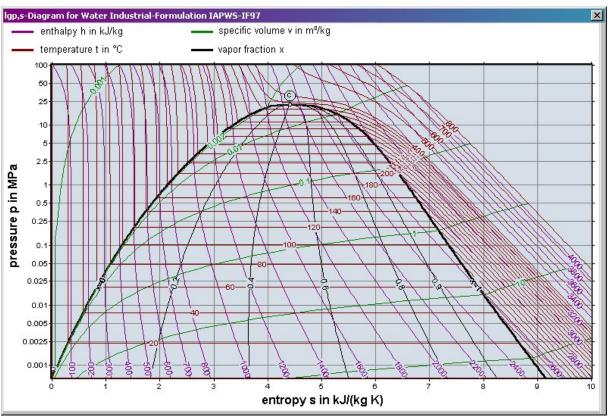

The diagrams, in which the calculated state point will be displayed, are shown on the following pages.

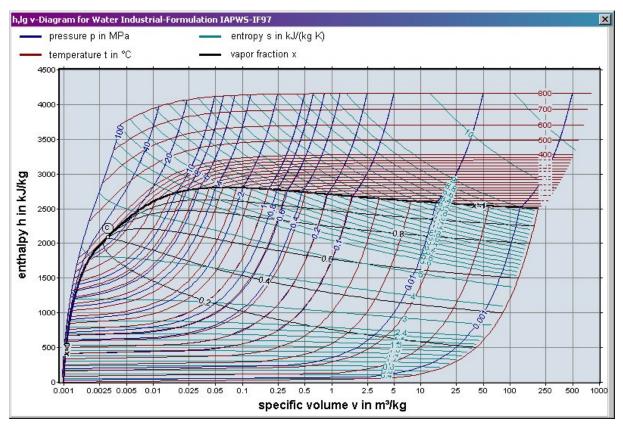


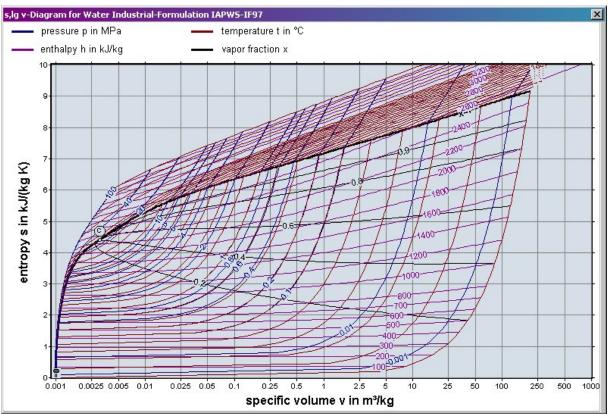












2. Application of FluidEXLGraphics in Excel®

The FluidEXL^{Graphics} Add-In has been developed to calculate thermodynamic properties in Excel more conveniently. Within Excel[®], it enables the direct call of functions relating to water and steam from the LibIF97 property library.

2.1 Installing FluidEXL^{Graphics}

If FluidEXL^{Graphics} has not yet been installed or if there is a version installed which has been delivered before June 2010, please complete the initial installation procedure described below.

If FluidEXL^{Graphics} has already been installed in a version which has been delivered after June 2010, you simply need to copy the files which belong to the LibIF97 library. In this case, follow the subsection "Adding the LibIF97 Library" on page 2/11.

Installing FluidEXL Graphics for 32-bit Office®

Complete the following steps for initial installation of FluidEXL Graphics.

Before you begin, it is best to uninstall any trial version or full version of FluidEXL^{Graphics} delivered before June 2010.

After you have downloaded and extracted the zip-file

```
"CD_FluidEXL_Graphics_LibIF97_Eng.zip" (for English version of Windows)
"CD_FluidEXL_Graphics_LibIF97.zip" (for German version of Windows)
```

you will see the folder

LibIF97.hlp.

```
CD_FluidEXL_Graphics_LibIF97_Eng (for English version of Windows)
CD_FluidEXL_Graphics_LibIF97 (for German version of Windows)
```

in your Windows Explorer, Norton Commander etc.

Now, open this folder by double-clicking on it.

Within this folder you will see the following files:

```
FluidEXL_Graphics_Eng_Setup.exe (for English version of Windows)
FluidEXL_Graphics_Setup.exe (for German version of Windows)
FluidEXL_Graphics_Eng.xla (for English version of Windows)
FluidEXL_Graphics.xla (for German version of Windows)
FluidEXL_Graphics_LibIF97_Docu_Eng.pdf
LibIF97.dll
```

In order to run the installation of FluidEXLGraphics double-click the file

```
FluidEXL_Graphics_Eng_Setup.exe (for English version of Windows)
FluidEXL_Graphics_Setup.exe (for German version of Windows).
```

Installation may start with a window noting that all Windows programs should be closed. When this is the case, the installation can be continued. Click the "Continue" button.

In the following dialog box, "Choose Destination Location", the default path offered automatically for the installation of FluidEXL*Graphics* is

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL_Graphics (for German version of Windows).

By clicking the "Browse..." button, you can change the installation directory before installation (see figure below).

Figure 2.1: Choose Destination Location

Finally, click on "Next" to continue installation; click "Next" again in the "Start Installation" window which follows in order to start the installation of FluidEXL^{Graphics}.

After FluidEXLGraphics has been installed, the sentence

"FluidEXL Graphics English has been successfully installed."

will be shown. Confirm this by clicking the "Finish" button.

During the installation process the following files

Advapi32.dll LC.dll

DFORMD.dll Msvcp60.dll
Dforrt.dll Msvcrt.dll
UNWISE.EXE UNWISE.INI

INSTALL_EXL.LOG

have been copied into the chosen destination folder, in the standard case

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows) (for German version of Windows).

In addition, the two subdirectories \FORMULATION97 and \FLuft have been compiled in the destination folder.

In the next step, the following files

FluidEXL_Graphics_Eng.xla (for English version of Windows)
FluidEXL_Graphics.xla (for German version of Windows)

LibIF97.dll LibIF97.hlp from the extracted folder

CD_FluidEXL_Graphics_LibIF97_Eng (for English version of Windows) CD_FluidEXL_Graphics_LibIF97 (for German version of Windows)

must be copied into the chosen destination folder (the standard being

C:\Program Files\FluidEXL Graphics Eng (for English version of Windows) C:\Programme\FluidEXL_Graphics (for German version of Windows),

using an appropriate program such as Explorer or Norton Commander.

Installing FluidEXL Graphics for 64-bit Office®

Complete the following steps for initial installation of FluidEXLGraphics.

Before you begin, it is best to uninstall any trial version or full version of FluidEXLGraphics delivered before June 2010.

After you have downloaded and extracted the zip-file

```
"CD_FluidEXL_Graphics_LibIF97_x64_Eng.zip"
                                               (for English version of Windows)
"CD FluidEXL Graphics LibIF97 x64.zip"
                                               (for German version of Windows)
```

you will see the folder

```
CD FluidEXL Graphics LibIF97 Eng
                                        (for English version of Windows)
CD FluidEXL Graphics LibIF97
                                        (for German version of Windows)
```

in your Windows Explorer, Norton Commander etc.

Now, open this folder by double-clicking on it.

Within this folder you will see the following files

```
FluidEXL_Graphics_LibIF97_Docu_Eng
```

FluidEXL_Graphics_Eng.xla (for English version of Windows) FluidEXL_Graphics.xla (for German version of Windows) FluidEXL Graphics Eng Setup 64.msi (for English version of Windows) (for German version of Windows) FluidEXL_Graphics_Setup_64.msi

LibIF97.dll LibIF97.hlp Setup.exe

and the folders

vcredist x64

WindowsInstaller3 1.

In order to run the installation of FluidEXLGraphics double-click the file Setup.exe.

If the "Microsoft Visual C++ 2010 x64 Redistributable Pack" is not running on your computer yet, installation will start with a window noting that the "Visual C++ 2010 runtime library (x64)" will be installed on your machine (see figure below).

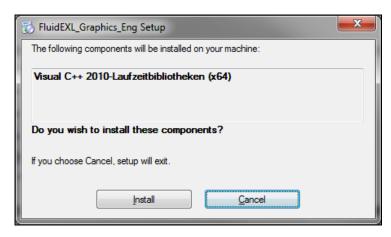


Figure 2.2: Installing the "Visual C++ 2010 runtime library (x64)"

Click on "Install" to continue.

In the following window you are required to accept the Microsoft[®] license terms to install the "Microsoft Visual C++ 2010 x64 Redistributable Pack" by ticking the box next to "I have read and accept the license terms" (see figure below).

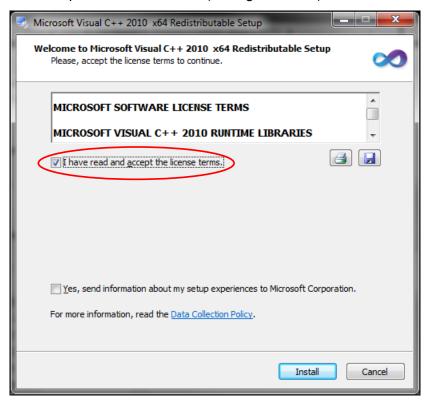


Figure 2.3: Accepting the license terms

Now click on "Install" to continue installation.

After the "Microsoft Visual C++ 2010 x64 Redistributable Pack" has been installed, you will see the sentence "Microsoft Visual C++ 2010 x64 Redistributable has been installed." Confirm this by clicking "Finish."

Now the installation of FluidEXL_Graphics_Eng_64 starts with a window noting that the installer will guide you through the installation. Click the "Next >" button to continue.

In the following dialog box, "Select Installation Folder," the default path offered automatically for the installation of FluidEXL^{Graphics} is

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows).
C:\Programme\FluidEXL_Graphics (for German version of Windows).

By clicking the "Browse..." button, you can change the installation directory before installation (see Figure 2.4).

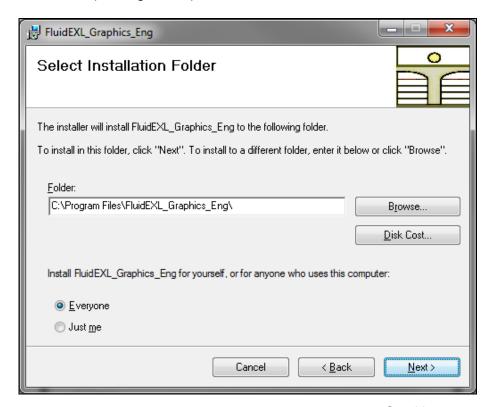


Figure 2.4: Choosing the Installation Folder of FluidEXL Graphics

Finally, click on "Next >" to continue installation; click "Next >" again in the "Confirm Installation" window which follows in order to start the installation of FluidEXL *Graphics*.

After FluidEXL^{Graphics} has been installed, you will see the sentence "FluidEXL_Graphics_Eng has been successfully installed." Confirm this by clicking the "Close" button.

During the installation process the following files will have been copied into the destination folder chosen, the standard being C:\Program Files\FluidEXL_Graphics_Eng:

```
capt_ico_big.ico libmmd.dll libifcoremd.dll LC.dll libiomp5md.dll.
```

In addition, the two subdirectories \FORMULATION97 and \FLuft were created in the destination folder.

```
In the next step, the files below,
FluidEXL_Graphics_Eng.xla (for English version of Windows)
FluidEXL_Graphics.xla (for German version of Windows)
LibIF97.dll
LibIF97.hlp
```

found in your CD folder, must be copied into the chosen destination folder (the standard being

```
C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL_Graphics (for German version of Windows))
using an appropriate program such as Explorer or Norton Commander.
```

2.2 Registering FluidEXL^{Graphics} as Add-In in Excel[®]

Registering FluidEXLGraphics as Add-In in Excel®, versions 2003 or earlier

After the installation of FluidEXL*Graphics*, the program must be registered as an Add-In in Excel[®]. In order to do so, start Excel[®] and carry out the following steps:

- Click "Tools" in the upper menu bar of Excel[®].
- Here, click the "Add-Ins..." menu item.
 After a short delay the "Add-Ins" dialog box will appear.
- Click "Browse...."
- In the following dialog box, choose your chosen destination folder (the standard being

```
C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL_Graphics (for German version of Windows))
```

here select

```
"FluidEXL_Graphics_Eng.xla" (for English version of Windows)
"FluidEXL_Graphics.xla" (for German version of Windows)
```

and afterwards click "OK".

- Now, the entry

```
"FluidEXL Graphics Eng" (for English version of Windows)
"FluidEXL Graphics" (for German version of Windows)
```

will appear in the Add-Ins list.

Note:

As long as the check box next to the file name "FluidEXL Graphics Eng" is checked, this Add-In will be loaded automatically every time you start Excel[®] until you unmark the box by clicking on it again.

In order to register FluidEXL*Graphics* as an Add-In, click "OK" in the "Add-Ins" dialog box. Now, the new FluidEXL*Graphics* menu bar will appear in the upper menu area of your Excel[®] screen, marked with a red circle in Figure 2.5.

Figure 2.5: Menu bar of FluidEXLGraphics

From within Excel you can now select the "Water IAPWS-IF97" DLL library property functions via this menu bar (cf. part 2.5 on page 2/19).

Registering FluidEXL^{Graphics} as Add-In in Excel[®] 2007 (or later versions)

After installation in Windows[®], FluidEXL^{Graphics} must be registered in Excel[®] versions 2007 and later as an Add-In. To do this, start Excel[®] and carry out the following steps:

- Click the Windows Office[®] button in the upper left hand corner of Excel[®]
- Click on the "Excel Options" button in the menu which appears (see Figure 2.6)

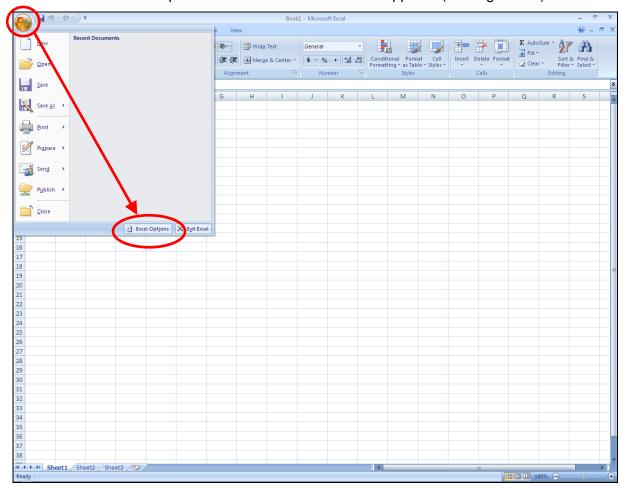


Figure 2.6: Registering FluidEXL Graphics as Add-In in Excel® 2007

Click on "Add-Ins" in the next menu

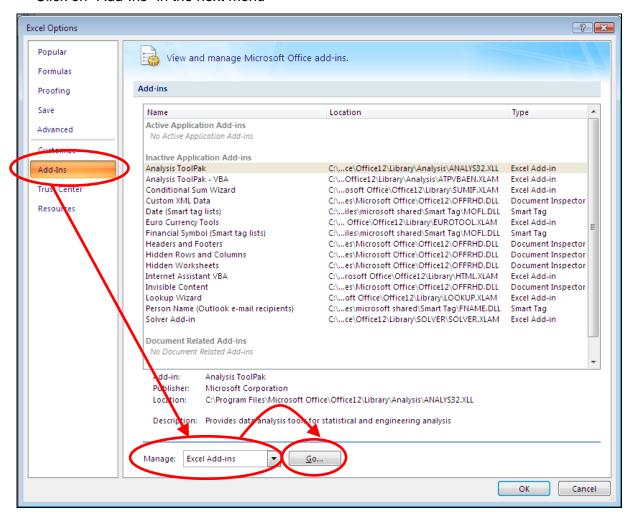


Figure 2.7: Dialog window "Excel Options"

- Should it not be shown in the list automatically, select "Excel Add-ins" (found next to "Manage:" in the lower area of the menu)
- Then click the "Go..." button
- Click "Browse" in the following window and locate the destination folder, generally

```
C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL_Graphics (for German version of Windows);
```

within that folder click on the file named

```
"FluidEXL_Graphics_Eng.xla" (for English version of Windows)
"FluidEXL_Graphics.xla" (for German version of Windows)
```

and then hit "OK."

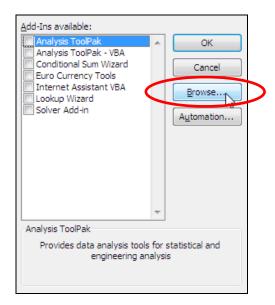


Figure 2.8: Dialog window "Add-Ins available"

Now, "FluidEXL Graphics Eng" will be shown in your list of Add-Ins.
 (If a check-mark is situated in the box next to the name "FluidEXL Graphics Eng," this Add-In will automatically be loaded whenever Excel[®] starts. This will continue to occur unless the check-mark is removed from the box by clicking on it.)

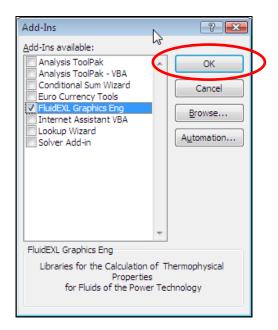


Figure 2.9: Dialog window "Add-Ins"

- In order to register the Add-In click the "OK" button in the "Add-Ins" window.

In order to use FluidEXL*Graphics* in the following example, click on the menu item "Add-Ins" shown in Figure 2.10.

Figure 2.10: Menu item "Add-Ins"

In the upper menu region of Excel, the FluidEXL^{Graphics} menu bar will appear as marked with the red circle in the next figure.

Figure 2.11: FluidEXL Graphics menu bar

Installation of FluidEXL^{Graphics} in Excel[®] (versions 2007 and later) is now finished. FluidEXL^{Graphics} can be used analogous to the description for using with earlier Excel[®] versions.

Adding the LibIF97 Library (FluidEXL^{Graphics} is already installed)

If FluidEXL*Graphics* has already been installed in the June 2010 version, you only have to copy the following files

```
FluidEXL_Graphics_Eng.xla (for English version of Windows)
FluidEXL_Graphics.xla (for German version of Windows)
LibIF97.dll
LibIF97.hlp
```

provided in the extracted folder

CD_FluidEXL_Graphics_LibIF97_Eng (for English version of Windows)

CD_FluidEXL_Graphics_LibIF97 (for German version of Windows)

into the folder you have chosen for the installation of FluidEXLGraphics (the standard being

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL_Graphics (for German version of Windows)

using an appropriate program such as Explorer® or Norton Commander.

From within Excel you can now select the "Water IAPWS-IF97" DLL library property functions for water and steam via this menu bar (the example calculation can be found in chapter 2.5 on page 2/19).

2.3 The FluidEXL Graphics Help System

As mentioned earlier, FluidEXL^{Graphics} also provides detailed online help functions. If you are running Windows Vista or Windows 7, please note the paragraph

"Using the FluidEXL^{Graphics} Online-Help in Windows Vista or Windows 7."

For general information in Excel®

- Click on "?" and then "Help" in the FluidEXL^{Graphics} menu bar. Information on individual property functions may be accessed via the following steps:

- Click "Calculate" in the FluidEXL Graphics menu bar.
- Click on the "Water IAPWS-IF97" library under "Or select a <u>category</u>:" in the "Insert Function" window which will appear.
- Click the "Help on this function" button in the lower left-hand edge of the "Insert Function" window.
- If the "Office Assistant" is active, first double-click "Help on this feature" and in the next menu click "Help on selected function".

If the LibIF97.hlp function help cannot be found, confirm the question whether you want to

look for it yourself with "Yes". Select the LibIF97.hlp file in the installation folder of FluidEXL*Graphics* in the window which is opened, in the standard case

C:\Program Files\FluidEXL_Graphics_Eng
C:\Programme\FluidEXL_Graphics (for English version of Windows)
and click "Yes" in order to complete the search.

Using the FluidEXL Graphics Online Help in Windows Vista or Windows 7

If you are running Windows Vista or Windows 7 on your computer, you might not be able to open Help files. To view these files you have to install the Microsoft[®] Windows Help program which is provided by Microsoft[®]. Please carry out the following steps in order to download and install the Windows Help program.

Open Microsoft Internet Explorer® and go to the following address:

http://support.microsoft.com/kb/917607/

You will see the following web page:

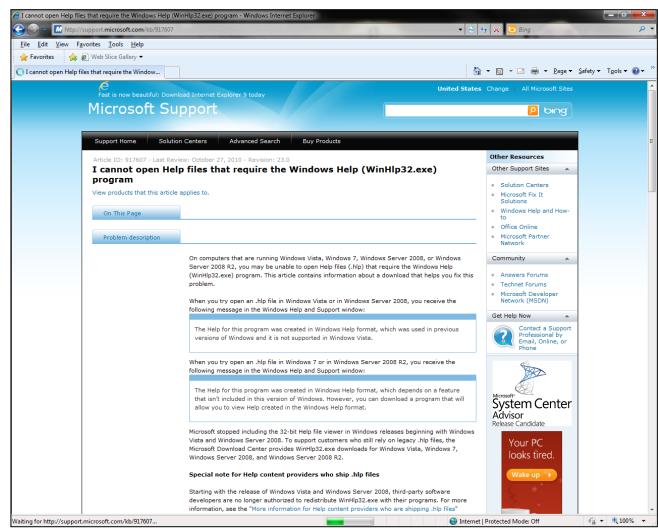


Figure 2.12: Microsoft® Support web page

Scroll down until you see the headline "Resolution." Here you can see the bold hint:

"Download the appropriate version of Windows Help program (WinHlp32.exe), depending on the operating system that you are using:"

The following description relates to Windows[®] 7. The procedure is analogous for Windows[®] Vista.

Click on the link "Windows Help program (WinHlp32.exe) for Windows 7" (see Figure 2.13).

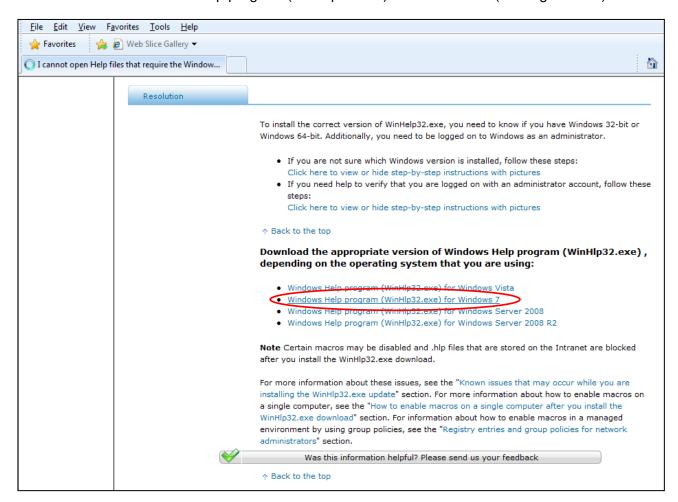


Figure 2.13: Selecting your Windows version

You will be forwarded to the Microsoft Download Center where you can download the Microsoft Windows Help program.

First, a validation of your Windows License is required.

To do this click on the "Continue" button (see Figure 2.14).

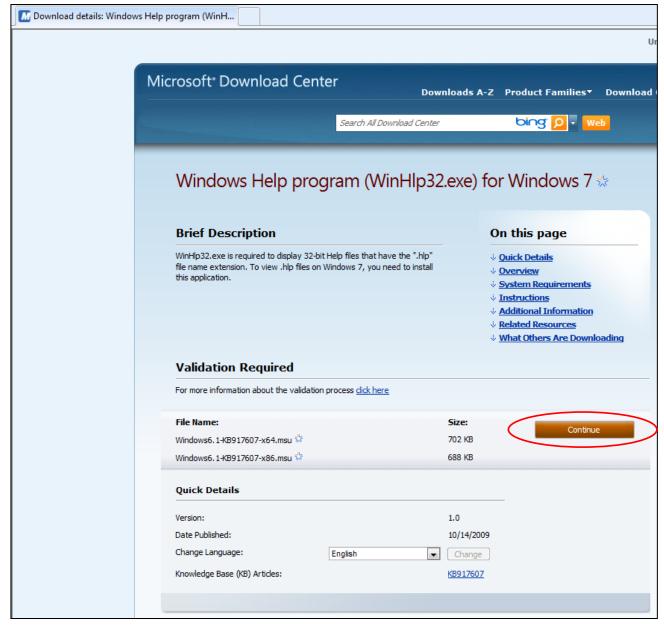


Figure 2.14: Microsoft® Download Center

You will be forwarded to a web page with instructions on how to install the Genuine Windows Validation Component.

At the top of your Windows Internet Explorer you will see a yellow information bar. Right-click this bar and select "Install ActiveX Control" in the context menu (see Figure 2.15).

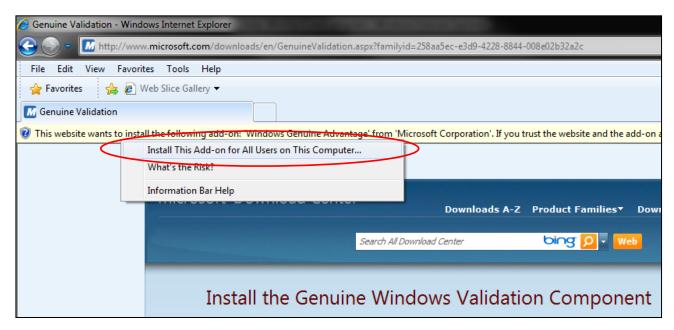


Figure 2.15: Installing the Genuine Windows Validation Component

A dialog window appears in which you will be asked if you want to install the software. Click the "Install" button to continue (see Figure 2.16).

Figure 2.16: Internet Explorer – Security Warning

After the validation has been carried out you will be able to download the appropriate version of Windows Help program (see Figure 2.17).

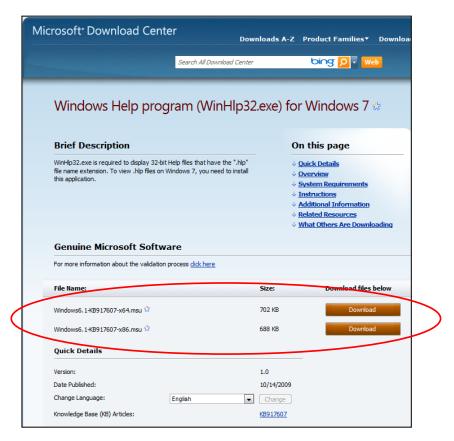


Figure 2.17: Downloading the Windows Help program

To download and install the correct file you need to know which Windows version (32-bit or 64-bit) you are running on your computer.

If you are running a 64-bit operating system, please download the file Windows6.1-KB917607-x64.msu.

If you are running a 32-bit operating system, please download the file Windows6.1-KB917607-x86.msu.

In order to run the installation of the Windows Help program double-click the file you have just downloaded on your computer:

Windows6.1-KB917607-x64.msu (for 64-bit operating system) Windows6.1-KB917607-x86.msu. (for 32-bit operating system).

Installation starts with a window searching for updates on your computer. After the program has finished searching you may see the following window.



Figure 2.18: Windows Update Standalone Installer

In this case, the installation can be continued by clicking the "Yes" button. (If you have already installed this update, you will see the message "Update for Windows (KB917607) is already installed on this computer.")

In the next window you have to accept the Microsoft license terms before installing the update by clicking on "I Accept" (see Figure 2.19)

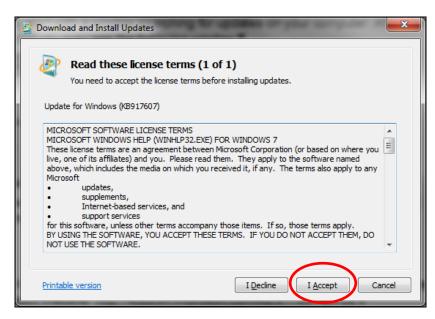


Figure 2.19: Windows License Terms

Installation starts once you have clicked the "I Accept" button (see Figure 2.20).

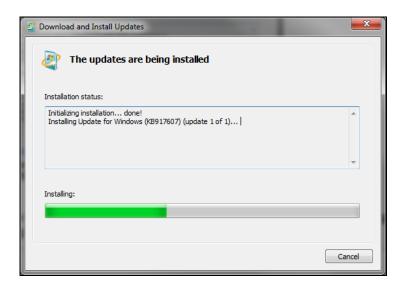


Figure 2.20: Installation process

After the Windows Help program has been installed, the notification "Installation complete" will appear. Confirm this by clicking the "Close" button.

The installation of the Windows Help program has been completed and you will now be able to open the Help files.

2.4 Licensing the LibIF97 Property Library

The licensing procedure has to be carried out when Excel[®] starts up and a FluidEXL^{Graphics} prompt message appears. In this case, you will see the "License Information" window (see figure below).

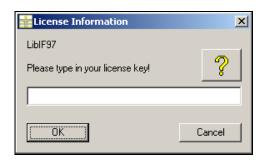


Figure 2.21: "License Information" window

Here you will have to type in the license key which you have obtained from the Zittau/Goerlitz University of Applied Sciences. You can find contact information on the "Content" page of this User's Guide or by clicking the yellow question mark in the "License Information" window. Then the following window will appear:

Figure 2.22: "Help" window

If you do not enter a valid license it is still possible to start Excel by clicking "Cancel" twice. In this case, the LibIF97 property library will display the result "-11111111" for every calculation.

The "License Information" window will appear every time you start Excel unless you uninstall FluidEXL*Graphics* according to the description in section 2.7 of this User's Guide.

Should you not wish to license the LibIF97 property library, you have to delete the files

LibIF97.dll LibIF97.hlp

in the installation folder of FluidEXLGraphics (the standard being

C:\Program Files\FluidEXL_Graphics_Eng
C:\Programme\FluidEXL_Graphics
(for English version of Windows)

using an appropriate program such as Explorer® or Norton Commander.

2.5 Example: Calculation of h = f(p,t,x) and s = f(p,t,x)

Now we will calculate, step by step, the specific enthalpy h as a function of pressure p, temperature t, and vapor fraction x, using FluidEXL Graphics .

- Start Excel®
- Enter a value for p in bar in a cell

```
(Range of validity of the IF97: p = 0.00611 \dots 1000 \text{ bar}

p = 0.00611 \dots 500 \text{ bar for high temperature region}
```

⇒ e. g.: Enter the value 100 into cell A2

- Enter a value for *t* in °C in a cell

```
(Range of validity of the IF97: t = 0 ... 800 \,^{\circ}C
```

high temperature region up to 2000 °C

- ⇒ e. g.: Enter the value 400 into cell B2
- Enter a value for x in kg saturated steam/kg wet steam in a cell

Since the wet steam region is calculated automatically by the subprograms, the following fixed details on the vapor fraction x are to be considered when the value for x is entered:

Single-phase region

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

Wet-steam region

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1 or the given value for p and t = -1 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve. If it is not the case the calculation for the property of the chosen function to be calculated results in -1.

Wet steam region of the IAPWS-IF97:

```
\begin{array}{l} t_t = 0~^{\circ}C~...~t_c = 373.946~^{\circ}C\\ p_t = 0.00611~bar~...~p_c = 220.64~bar~(c-critical~point) \end{array}
```

 \Rightarrow e.g.: Enter –1 into the C2 cell.

- Click the cell in which the enthalpy *h* in kJ/kg is to be displayed.

```
\Rightarrow e.g.: Click the D2 cell.
```

Click "Calculate" in the menu bar of FluidEXL^{Graphics}.
 Now the "Insert Function" window appears (see next figure).

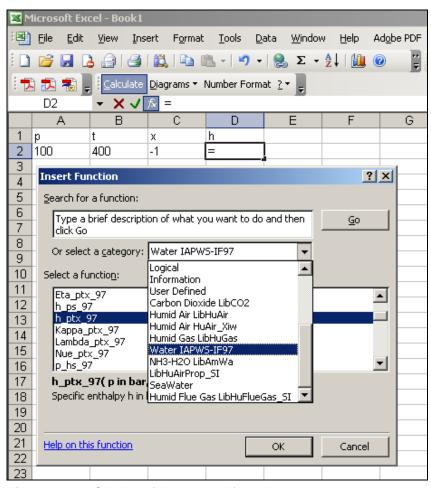


Figure 2.23: Choice of library and function name

- Search and click the "Water IAPWS-IF97" library under "Or select a category:" in the upper part of the window.
- Search and click the h_ptx_97 function under "Select a function:" right below.
 Here it is possible to get more information on the range of validity, measuring units, error responses, etc. by clicking the "Help on this function" button.
- Click "OK".

 The window shown in the next figure will now appear.

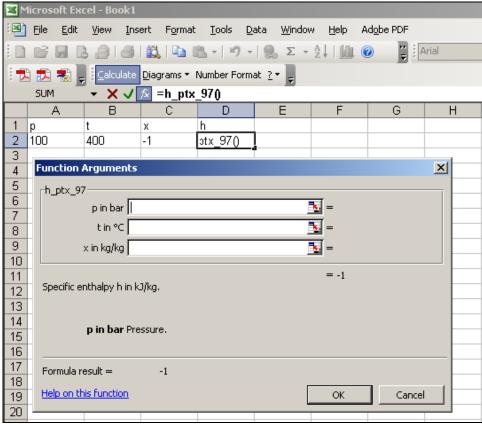


Figure 2.24: Input menu for the function

- The Cursor is now situated on the line next to "p in bar". You can now enter the value for p either by clicking the cell with the value for p, by entering the name of the cell with the value for p, or by entering the value for p directly.

⇒ e. g.: Click on the cell A2

- Situate the cursor next to "t in °C" and enter the value for *t* by clicking the cell with the value for *t*, by entering the name of the cell with the value for *t*, or by entering the value for *t* directly.

⇒ e. g.: Type B2 into the window next to "t in °C"

- Situate the cursor next to "x in kg/kg" and enter the value for x by clicking the cell with the value for x, by entering the name of the cell with the value for x directly.

⇒ e. g.: Click on the cell C2

The window should now look like the following figure:

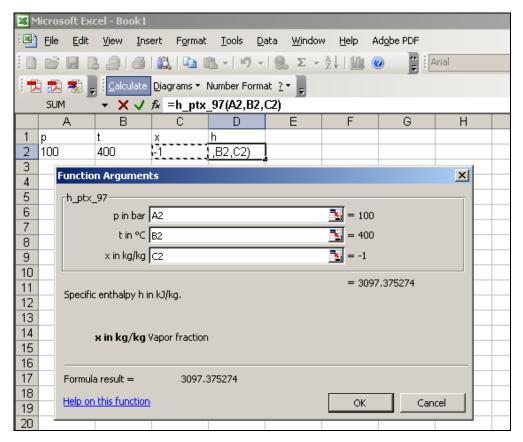


Figure 2.25: Input menu showing the result

- Click the "OK" button.

The result for h in kJ/kg appears in the cell selected above.

 \Rightarrow The result in our sample calculation here is: h = 3097.375274 in kJ/kg.

The calculation of h = f(p,t,x) has thus been completed. Correspondingly, the specific entropy s = f(p,t,x) can be calculated with the same values for p, t, and x.

- Click the cell in which the entropy s in kJ/(kg K) is to be displayed.
 - \Rightarrow e.g.: Click the cell E2.
- Click "Calculate" in the menu bar of FluidEXL^{Graphics}. The "Insert Function" window will appear.
- Because of the previous calculation, the "Water IAPWS-IF97" library under "Or select a category:" will be marked automatically.
- Search for and click on the s_ptx_97 function under "Select a function:" in the center of the window.
- Click "OK".
 The "Function Arguments" window appears.
- Enter the cell name with the value of *p* next to "p in bar", or click on the cell with the value of *p*.
- Situate the cursor next to "t in °C", click and enter the cell name with the value of *t*, or click on the cell with the value of *t*.

- Situate the cursor next to "x in kg/kg", click and enter the cell name with the value of x, or click on the cell with the value of x.
- Click "OK".

The result for s in kJ/kg K appears in the cell selected above.

⇒ The result in our sample calculation here is: 6.213928894 in kJ/kg K.

The calculation of s = f(p, T, x) has been carried out. You can now arbitrarily change the values for p, T, or x in the appropriate cells. The specific enthalpy and the specific entropy are recalculated and updated every time you change the data. This shows that the Excel[®] data flow and the DLL calculations are working together successfully.

Note:

If the calculation results in -1, this indicates that the values entered are located outside the range of validity of IF97. More detailed information on each function and its range of validity is available in Chapter 3.

For further property functions calculable in FluidEXL^{Graphics}, see the function table in Chapter 1.

Number Formats

When using FluidEXL^{Graphics} you have the option of choosing special number formats in advance.

Changes can be made as follows:

- Click the cell or select and click on the cells you wish to format.
 (In empty cells the new format will be applied once a value has been entered.)
- Click "Number Format" in the FluidEXL Graphics menu bar.
- Select the desired number format in the dialog box which appears:

"STD – Standard": Insignificant zeros behind the decimal point are not

shown.

"FIX – Fixed Number of Digits": All set decimal places are shown, including insignificant

zeros.

"SCI – Scientific Format": Numbers are always shown in the exponential form with

the set number of decimal places.

- Set the "Number of decimal places" by entering the number into the appropriate window.
- Confirm this by clicking the "OK" button.

As an example, the table below shows the three formats for the number 1.230 adjusted for three decimal places:

STD	1.23
FIX	1.230
SCI	1.230E+00

This formatting can also be applied to cells which have already been calculated.

2.6 Representation of Calculated Properties in Thermodynamic Diagrams

In the following section, the calculated state point is to be represented in thermodynamic diagrams with the help of FluidEXL *Graphics*. Calculations can be represented in the following diagrams:

T-s Diagram	
h-s Diagram	
<i>lg p-h</i> Diagram	
<i>lg p-lg v</i> Diagram	
<i>lg p-T</i> Diagram	
<i>p-T</i> Diagram	
T-h Diagram	
<i>T-lg v</i> Diagram	
<i>lg p-s</i> Diagram	
h-lg v Diagram	
s-lg v Diagram	

In order to represent the calculated values in a *T-s* diagram, for example, the temperature and specific entropy values for the point to be represented must be marked.

Click on the cell with the value for t (as t is the ordinate in the diagram).
 ⇒ Click cell B2 in our example.

Hold down the "Ctrl" key and simultaneously click the cell with the value for *s* (as *s* is the abscissa in the diagram). Release the "Ctrl" key.

Note:

The value pairs to be depicted (Y,X), here (t,s), must always be located in the same row or column.

- ⇒ For this example, hold down the "Ctrl" key and click the cell E2.
- As displayed in the next figure, click "Diagrams" in the FluidEXL^{Graphics} menu bar and choose "T,s-Diagram" in the drop-down menu.

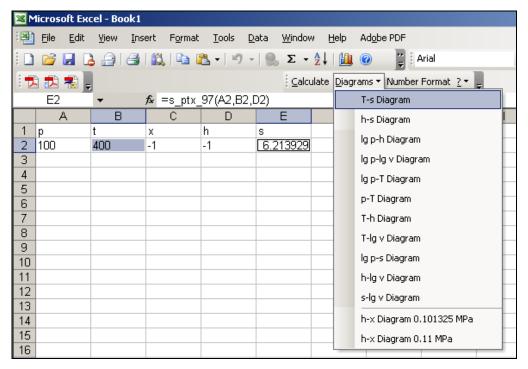


Figure 2.26: Marking the values and choice of the diagram

The *T-s* diagram shown in the figure below will appear. The calculated state point is marked as a red point.

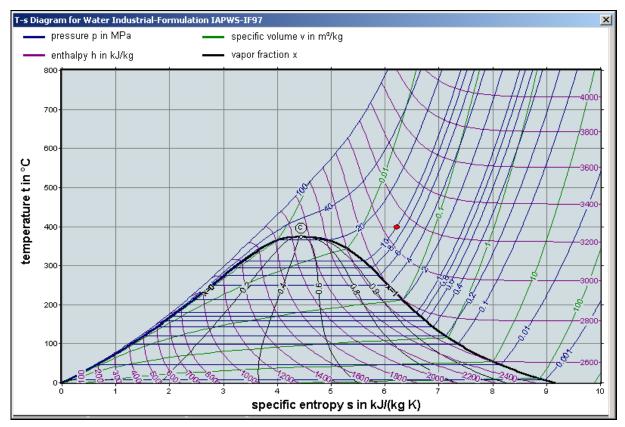


Figure 2.27: T-s Diagram including the state point

Note:

If the coloring is distorted you need to increase the amount of colors displayed on the screen by Windows® to more than 256 colors. The preferences can be set within Windows by going to "Control Panel" and then under "Screen".

In order to close the *T-s* diagram, click on the "x" in the upper-right hand corner of the *T-s* Diagram window.

Proceed in the same way if you wish to represent values in the *h*-s diagram:

- Click the cell with the value for h.
 - ⇒ Click the cell D2 for the example.
- Hold down the "Ctrl" key and simultaneously click on the cell with the value for s. Release the "Ctrl" key.
 - ⇒ For this example, click the E2 cell while holding down the "Ctrl" key.
- Click "Diagrams" in the menu bar of FluidEXL^{Graphics}, and click "h-s diagram" in the menu which appears.
 In the h-s diagram then displayed, the state point is marked in red.

If the calculated state point should be represented in the *lg p-h* diagram, mark the value of *p* first and then mark the value of *h*. Then proceed as above.

Note – Diagrams with various state points:

If you calculate various state points, they can be represented in <u>one</u> selected diagram. To do this, first mark with the cursor those values which are to represent the values of y in the diagram. Afterwards, hold down the "Ctrl" key and mark the corresponding values which are to represent the values of x in the diagram. Note once more that all value pairs which should be represented (Y,X) must be located in one row in Excel[®]. Proceed as described above.

Note – Diagrams without any state points:

If you wish to have a look at a diagram without performing a calculation, mark two empty cells located in one row, and select a diagram.

Printing Diagrams

The state diagrams can be printed with the help of Word[®] which also belongs to the Office suite[®].

- When the selected diagram is on the screen, hold down the "Alt" key and press the "Print" key briefly.
 - (This keyboard shortcut copies the current window, e.g., the diagram, into the Windows clipboard where it is ready to be pasted into other Windows[®] application programs.)
- Start Word by clicking "Start" in the Windows task bar, then "Programs", and then "Microsoft Word".
- As the diagram is to be printed in landscape format, change the (now loaded) Word application window into the landscape format.
 In order to do so, click "File" in the upper menu bar of Word, and then "Page Setup". Click "Margins" in the window which now appears, then "Landscape". Confirm this change by clicking "OK".
- In order to paste the diagram out of the Windows clipboard, click "Edit" in the upper menu bar of Word, and then "Paste".
 The diagram out of FluidEXL *Graphics* appears in the Word application window and is
 - ready to save and/or print.
- Start the printing process by clicking "File" in the upper menu bar of Word, and then "Print". Proceed as usual in the "Print" window which appears.

The diagram will be printed in the A4 landscape format, if you do not change the preferences.

In order to continue working in Excel, click "Microsoft Excel - ..." in the Windows task bar.

Proceed in the same way to print further diagrams.

2.7 Removing FluidEXL Graphics

Should you wish to remove only the LibIF97 library, delete the files

LibIF97.dll LibIF97.hlp

in the directory selected for the installation of FluidEXL Graphics (in the standard case

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL_Graphics (for German version of Windows)

by using an appropriate program such as Explorer®, Windows, or Norton Commander.

Unregistering FluidEXL Graphics as Add-In in Excel®, versions 2003 or earlier

To remove FluidEXL Graphics completely, proceed as follows: First the registration of

FluidEXL_Graphics_Eng.xla (for English version of Windows)
FluidEXL Graphics.xla (for German version of Windows)

has to be cancelled in Excel[®].

In order to do that, click "Tools" in the upper menu bar of Excel and here "Add-Ins...". Untick the box on the left-hand side of

"FluidEXL Graphics Eng" (for English version of Windows)
"FluidEXL Graphics" (for German version of Windows)

in the window that appears and click the "OK" button. The additional menu bar of FluidEXL*Graphics* disappears from the upper part of the Excel window. Afterwards, we recommend closing Excel.

If the FluidEXL^{Graphics} menu bar does not disappear, take the following steps: Click "View" in the upper menu bar of Excel, then "Toolbars" and then "Customize..." in the list box which appears.

"FluidEXL Graphics Eng" (for English version of Windows)
"FluidEXL Graphics" (for German version of Windows)

is situated at the bottom of the "Toolbars" entries, which must be selected by clicking on it. Delete the entry by clicking "Delete". You will be asked whether you really want to delete the toolbar – click "OK".

Within the next step delete the files

LibIF97.dll LibIF97.hlp

in the directory selected for the installation of FluidEXL Graphics (in the standard case

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL Graphics (for German version of Windows),

using an appropriate program such as Explorer® or Norton Commander.

In order to remove FluidEXL*Graphics* from Windows and the hard disk drive, click "Start" in the Windows task bar, select "Settings" and click "Control Panel". Now double-click on "Add or Remove Programs". In the list box of the "Add/Remove Programs" window that appears select

"FluidEXL Graphics Eng" (for English version of Windows)
"FluidEXL Graphics" (for German version of Windows)

by clicking on it and click the "Add/Remove..." button. In the following dialog box click "Automatic" and thereafter "Next >". Click "Finish" in the "Perform Uninstall" window. Answer the question whether all shared components shall be removed with "Yes to All". Finally, close the "Add/Remove Programs" and "Control Panel" windows.

Now FluidEXL *Graphics* has been removed.

Unregistering FluidEXL^{Graphics} as Add-In in Excel[®] 2007 (or later versions)

In order to unregister the FluidEXL*Graphics* Add-In in Excel[®] 2007 start Excel and carry out the following commands:

- Click the Windows Office® button in the upper left corner of Excel
- Click on the "Excel Options" button in the menu which appears

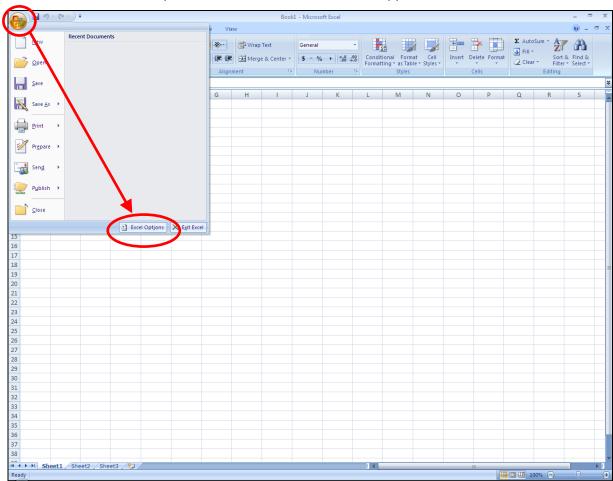


Figure 2.28: Unregistering FluidEXL Graphics as Add-In in Excel® 2007

- Click on "Add-Ins" in the next menu

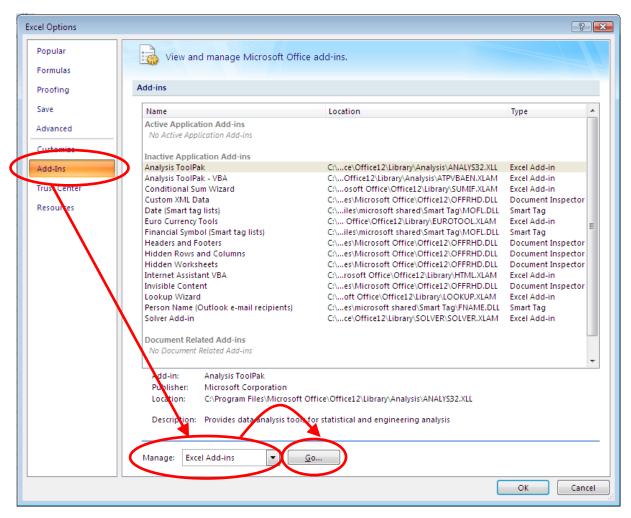


Figure 2.29: Dialog window "Add-Ins"

- If it is not shown in the list automatically, chose and click "Excel Add-ins" next to "Manage:" in the lower area of the menu
- Afterwards click the "Go..." button
- Remove the checkmark in front of

"FluidEXL Graphics Eng" (for English version of Windows)
"FluidEXL Graphics" (for German version of Windows)

in the window which now appears. Click the "OK" button to confirm your entry.

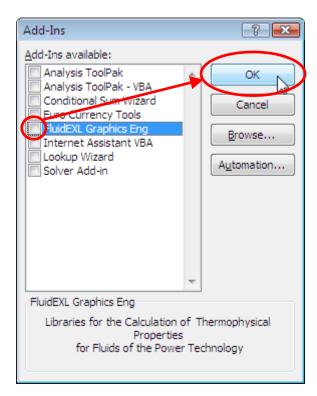


Figure 2.30: Dialog window "Add-Ins"

In order to remove FluidEXL^{Graphics} from Windows and the hard drive, click "Start" in the Windows task bar, select "Settings" and click "Control Panel."

Now, double click on "Add or Remove Programs."

In the list box of the "Add or Remove Programs" window that appears, select

"FluidEXL Graphics Eng" (for English version of Windows)
"FluidEXL Graphics" (for German version of Windows)

by clicking on it and then clicking the "Add/Remove..." button.

Click "Automatic" in the following dialog box and then the "Next >" button.

Click "Finish" in the "Perform Uninstall" window.

Answer the question of whether all shared components should be removed with "Yes to All." Finally, close the "Add or Remove Programs" and "Control Panel" windows.

Now FluidEXL*Graphics* has been completely removed from your computer.

3. Program Documentation

Thermal Diffusivity a = f(p,t,x)

Function Name: a_ptx_97

Sub-program with function value: REAL*8 FUNCTION APTX97(P,T,X)

for call from Fortran REAL*8 P,T,X

Sub-program with parameter: INTEGER*4 FUNCTION C_APTX97(A,P,T,X)

for call from DLL REAL*8 A,P,T,X

Input values

P - Pressure *p* in bar

T - Temperature t in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

APTX97, **A** or **a_ptx_97** - Thermal diffusivity
$$a = \frac{\lambda}{\rho \cdot c_p} = \frac{\lambda \cdot v}{c_p}$$
 in m²/s

Range of validity

Temperature range: from 0 °C to 900 °C

Pressure range: from 0.00611 bar to 1000 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_t = 0$ °C to $t_c = 373.946$ °C

Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar)

Results for wrong input values

Result APTX97, A = -1 or $a_ptx_97 = -1$ for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 900 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

(x = 0 or x = 1) at t = -1 and p > 220.64 bar

or p < 0.00611 bar or at p > 220.64 bar or p < 0.00611 bar

and $t > 373.946 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$

or $|t-t_{\rm S}(p)| > 0.1 \text{ K}$

References:

Internal calculation from ρ or v and c_p [1], [2], [3] and λ [6]

Relative Pressure Coefficient $\alpha_p = f(p,t,x)$

Function Name: alphap_ptx_97

Sub-program with function value: REAL*8 FUNCTION ALPHAPPTX97(P,T,X)

for call from Fortran REAL*8 P,T,X

Sub-program with parameter: INTEGER*4 FUNCTION C_ALPHAPPTX97 (ALPHAP,P,T,X)

for call from DLL REAL*8 ALPHAP,P,T,X

Input values

P - Pressure *p* in bar

T - Temperature t in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

ALPHAPPTX97, **ALPHAP** or **alphap_ptx_97** - Relative pressure coefficient α_p in K⁻¹

Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_t = 0 \,^{\circ}\text{C}$ to $t_c = 373.946 \,^{\circ}\text{C}$

Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar)

Results for wrong input values

Result ALPHAPPTX97, ALPHAP = -1 or alphap_ptx_97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 800 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

(x = 0 or x = 1) at t = -1 and p > 220.64 bar

or p < 0.00611 bar or at p > 220.64 bar or p < 0.00611 bar

and $t > 373.946 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$

or $|t-t_s(p)| > 0.1 \text{ K}$

References:

Internal calculation from ρ or v and c_p [1], [2], [3] and λ [6]

Isobaric Cubic Expansion Coefficient $\alpha_v = f(p,t,x)$

Function Name: alphav_ptx_97

Sub-program with function value: REAL*8 FUNCTION ALPHAVPTX97(P,T,X)

for call from Fortran REAL*8 P,T,X

Sub-program with parameter: INTEGER*4 FUNCTION C_ ALPHAVPTX97 (ALPHAV,P,T,X)

for call from DLL REAL*8 ALPHAV,P,T,X

Input values

P - Pressure *p* in bar **T** - Temperature *t* in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

ALPHAVPTX97, **ALPHAV** or **alphav_ptx_97** - Isobaric cubic expansioncoefficient α_v in K⁻¹

Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar High temperature region: to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_t = 0$ °C to $t_c = 373.946$ °C

Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar)

Results for wrong input values

Result ALPHAVPTX97, ALPHAV = -1 or alphav_ptx_97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or

 $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

(x = 0 or x = 1) at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at $|t-t_{s}(p)| > 0.1 \text{ K}$

Laplace Coefficient b = f(p)

Function Name: b_p_97

Sub-program with function value: REAL*8 FUNCTION BP97(P)

for call from Fortran REAL*8 P

Sub-program with parameter: INTEGER*4 FUNCTION C_ BP97 (B,P)

for call from DLL REAL*8 B,P

Input values

P - Pressure *p* in bar

Result

BPTX97, B or b_pt_97 - Laplace coefficient b in m

Range of validity

Pressure ranges from $p_{\rm t} = 0.00611$ bar to $p_{\rm c} = 220.64$ bar

Results for wrong input values

Result **BP97**, B = -1 or $b_p_97 = -1$ for input values:

Saturation lines: at p > 220.64 bar or p < 0.00611 bar

Laplace Coefficient b = f(t)

Function Name: **b_t_97**

Sub-program with function value: REAL*8 FUNCTION BT97(T)

for call from Fortran REAL*8 T

Sub-program with parameter: INTEGER*4 FUNCTION C_ BT97 (B,T)

for call from DLL REAL*8 B,T

Input values

T - Temperature t in °C

Result

BPTX97, B or b_pt_97 - Laplace coefficient b in m

Range of validity

Temperature ranges from $t_t = 0$ °C to $t_c = 373.946$ °C

Results for wrong input values

Result BT97, B = -1 or $b_t_97 = -1$ for input values:

Saturation lines: t > 373.946 °C or t < 0 °C

Isothermal Stress Coefficient $\beta_p = f(p,t,x)$

Function Name: betap ptx 97

REAL*8 FUNCTION BETAPPTX97(P,T,X) Sub-program with function value:

for call from Fortran REAL*8 P,T,X

INTEGER*4 FUNCTION C_ BETAPPTX97 (BETAP,P,T,X) Sub-program with parameter:

for call from DLL REAL*8 BETAP,P,T,X

Input values

P - Pressure p in bar

T - Temperature t in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

BETAPPTX97, **BETAP** or **betap_ptx_97** - Isothermal stress coefficient β_{ρ} in kg/m³

Range of validity

Temperature range: from 0 °C to 800 °C

from 0.00611 bar to 1000 bar Pressure range: High temperature region: to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t <u>and</u> p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

 $t_{\rm t} = 0 \, ^{\circ}{\rm C}$ to $t_{\rm c} = 373.946 \, ^{\circ}{\rm C}$ Temperature ranges from

Pressure ranges from $p_{\rm t} = 0.00611$ bar to $p_{\rm c} = 220.64$ bar)

Results for wrong input values

Result **BETAPPTX97**, **BETAP = -1** or **betap_ptx_97 = -1** for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

(x = 0 or x = 1)at t = -1 and p > 220.64 bar or p < 0.00611 bar or

> at p > 220.64 bar or p < 0.00611 bar and $t > 373.946 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$

at $|t-t_s(p)| > 0.1 \text{ K}$

Specific Isobaric Heat Capacity $c_p = f(p,t,x)$

Function Name: cp_ptx_97

Sub-program with function value: **REAL*8 FUNCTION CPPTX97(P,T,X)**

for call from Fortran REAL*8 P,T,X

Sub-program with parameter: INTEGER*4 FUNCTION C_CPPTX97(CP,P,T,X)

for call from DLL REAL*8 CP,P,T,X

Input values

P - Pressure *p* in bar **T** - Temperature t in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

CPPTX97, **CP** or **cp_ptx_97** - Specific isobaric heat capacity c_p in kJ/kg K

Range of validity

Temperature range: from 0 °C to 800 °C

from 0.00611 bar to 1000 bar Pressure range: to 2000 °C at pressures to 500 bar High temperature region:

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_{\rm t} = 0 \, ^{\circ}{\rm C}$ to $t_{\rm c} = 373.946 \, ^{\circ}{\rm C}$

Pressure ranges from $p_{\rm t} = 0.00611$ bar to $p_{\rm c} = 220.64$ bar)

Results for wrong input values

Result CPPTX97, CP = -1 or $cp_ptx_97 = -1$ for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

 $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or (x = -1)

 $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or at t = -1 and p > 220.64 bar or p < 0.00611 bar or (x = 0 or x = 1)

> at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at $|t-t_s(p)| > 0.1 \text{ K}$

Specific Isochoric Heat Capacity $c_v = f(p,t,x)$

Function Name: cv ptx 97

Sub-program with function value: REAL*8 FUNCTION CVPTX97(P,T,X)

for call from Fortran REAL*8 P,T,X

Sub-program with parameter: INTEGER*4 FUNCTION C_CVPTX97(CV,P,T,X)

for call from DLL REAL*8 CV,P,T,X

Input values

P - Pressure *p* in bar **T** - Temperature *t* in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

CVPTX97, CV or cv ptx 97 - Specific isochoric heat capacity c, in kJ/kg K

Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar High temperature region: to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_t = 0$ °C to $t_c = 373.946$ °C

Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar)

Results for wrong input values

Result CVPTX97, CV = -1 or cv_ptx_97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or

 $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

(x = 0 or x = 1) at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at $|t-t_s(p)| > 0.1 \text{ K}$

Isothermal Throttling Coefficient $\delta_T = f(p,t,x)$

Function Name: deltat_ptx_97

Sub-program with function value: REAL*8 FUNCTION DELTATPTX97(P,T,X)

for call from Fortran REAL*8 P,T,X

Sub-program with parameter: INTEGER*4 FUNCTION C_DELTATPTX97 (DELTAT,P,T,X)

for call from DLL REAL*8 DELTAT,P,T,X

Input values

P - Pressure *p* in bar **T** - Temperature *t* in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

DELTATPTX97, **DELTAT** or **deltat_ptx_97** - Isothermal throttling coefficient $\delta_{\mathcal{T}}$ in kJ kg⁻¹ kPa⁻¹

Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar

High temperature region: to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_t = 0 \, ^{\circ}\text{C}$ to $t_c = 373.946 \, ^{\circ}\text{C}$

Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar)

Results for wrong input values

Result **DELTATPTX97**, **DELTAT = -1** or **deltat_ptx_97 = -1** for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

1 2 000 C at p 2 000 bai

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or (x = 0 or x = 1) at t = -1 and t > 220.64 bar or t < 0 °C or at t = -1 and t > 220.64 bar or t < 0 °C or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at $|t-t_s(p)| > 0.1 \text{ K}$

Differential Quotient $\left(\frac{\partial \mathbf{v}}{\partial \boldsymbol{\rho}}\right)_{\mathbf{T}} = \mathbf{f}\left(\boldsymbol{\rho}, \mathbf{t}, \mathbf{x}\right)$

Function Name: dv_dp_T_ptx_97

Sub-program with function value: **REAL*8 FUNCTION DVDPT97(P,T,X)**

for call from Fortran REAL*8 P,T,X

Sub-program with parameter: INTEGER*4 FUNCTION C_DVDPT97(DVDPT,P,T,X)

for call from DLL REAL*8 DVDPT,P,T,X

Input values

P - Pressure p in bar

T - Temperature t in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

DVDPT97 - Differential quotient $\left(\frac{\partial \mathbf{v}}{\partial \mathbf{p}}\right)_{T}$ in m³ · kg⁻¹ · kPa⁻¹

Range of validity

Temperature range: from 0 °C to 800 °C

from 0.00611 bar to 1000 bar Pressure range: High temperature region: to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t <u>and</u> p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_{\rm t} = 0 \, ^{\circ}{\rm C}$ to $t_{\rm c} = 373.946 \, ^{\circ}{\rm C}$

 $p_{\rm t} = 0.00611$ bar to $p_{\rm c} = 220.64$ bar) Pressure ranges from

Results for wrong input values

Result $dv_dp_T_ptx_97$ or DVDPT97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

at p = -1 and t > 373.946 °C or t < 0 °C or Saturation lines:

(x = 0 or x = 1)at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and $t > 373.946 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$

at $|t-t_s(p)| > 0.1 \text{ K}$

Differential Quotient $\left(\frac{\partial \mathbf{v}}{\partial \mathbf{T}}\right)_{\mathbf{p}} = f\left(\mathbf{p}, \mathbf{t}, \mathbf{x}\right)$

Function Name: dv_dT_p_ptx_97

Sub-program with function value: REAL*8 FUNCTION DVDTP97(P,T,X)

for call from Fortran REAL*8 P,T,X

Sub-program with parameter: INTEGER*4 FUNCTION C_DVDTP97(DVDTP,P,T,X)

for call from DLL REAL*8 DVDTP,P,T,X

Input values

 ${\bf P}$ - Pressure p in bar

T - Temperature t in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

DVDTP97 - Differential quotient
$$\left(\frac{\partial v}{\partial T}\right)_{D}$$
 in m³ · kg⁻¹ · K⁻¹

Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar High temperature region: to 2000 °C at pressures to 500 bar

Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_t = 0$ °C to $t_c = 373.946$ °C

Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar)

Results for wrong input values

Result $dv_dT_p_tx_97$ or DVDTP97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

(x = 0 or x = 1) at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at $|t-t_s(p)| > 0.1 \text{ K}$

Specific Exergy $e = f(p, t, x, t_{ij})$

Function Name: e_ptx_tu_97

Sub-program with function value: **REAL*8 FUNCTION EPTXTU97(P,T,X,TU)**

for call from Fortran REAL*8 P,T,X,TU

Sub-program with parameter: INTEGER*4 FUNCTION C_EPTXTU97(E,P,T,X,TU)

for call from DLL REAL*8 E,P,T,X,TU

Input values

P - Pressure *p* in bar **T** - Temperature *t* in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

TU - Environment temperature t_U in °C

Result

EPTXTU97, E or e_ptx_tu_97 - Specific exergy (of the enthalpy) e in kJ/kg

Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar High temperature region: to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1 or the given value for p and t = -1 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve.

(Wet steam region of the IAPWS-IF97: $t_{\rm t} = 0~{\rm ^{\circ}C}~...~t_{\rm c} = 373.946~{\rm ^{\circ}C}$ $p_{\rm t} = 0.00611~{\rm bar}~...~p_{\rm c} = 220.64~{\rm bar})$

Results for wrong input values

Result **EPTXTU97**, E = -1 or $e_ptx_tu_97 = -1$ for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

Wet steam region: at p=-1 and t>373.946 °C or t<0 °C or $(0 \le x \le 1)$ at t=-1 and t>220.64 bar or t<0 °C or at t=-1 and t>20.00611

at t = -1 and p > 220.64 bar or p < 0.00611 bar or at p > 220.64 bar or p < 0.00611 bar

and t > 373.946 °C or t < 0 °C

at $|t-t_s(p)| > 0.1 \text{ K}$

Dielectric Constant $\varepsilon = f(p,t,x)$

Function Name: epsilon ptx 97

Sub-program with function value: REAL*8 FUNCTION EPSPTX97(P,T,X)

for call from Fortran REAL*8 P,T,X

Sub-program with parameter: INTEGER*4 FUNCTION C_ EPSPTX97 (BETAP,P,T,X)

for call from DLL REAL*8 EPS,P,T,X

Input values

P - Pressure *p* in bar **T** - Temperature *t* in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

EPSPTX97, EPS or epsilon ptx 97 - Dielectric constant ε

Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar High temperature region: to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_t = 0$ °C to $t_c = 373.946$ °C

Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar)

Results for wrong input values

Result **EPSPTX97**, **EPS = -1** or **epsilon_ptx_97 = -1** for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or $t > 800 \,^{\circ}\text{C}$ at $t > 500 \,^{\circ}\text{D}$

 $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

(x = 0 or x = 1) at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at $|t-t_s(p)| > 0.1 \text{ K}$

Specific Helmholtz Energy f = f(p,t,x)

Function Name: f ptx 97

Sub-program with function value: REAL*8 FUNCTION FPTX97(P,T,X)

for call from Fortran REAL*8 P,T,X

Sub-program with parameter: INTEGER*4 FUNCTION C_ FPTX97 (F,P,T,X)

for call from DLL REAL*8 F,P,T,X

Input values

P - Pressure *p* in bar **T** - Temperature *t* in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

FPTX97, F or f_ptx_97 - Specific Helmholtz energy f in kJ/kg

Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar High temperature region: to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_t = 0$ °C to $t_c = 373.946$ °C

Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar)

Results for wrong input values

Result **FPTX97**, F = -1 or $f_ptx_97 = -1$ for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or

 $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

 $(0 \le x \le 1)$ at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at $|t-t_s(p)| > 0.1 \text{ K}$

at $|\iota - \iota_{s}(p)| > 0.1$

Fugacity $f^* = f(p,t,x)$

Function Name: fug_ptx_97

Sub-program with function value: **REAL*8 FUNCTION FUGPTX97(P,T,X)**

for call from Fortran REAL*8 P,T,X

Sub-program with parameter: INTEGER*4 FUNCTION C_ FUGPTX97 (FUG,P,T,X)

for call from DLL REAL*8 DELTAT,P,T,X

Input values

P - Pressure *p* in bar T - Temperature t in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

FUGPTX97, **FUG** or **fug_ptx_97** - Fugacity f^* in bar

Range of validity

Temperature range: from 0 °C to 800 °C

from 0.00611 bar to 1000 bar Pressure range: High temperature region: to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t <u>and</u> p = -1, or the given value for p <u>and</u> t = -1, plus the value for x (x = 0 or x = 1). If p <u>and</u> t <u>and</u> x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

 $t_{\rm t} = 0 \, ^{\circ}{\rm C}$ to $t_{\rm c} = 373.946 \, ^{\circ}{\rm C}$ Temperature ranges from

Pressure ranges from $p_{\rm t} = 0.00611$ bar to $p_{\rm c} = 220.64$ bar)

Results for wrong input values

Result FUGPTX97, FUG = -1 or fug_ptx_97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

 $(0 \le x \le 1)$ at t = -1 and p > 220.64 bar or p < 0.00611 bar or

> at p > 220.64 bar or p < 0.00611 bar and $t > 373.946 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$

at $|t-t_{\rm S}(p)| > 0.1 \text{ K}$

Specific Gibbs Energy g = f(p,t,x)

Function Name: g_ptx_97

Sub-program with function value: REAL*8 FUNCTION GPTX97(P,T,X)

for call from Fortran REAL*8 P,T,X

Sub-program with parameter: INTEGER*4 FUNCTION C_ GPTX97 (G,P,T,X)

for call from DLL REAL*8 G,P,T,X

Input values

P - Pressure *p* in bar **T** - Temperature *t* in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

GPTX97, **G** or g_ptx_97 - Specific Gibbs energy g in kJ/kg

Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar High temperature region: to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_t = 0$ °C to $t_c = 373.946$ °C

Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar)

Results for wrong input values

Result **GPTX97**, G = -1 or $g_ptx_97 = -1$ for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or

 $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

 $(0 \le x \le 1)$ at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at $|t-t_s(p)| > 0.1 \text{ K}$

Dynamic Viscosity $\eta = f(p,t,x)$

Function Name: Eta_ptx_97

Sub-program with function value: REAL*8 FUNCTION ETAPTX97(P,T,X)

for call from Fortran REAL*8 P,T,X

Sub-program with parameter: INTEGER*4 FUNCTION C_ETAPTX97(ETA,P,T,X)

for call from DLL REAL*8 ETA,P,T,X

Input values

P - Pressure *p* in bar **T** - Temperature *t* in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

ETAPTX97, **ETA** or **eta_ptx_97** - Dynamic viscosity η in Pa s

Range of validity

Temperature range: from 0 °C to 900 °C

Pressure range: from 0.00611 bar to 1000 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_{\rm f} = 0 \, ^{\circ}\text{C}$ to $t_{\rm c} = 373.946 \, ^{\circ}\text{C}$

Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar)

Results for wrong input values

Result ETAPTX97, ETA = -1 or eta_ptx_97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 900 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

(x = 0 or x = 1) at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at $|t-t_s(p)| > 0.1 \text{ K}$

References:

[7], internal calculation from ρ or ν [1], [2], [3]

Backward Function: Specific Enthalpy h = f(p,s)

Function Name: h_ps_97

Sub-program with function value: REAL*8 FUNCTION HPS97(P,S)

for call from Fortran REAL*8 P,S

Sub-program with parameter: INTEGER*4 FUNCTION C_HPS97(H,P,S)

for call from DLL REAL*8 H,P,S

Input values

P - Pressure p in bar

S - Specific entropy s in kJ/kg K

Result

HPS97, **H** or **h_ps_97** - Specific enthalpy *h* in kJ/kg

Range of validity

Pressure range: from 0.00611 bar to 1000 bar

Entropy range: according to temperatures from 0 °C to 800 °C

High temperature region: to 500 bar and to entropy regarding 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of h in the appropriate region will be carried out.

Wet steam region: Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar

Results for wrong input values

Result **HPS97**, H = -1 or $h_ps_97 = -1$ for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

at internal calculation result $t > 2000 \, ^{\circ}\text{C}$ or $t < 0 \, ^{\circ}\text{C}$ or

 $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

Wet steam region: p > 220.64 bar or p < 0.00611 bar or

at internal calculation result t > 373.946 °C or t < 0 °C

Specific Enthalpy h = f(p,t,x)

Function Name: h_ptx_97

Sub-program with function value: REAL*8 FUNCTION HPTX97(P,T,X)

for call from Fortran REAL*8 P,T,X

Sub-program with parameter: INTEGER*4 FUNCTION C_HPTX97(H,P,T,X)

for call from DLL REAL*8 H,P,T,X

Input values

P - Pressure *p* in bar

T - Temperature t in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

HPTX97, **H** or **h_ptx_97** - Specific enthalpy *h* in kJ/kg

Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar

High temperature region: to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1 or the given value for p and t = -1 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve.

(Wet steam region of the IAPWS-IF97: $t_{\rm t} = 0~{\rm ^{\circ}C}~...~t_{\rm c} = 373.946~{\rm ^{\circ}C}$ $p_{\rm t} = 0.00611~{\rm bar}~...~p_{\rm c} = 220.64~{\rm bar})$

Results for wrong input values

Result **HPTX97**, H = -1 or $h_ptx_97 = -1$ for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

Wet steam region: at p = -1 and t > 373.946 °C or t < 0 °C or

 $(0 \le x \le 1)$ at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at $|t-t_s(p)| > 0.1 \text{ K}$

Isentropic Exponent $\kappa = f(p,t,x)$

Function Name: Kappa_ptx_97

Sub-program with function value: REAL*8 FUNCTION KAPPTX97(P,T,X)

for call from Fortran REAL*8 P,T,X

Sub-program with parameter: INTEGER*4 FUNCTION C_KAPPTX97(KAPPA,P,T,X)

for call from DLL REAL*8 KAPPA,P,T,X

Input values

P - Pressure *p* in bar **T** - Temperature *t* in °C

X - Vapor fraction x in (kg saturated steam)/(kg wet steam)

Result

KAPPTX97, **KAPPA** or **kappa_ptx_97** - Isentropic exponent $\kappa = -\frac{V}{p} \left(\frac{\partial p}{\partial V} \right)_s = \frac{w^2}{p \cdot V}$

Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar High temperature region: to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_t = 0$ °C to $t_c = 373.946$ °C

Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar)

Results for wrong input values

Result KAPPTX97, KAPPA = -1 or kappa_ptx_97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or

 $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

(x = 0 or x = 1) at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at $|t-t_{s}(p)| > 0.1 \text{ K}$

at $|t^{-t}S(p)| > 0.1$

Isothermal Compressibility $\kappa_T = f(p,t,x)$

Function Name: kappat ptx 97

Sub-program with function value: **REAL*8 FUNCTION KAPPATPTX97(P,T,X)**

REAL*8 P,T,X for call from Fortran

INTEGER*4 FUNCTION C_ KAPPATPTX97 (KAPPAT,P,T,X) Sub-program with parameter:

for call from DLL REAL*8 KAPPAT,P,T,X

Input values

P - Pressure *p* in bar T - Temperature t in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

KAPPATPTX97, **KAPPAT** or **kappat_ptx_97** - Isothermal compressibility κ_T in kPa⁻¹

Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar

to 2000 °C at pressures to 500 bar High temperature region:

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_{\rm t} = 0 \, ^{\circ}{\rm C}$ to $t_{\rm c} = 373.946 \, ^{\circ}{\rm C}$

Pressure ranges from $p_{\rm t} = 0.00611$ bar to $p_{\rm c} = 220.64$ bar)

Results for wrong input values

Result KAPPATPTX97, KAPPAT = -1 or kappat_ptx_97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or

 $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

at p = -1 and t > 373.946 °C or t < 0 °C or Saturation lines: (x = 0 or x = 1)at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar

and $t > 373.946 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$

at $|t-t_s(p)| > 0.1 \text{ K}$

Thermal Conductivity $\lambda = f(p,t,x)$

Function Name: Lambda_ptx_97

Sub-program with function value: REAL*8 FUNCTION LAMPTX97(P,T,X)

for call from Fortran REAL*8 P,T,X

Sub-program with parameter: INTEGER*4 FUNCTION C_LAMPTX97(LAM,P,T,X)

for call from DLL REAL*8 LAM,P,T,X

Input values

P - Pressure *p* in bar **T** - Temperature *t* in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

LAMPTX97, **LAM** or **lambda_ptx_97** - Thermal conductivity λ in W/m·K

Range of validity

Temperature range: from 0 °C to 900 °C

Pressure range: from 0.00611 bar to 1000 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_{\rm f} = 0 \, ^{\circ}\text{C}$ to $t_{\rm c} = 373.946 \, ^{\circ}\text{C}$

Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar)

Results for wrong input values

Result LAMPTX97, LAM = -1 or lambda_ptx_97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 900 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

(x = 0 or x = 1) at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at $|t-t_s(p)| > 0.1 \text{ K}$

References:

[6], Internal calculation from ρ or v [1], [2], [3]

Joule-Thomson Coefficient $\mu = f(p,t,x)$

Function Name: my_ptx_97

Sub-program with function value: REAL*8 FUNCTION MYPTX97(P,T,X)

for call from Fortran REAL*8 P,T,X

Sub-program with parameter: INTEGER*4 FUNCTION C_MYPTX97 (MY,P,T,X)

for call from DLL REAL*8 MY,P,T,X

Input values

P - Pressure *p* in bar **T** - Temperature *t* in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

MYPTX97, MY or my_ptx_97 - Joule-Thomson coefficient μ in K kPa⁻¹

Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar

High temperature region: to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_t = 0$ °C to $t_c = 373.946$ °C

Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar)

Results for wrong input values

Result MYPTX97, MY = -1 or my_ptx_97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or (x = 0 or x = 1) at t = -1 and t > 220.64 bar or t < 0 °C or at t = -1 and t > 220.64 bar or t < 0 °C or

at t = -1 and p > 220.64 bar or p < 0.00611 bar or at p > 220.64 bar or p < 0.00611 bar

and t > 373.946 °C or t < 0 °C

at $|t-t_{\rm S}(p)| > 0.1 \text{ K}$

Refractive Index n = f(p,t,x,wl)

Function Name: n ptxwl 97

Sub-program with function value: REAL*8 FUNCTION NPTXWL97(P,T,X,WL)

for call from Fortran REAL*8 P,T,X,WL

Sub-program with parameter: INTEGER*4 FUNCTION C_ NPTXWL97 (N,P,T,X,WL)

for call from DLL REAL*8 N,P,T,X,WL

Input values

P - Pressure *p* in bar **T** - Temperature *t* in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

NPTXWL97, N or n ptxwl 97 - Refractive index n

Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar

High temperature region: to 2000 °C at pressures to 500 bar

Wavelength region: from 0.2 µm to 1.1 µm

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_t = 0$ °C to $t_c = 373.946$ °C

Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar)

Results for wrong input values

Result NPTXWL97, N = -1 or $n_ptxwl_97 = -1$ for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or $t > 800 \,^{\circ}\text{C}$ at $n > 500 \,^{\circ}\text{bar}$

 $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or (x = 0 or x = 1) at t = -1 and t > 220.64 bar or t < 0 °C or at t = -1 and t > 220.64 bar or t < 0 °C or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at $|t-t_s(p)| > 0.1 \text{ K}$

Kinematic Viscosity v = f(p,t,x)

Function Name: Ny_ptx_97

Sub-program with function value: REAL*8 FUNCTION NYPTX97(P,T,X)

for call from Fortran REAL*8 P,T,X

Sub-program with parameter: INTEGER*4 FUNCTION C_NYPTX97(NY,P,T,X)

for call from DLL REAL*8 NY,P,T,X

Input values

P - Pressure *p* in bar **T** - Temperature *t* in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

NYPTX97, **NY** or **ny_ptx_97** - Kinematic viscosity
$$v = \frac{\eta}{\rho} = \eta \cdot v$$
 in m² / s

Range of validity

Temperature range: from 0 °C to 900 °C

Pressure range: from 0.00611 bar to 1000 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_{\rm f} = 0 \, ^{\circ}\text{C}$ to $t_{\rm c} = 373.946 \, ^{\circ}\text{C}$

Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar)

Results for wrong input values

Result NYPTX97, NY = -1 or ny_ptx_97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 900 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or (x = 0 or x = 1) at t = -1 and t > 220.64 bar or t < 0 °C or at t = -1 and t > 220.64 bar or t < 0 °C or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at $|t-t_{s}(p)| > 0.1 \text{ K}$

References:

Internal calculation from η [7] and ρ or v [1], [2], [3]

Backward Function: Pressure p = f(h,s)

Function Name: p_hs_97

Sub-program with function value: REAL*8 FUNCTION PHS97(H,S)

for call from Fortran REAL*8 H,S

Sub-program with parameter: INTEGER*4 FUNCTION C_PHS97(P,H,S)

for call from DLL REAL*8 P,H,S

Input values

H - Specific enthalpy h in kJ/kgS - Specific entropy s in kJ/kg K

Result

PHS97, p or p_hs_97 - Pressure p in bar

Range of validity

Enthalpy range and entropy range according to pressures from 0.00611 bar to 1000 bar and Temperatures from 0 $^{\circ}$ C to 800 $^{\circ}$ C

High temperature region: according to pressures to 500 bar and temperatures to 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of h and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of p in the appropriate region will be carried out.

Results for wrong input values

Result PHS97, P = -1 or $p_hs_97 = -1$ for input values:

s < -0.009 kJ/kg K

h < h(0.00611 bar, x) at h'(0.00611 bar) < h < h''(0.00611 bar)

Backward Function: Pressure p = f(v,h)

Function Name: p_vh_97

Sub-program with function value: REAL*8 FUNCTION PVH97(V,H)

for call from Fortran REAL*8 V,H

Sub-program with parameter: INTEGER*4 FUNCTION C_PVH97(P,H)

for call from DLL REAL*8 P,V,H

Input values

V - Specific volume v in m³/kg

H - Specific enthalpy h in kJ/kg

Result

PVH97, **p** or **p_vh_97** - Pressure *p* in bar

Range of validity

Enthalpy range and entropy range: according to pressures from 0.00611 bar to 1000 bar and Temperatures from 0 $^{\circ}$ C to 800 $^{\circ}$ C

High temperature region: according to pressures to 500 bar and temperatures to 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of v and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of p in the appropriate region will be carried out.

Results for wrong input values

Result PVH97, P = -1 or $p_vh_97 = -1$ for input values:

 $v < 0.0009 \text{ m}^3/\text{kg}$

h < h(0.00611 bar, x) at h'(0.00611 bar) < h < h''(0.00611 bar)

Backward Function: Pressure p = f(v, u)

Function Name: p_vu_97

Sub-program with function value: REAL*8 FUNCTION PVU97(V,U)

for call from Fortran REAL*8 V,U

Sub-program with parameter: INTEGER*4 FUNCTION C_VU97(P,V,U)

for call from DLL REAL*8 P,V,U

Input values

V - Specific volume h in kJ/kg

U - Specific internal energy *u* in kJ/kg

Result

PVU97, p or p_vu_97 - Pressure p in bar

Range of validity

Enthalpy range and entropy range: according to pressures from 0.00611 bar to 1000 bar and temperatures from 0 $^{\circ}$ C to 800 $^{\circ}$ C

High temperature region: according to pressures to 500 bar and temperatures to 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of v and u the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of p in the appropriate region will be carried out.

Results for wrong input values

Result PVU97, P = -1 or p vu 97 = -1 for input values:

 $v < 0.0009 \text{ m}^3/\text{kg}$

u < u(0.00611 bar, x) at u'(0.00611 bar) < u < u''(0.00611 bar)

Prandtl-Number Pr = f(p,t,x)

Function Name: Pr_ptx_97

Sub-program with function value: REAL*8 FUNCTION PRPTX97(P,T,X)

for call from Fortran REAL*8 P,T,X

Sub-program with parameter: INTEGER*4 FUNCTION C_PRPTX97(PR,P,T,X)

for call from DLL REAL*8 PR,P,T,X

Input values

P - Pressure p in bar

T - Temperature t in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

PRPTX97, **Pr** or **Pr_ptx_97** - Prandtl-number
$$Pr = \frac{v}{a} = \frac{\eta \cdot c_p}{\lambda}$$

Range of validity

Temperature range: from 0 °C to 900 °C

Pressure range: from 0.00611 bar to 1000 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_t = 0 \, ^{\circ}\text{C}$ to $t_c = 373.946 \, ^{\circ}\text{C}$

Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar)

Results for wrong input values

Result PRPTX97, Pr = -1 or Pr ptx 97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 900 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

(x = 0 or x = 1) at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at $|t-t_{\rm S}(p)| > 0.1 \text{ K}$

References:

Internal calculation of η [7], [6], and ρ or v and c_p [1], [2], [3]

Vapor Pressure $p_s = f(t)$

Function Name: ps_t_97

Sub-program with function value: REAL*8 FUNCTION PST97(T)

for call from Fortran REAL*8 T

Sub-program with parameter: INTEGER*4 FUNCTION C_PST97(PS,T)

for call from DLL REAL*8 PS,T

Input values

T - Temperature t in °C

Result

 $\textbf{PST97}, \, \textbf{PS} \,\, \text{or} \,\, \textbf{ps_t_97} \,\, \textbf{-} \,\, \text{Vapor pressure} \,\, \rho_{\text{S}} \,\, \text{in bar}$

Range of validity

from $t_t = 0$ °C to $t_c = 373.946$ °C

Results for wrong input values

Result PST97, PS = -1 or ps_t_97 = -1 for input values:

t < 0 °C or t > 373.946 °C

Density $\rho = f(p,t,x)$

Function Name: Rho_ptx_97

REAL*8 FUNCTION RHOPTX97(P,T,X) Sub-program with function value:

for call from Fortran REAL*8 P,T,X

Sub-program with parameter: INTEGER*4 FUNCTION C_RHOPTX97(RHO,P,T,X)

for call from DLL REAL*8 RHO,P,T,X

Input values

P - Pressure *p* in bar T - Temperature t in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

RHOPTX97, **RHO** or **rho_ptx_97** - Density
$$\rho = \frac{1}{v}$$
 in kg/m³

Range of validity

from 0 °C to 800 °C Temperature range:

Pressure range: from 0.00611 bar to 1000 bar High temperature region: to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1 or the given value for p and t = -1 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve.

(Wet steam region of the IAPWS-IF97: $t_t = 0$ °C ... $t_c = 373.946$ °C $p_{\rm t} = 0.00611 \text{ bar } \dots p_{\rm c} = 220.64 \text{ bar})$

Results for wrong input values

Result RHOPTX97, RHO = -1 or rho_ptx_97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

 $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or (x = -1)

 $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

Wet steam region: at p = -1 and t > 373.946 °C or t < 0 °C or

at t = -1 and p > 220.64 bar or p < 0.00611 bar or $(0 \le x \le 1)$

> at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at $|t-t_s(p)| > 0.1 \text{ K}$

Backward Function: Specific Entropy s = f(p,h)

Function Name: s_ph_97

Sub-program with function value: REAL*8 FUNCTION SPH97(P,H)

for call from Fortran REAL*8 P,H

Sub-program with parameter: INTEGER*4 FUNCTION C_SPH97(S,P,H)

for call from DLL REAL*8 S,P,H

Input values

P - Pressure p in bar

H - Specific enthalpy h in kJ/kg

Result

SPH97, S or s_ph_97 - Specific entropy s in kJ/kg K

Range of validity

Pressure range: from 0.00611 bar to 1000 bar

Enthalpy range: according temperatures from 0 °C to 800 °C High temperature region: to 500 bar and to enthalpy regarding 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of s in the appropriate region will be carried out.

Wet steam region: Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar

Results for wrong input values

Result **SPH97**, S = -1 or $s_ph_97 = -1$ for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

at internal calculation result $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or

 $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

Wet steam region: p > 220.64 bar or p < 0.00611 bar or

at internal calculation result t > 373.946 °C or t < 0 °C

Specific Entropy s = f(p,t,x)

Function Name: s_ptx_97

Sub-program with function value: REAL*8 FUNCTION SPTX97(P,T,X)

for call from Fortran REAL*8 P,T,X

Sub-program with parameter: INTEGER*4 FUNCTION C_SPTX97(S,P,T,X)

for call from DLL REAL*8 S,P,T,X

Input values

P - Pressure *p* in bar

T - Temperature t in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

SPTX97, S or s_ptx_97 - Specific entropy s in kJ/kg K

Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar

High temperature region: to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1 or the given value for p and t = -1 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve.

(Wet steam region of the IAPWS-IF97: $t_{\rm t} = 0~{\rm ^{\circ}C}~...~t_{\rm c} = 373.946~{\rm ^{\circ}C}$ $p_{\rm t} = 0.00611~{\rm bar}~...~p_{\rm c} = 220.64~{\rm bar})$

Results for wrong input values

Result SPTX97, S = -1 or $s_ptx_97 = -1$ for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or $t > 800 \,^{\circ}\text{C}$ at p > 500 bar

Wet steam region: at p=-1 and t>373.946 °C or t<0 °C or $(0 \le x \le 1)$ at t=-1 and t>220.64 bar or t<0 °C or at t=-1 and t>20.00611 bar or

at p > 220.64 bar or p < 0.006at p > 220.64 bar or p < 0.00611 bar

and t > 373.946 °C or t < 0 °C

at $|t-t_s(p)| > 0.1 \text{ K}$

Surface Tension $\sigma = f(p)$

Function Name: Sigma_p_97

Sub-program with function value: REAL*8 FUNCTION SIGMAP97(P)

for call from Fortran REAL*8 P

Sub-program with parameter: INTEGER*4 FUNCTION C_SIGMAP97(SIGMA,P)

for call from DLL REAL*8 SIGMA,P

Input values

P - Pressure p in bar

Result

SIGMAP97, **SIGMA** or **sigma_p_97** - Surface tension σ in mN/m = mPa·m

Range of validity

from $p_{\rm t} = 0.00611$ bar to $p_{\rm c} = 220.64$ bar

Results for wrong input values

Result SIGMAP97, SIGMA = -1 or sigma_p_97 = -1 for input values:

p < 0.00611 bar or p > 220.64 bar

References:

[8], internal calculation with $t_s = f(p)$ [1], [2], [3]

Surface Tension $\sigma = f(t)$

Function Name: Sigma_t_97

Sub-program with function value: REAL*8 FUNCTION SIGMAT97(T)

for call from Fortran REAL*8 T

Sub-program with parameter: INTEGER*4 FUNCTION C_SIGMAT97(SIGMA,T)

for call from DLL REAL*8 SIGMA,T

Input values

T - Temperature t in °C

Result

SIGMAT97, **SIGMA** or **sigma_t_97** - Surface tension σ in mN/m = mPa·m

Range of validity

from $t_{\rm t}$ = 0 °C to $t_{\rm c}$ = 373.946 °C

Results for wrong input values

Result SIGMAT97, SIGMA = -1 or sigma_t_97 = -1 for input values:

t < 0 °C or t > 373.946 °C

References: [8]

Backward Function: Temperature t = f(h,s)

Function Name: t_hs_97

Sub-program with function value: REAL*8 FUNCTION THS97(H,S)

for call from Fortran REAL*8 H,S

Sub-program with parameter: INTEGER*4 FUNCTION C_THS97(T,H,S)

for call from DLL REAL*8 T,H,S

Input values

H - Specific enthalpy h in kJ/kgS - Specific entropy s in kJ/kg K

Result

THS97, T or t_hs_97 - Temperature t in °C

Range of validity

Enthalpy range and entropy range: according to pressures from 0.00611 bar to 1000 bar and temperatures from 0 $^{\circ}$ C to 800 $^{\circ}$ C

High temperature region: according to pressures to 500 bar and temperatures to 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of h and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of t in the appropriate region will be carried out.

Results for wrong input values

Result **THS97**, T = -1 or $t_s= -1$ for input values:

s < -0.009 kJ/kg K

h < h(0.00611 bar, x) at h'(0.00611 bar) < h < h''(0.00611 bar)

#K\$+ Backward Function: Temperature t = f(p,h)

Function Name: t_ph_97

Sub-program with function value: **REAL*8 FUNCTION TPH97(P,H)**

for call from Fortran REAL*8 P,H

Sub-program with parameter: INTEGER*4 FUNCTION C_TPH97(T,P,H)

for call from DLL REAL*8 T,P,H

Input values

P - Pressure p in bar

H - Specific enthalpy h in kJ/kg

Result

TPH97, **T** or **t_ph_97** - Temperature *t* in °C

Range of validity

from 0.00611 bar to 1000 bar Pressure range:

Enthalpy range: according temperatures from 0 °C to 800 °C High temperature region: to 500 bar and to enthalpy regarding 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of t in the appropriate region will be carried out.

Wet steam region: Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar

Results for wrong input values

Result **TPH97**, T = -1 or $t_ph_97 = -1$ for input values:

p > 1000 bar or p < 0.00611 bar or Single phase region:

at internal calculation result $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or

 $t > 800 \, ^{\circ}\text{C}$ at $p > 500 \, \text{bar}$

Wet steam region: p > 220.64 bar or p < 0.00611 bar or

at internal calculation result t > 373.946 °C or t < 0 °C

[#] FUNC_97_200

K Backward function: Temperature t = f(p,h)

^{\$} Backward function: Temperature, t = f(p,h)

⁺ SUCH:200

Backward Function: Temperature t = f(p,s)

Function Name: t_ps_97

Sub-program with function value: REAL*8 FUNCTION TPS97(P,S)

for call from Fortran REAL*8 P,S

Sub-program with parameter: INTEGER*4 FUNCTION C_TPS97(T,P,S)

for call from DLL REAL*8 T,P,S

Input values

P - Pressure p in bar

S - Specific entropy s in kJ/kg K

Result

TPS97, T or t_ps_97 - Temperature t in °C

Range of validity

Pressure range: from 0.00611 bar to 1000 bar

Entropy range: according temperatures from 0 °C to 800 °C High temperature region: to 500 bar and to entropy regarding 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of t in the appropriate region will be carried out.

Wet steam region: Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar

Results for wrong input values

Result **TPS97**, T = -1 or $t_ps_97 = -1$ for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

at internal calculation result $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or

 $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

Wet steam region: p > 220.64 bar or p < 0.00611 bar or

at internal calculation result t > 373.946 °C or t < 0 °C

#K\$+ Backward Function: Temperature *t* = f(*v*,*h*)

Function Name: t_vh_97

Sub-program with function value: REAL*8 FUNCTION TVH97(V,H)

for call from Fortran REAL*8 V,H

Sub-program with parameter: INTEGER*4 FUNCTION C_TVH97(T,V,H)

for call from DLL REAL*8 T,V,H

Input values

V - Specific volume v in m^3/kg

H - Specific enthalpy h in kJ/kg

Result

TVH97, T or t_vh_97 - Temperature t in °C

Range of validity

Pressure range: from 0.00611 bar to 1000 bar

Enthalpy range: according temperatures from 0 °C to 800 °C High temperature region: to 500 bar and to enthalpy regarding 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of v and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of t in the appropriate region will be carried out.

Wet steam region: Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar

Results for wrong input values

Result TVH97, T = -1 or $t_vh_97 = -1$ for input values:

 $v < 0.0009 \text{ m}^3/\text{kg}$

h < h(0.00611 bar, x) at h'(0.00611 bar) < h < h''(0.00611 bar)

References: [1], [2], [3]

,,

[#] FUNC_97_212

K Backward function: Temperature t = f(v,h)

^{\$} Backward function: Temperature, t = f(v,h)

⁺ SUCH:212

#K\$+ Backward Function: Temperature t = f(v,u)

Function Name: t vu 97

Sub-program with function value: **REAL*8 FUNCTION TVU97(V,U)**

for call from Fortran REAL*8 V,U

INTEGER*4 FUNCTION C_TVU97(T,V,U) Sub-program with parameter:

for call from DLL REAL*8 T,V,U

Input values

V - Specific volume v in m³/kg

U - Specific internal energy *u* in kJ/kg

Result

TVU97, T or t_vu_97 - Temperature t in °C

Range of validity

Pressure range: from 0.00611 bar to 1000 bar

according temperatures from 0 °C to 800 °C Enthalpy range: High temperature region: to 500 bar and to enthalpy regarding 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of v and u the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of t in the appropriate region will be carried out.

Wet steam region: Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar

Results for wrong input values

Result TVU97, T = -1 or $t_vu_97 = -1$ for input values:

 $v < 0.0009 \text{ m}^3/\text{kg}$

u < u(0.00611 bar, x) at u'(0.00611 bar) < u < u''(0.00611 bar)

References: [1], [2], [3]

FUNC_97_214

K Backward function: Temperature t = f(v,u)

[§] Backward function: Temperature, t = f(v,u)

⁺ SUCH:214

Saturation Temperature $t_s = f(p)$

Function Name: ts_p_97

Sub-program with function value: REAL*8 FUNCTION TSP97(P)

for call from Fortran REAL*8 P

Sub-program with parameter: INTEGER*4 FUNCTION C_TSP97(TS,P)

for call from DLL REAL*8 TS,P

Input values

P - Pressure *p* in bar

Result

TSP97, **T** or ts_p_97 - Saturation temperature t_s in °C

Range of validity

from $p_{\rm t} = 0.00611$ bar to $p_{\rm c} = 220.64$ bar

Results for wrong input values

Result **TSP97**, **T** = -1 or **ts**_**p**_**97** = -1 for input values: p < 0.00611 bar or p > 220.64 bar

Specific Internal Energy u = f(p,t,x)

Function Name: u_ptx_97

Sub-program with function value: REAL*8 FUNCTION UPTX97(P,T,X)

for call from Fortran REAL*8 P,T,X

Sub-program with parameter: INTEGER*4 FUNCTION C_UPTX97(U,P,T,X)

for call from DLL REAL*8 U,P,T,X

Input values

P - Pressure *p* in bar

T - Temperature t in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

UPTX97, **U** or **u_ptx_97** - Specific internal energy *u* in kJ/kg

Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar

High temperature region: to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1 or the given value for p and t = -1 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve.

(Wet steam region of the IAPWS-IF97: $t_{\rm t} = 0~{\rm ^{\circ}C}~...~t_{\rm c} = 373.946~{\rm ^{\circ}C}$ $p_{\rm t} = 0.00611~{\rm bar}~...~p_{\rm c} = 220.64~{\rm bar})$

Results for wrong input values

Result **UPTX97**, U = -1 or $u_ptx_97 = -1$ for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

Wet steam region: at p=-1 and t>373.946 °C or t<0 °C or $(0 \le x \le 1)$ at t=-1 and t>220.64 bar or t<0 °C or at t=-1 and t>220.64 bar or t<0 °C or at t=-1 and t>220.64 bar or t<0 °C or at t=-1 and t>220.64 bar or t<0 °C or at t=-1 and t>220.64 bar or t<0 °C or at t=-10.

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at $|t-t_s(p)| > 0.1 \text{ K}$

Backward Function: Specific Volume v = f(p,h)

Function Name: v_ph_97

Sub-program with function value: REAL*8 FUNCTION VPH97(P,H)

for call from Fortran REAL*8 P,H

Sub-program with parameter: INTEGER*4 FUNCTION C_VPH97(V,P,H)

for call from DLL REAL*8 V,P,H

Input values

P - Pressure p in bar

H - Specific enthalpy h in kJ/kg

Result

VPH97, **V** or **v_ph_97** - Specific volume v in m³/kg

Range of validity

Pressure range: from 0.00611 bar to 1000 bar

Enthalpy range: according to temperatures from 0 °C to 800 °C High temperature region: to 500 bar and to enthalpy regarding 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of v in the appropriate region will be carried out.

Wet steam region: Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar

Results for wrong input values

Result VPH97, V = -1 or $v_ph_97 = -1$ for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

at internal calculation result $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or

 $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

Wet steam region: p > 220.64 bar or p < 0.00611 bar or

at internal calculation result t > 373.946 °C or t < 0 °C

Backward Function: Specific Volume v = f(p,s)

Function Name: v_ps_97

Sub-program with function value: REAL*8 FUNCTION VPS97(P,S)

for call from Fortran REAL*8 P,S

Sub-program with parameter: INTEGER*4 FUNCTION C_VPS97(V,P,S)

for call from DLL REAL*8 V,P,S

Input values

P - Pressure *p* in bar

S - Specific entropy s in kJ/kg K

Result

VPS97, **V** or **v_ps_97** - Specific volume v in m^3/kg

Range of validity

Pressure range: from 0.00611 bar to 1000 bar

Entropy range: according to temperatures from 0 °C to 800 °C High temperature region: to 500 bar and to entropy regarding 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of v in the appropriate region will be carried out.

Wet steam region: Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar

Results for wrong input values

Result **VPS97**, V = -1 or $v_p_{s_0} = -1$ for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

at internal calculation result $t > 2000 \, ^{\circ}\text{C}$ or $t < 0 \, ^{\circ}\text{C}$ or

 $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

Wet steam region: p > 220.64 bar or p < 0.00611 bar or

at internal calculation result t > 373.946 °C or t < 0 °C

Specific Volume v = f(p, t, x)

Function Name: v_ptx_97

Sub-program with function value: REAL*8 FUNCTION VPTX97(P,T,X)

for call from Fortran REAL*8 P,T,X

Sub-program with parameter: INTEGER*4 FUNCTION C_VPTX97(V,P,T,X)

for call from DLL REAL*8 V,P,T,X

Input values

P - Pressure *p* in bar

T - Temperature t in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

VPTX97, **V** or **v_ptx_97** - Specific volume v in m^3/kg

Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar High temperature region: to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1 or the given value for p and t = -1 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve.

(Wet steam region of the IAPWS-IF97: $t_{\rm t}$ = 0 °C ... $t_{\rm c}$ = 373.946 °C $p_{\rm t}$ = 0.00611 bar ... $p_{\rm c}$ = 220.64 bar)

Results for wrong input values

Result **VPTX97**, V = -1 or $v_ptx_97 = -1$ for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

Wet steam region: at p = -1 and t > 373.946 °C or t < 0 °C or

 $(0 \le x \le 1)$ at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at $|t-t_s(p)| > 0.1 \text{ K}$

Isentropic Speed of Sound w = f(p,t,x)

Function Name: w_ptx_97

Sub-program with function value: **REAL*8 FUNCTION WPTX97(P,T,X)**

for call from Fortran REAL*8 P,T,X

Sub-program with parameter: INTEGER*4 FUNCTION C WPTX97(W,P,T,X)

for call from DLL REAL*8 W,P,T,X

Input values

P - Pressure *p* in bar

T - Temperature t in °C

X - Vapor fraction x in (kg saturated steam)/(kg wet steam)

Result

WPTX97, W or w_ptx_97 - Isentropic speed of sound w in m/s

Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar to 2000 °C at pressures to 500 bar High temperature region:

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t <u>and</u> p = -1, or the given value for p <u>and</u> t = -1, plus the value for x (x = 0 or x = 1). If p <u>and</u> t <u>and</u> x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

 $t_{\rm t} = 0 \, ^{\circ}{\rm C}$ to $t_{\rm c} = 373.946 \, ^{\circ}{\rm C}$ Temperature ranges from

 $p_{\rm t} = 0.00611$ bar to $p_{\rm c} = 220.64$ bar) Pressure ranges from

Results for wrong input values

Result WPTX97, W = -1 or $w_ptx_97 = -1$ for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or (x = 0 or x = 1)

at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and $t > 373.946 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$

at $|t-t_{s}(p)| > 0.1 \text{ K}$

Backward Function: Vapor Fraction x = f(h,s)

Function Name: x_hs_97

Sub-program with function value: REAL*8 FUNCTION XHS97(H,S)

for call from Fortran REAL*8 H,S

Sub-program with parameter: INTEGER*4 FUNCTION C_XHS97(X,H,S)

for call from DLL REAL*8 X,H,S

Input values

 \mathbf{H} - Specific enthalpy h in kJ/kg

S - Specific entropy s in kJ/kg K

Result

XHS97, **X** or **x_hs_97** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Range of validity

Enthalpy range and entropy range according to pressures from 0.00611 bar to 1000 bar and Temperatures from 0 $^{\circ}$ C to 800 $^{\circ}$ C

High temperature region: according pressures to 500 bar and temperatures to 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of h and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. When calculating wet steam the value for x between 0 and 1 is calculated (0 for saturated liquid, 1 for saturated steam). If the state point to be calculated is located in the single-phase region the result x = -1 will be returned.

Results for wrong input values

Result XHS97, X = -1 or x + hs + 97 = -1 for input values:

s < -0.009 kJ/kg K

h < h(0.00611 bar, x) at h'(0.00611 bar) < h < h''(0.00611 bar)

if the state point is located in the single phase region

Backward Function: Vapor Fraction x = f(p,h)

Function Name: x_ph_97

Sub-program with function value: REAL*8 FUNCTION XPH97(P,H)

for call from Fortran REAL*8 P,H

Sub-program with parameter: INTEGER*4 FUNCTION C_XPH97(X,P,H)

for call from DLL REAL*8 X,P,H

Input values

P - Pressure p in bar

H - Specific enthalpy h in kJ/kg

Result

XPH97, **X** or **x_ph_97** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Range of validity

Pressure range: from 0.00611 bar to 1000 bar

Enthalpy range: according to pressures from 0.00611 bar to 1000 bar and

Temperatures from 0 °C to 800 °C

High temperature region: according pressures to 500 bar and temperatures to 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. When calculating wet steam the value for x between 0 and 1 is calculated (0 for saturated liquid, 1 for saturated steam). If the state point to be calculated is located in the single-phase region the result x = -1 will be returned.

Results for wrong input values

p > 220.64 bar or p < 0.00611 bar

Result XPH97, X = -1 or $x_ph_97 = -1$ for input values: if the state point is located in the single phase region

Backward Function: Vapor Fraction x = f(v,h)

Function Name: x vh 97

Sub-program with function value: REAL*8 FUNCTION XVH97(V,H)

for call from Fortran REAL*8 V,H

Sub-program with parameter: INTEGER*4 FUNCTION C_XVH97(X,V,H)

for call from DLL REAL*8 X,V,H

Input values

V - Specific volume v in m^3/kg

H - Specific enthalpy h in kJ/kg

Result

XVH97, **X** or **x_vh_97** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Range of validity

Enthalpy range: according to pressures from 0.00611 bar to 1000 bar and

temperatures from 0 °C to 800 °C

High temperature region: according to pressures to 500 bar and temperatures to 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of v and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. When calculating wet steam the value for x between 0 and 1 is calculated (0 for saturated liquid, 1 for saturated steam). If the state point to be calculated is located in the single-phase region the result x = -1 will be returned.

Results for wrong input values

Result XVH97, X = -1 or $x_vh_97 = -1$ for input values:

if the state point is located in the single phase region

p > 220.64 bar or p < 0.00611 bar

Backward Function: Vapor Fraction x = f(v,u)

Function Name: x_vu_97

Sub-program with function value: REAL*8 FUNCTION XVU97(V,U)

for call from Fortran REAL*8 V,U

Sub-program with parameter: INTEGER*4 FUNCTION C_XVU97(X,V,U)

for call from DLL REAL*8 X,V,U

Input values

V - Specific volume v in m^3/kg

U - Specific internal energy *u* in kJ/kg

Result

XVU97, **X** or **x_vu_97** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Range of validity

Enthalpy range: according to pressures from 0.00611 bar to 1000 bar and

temperatures from 0 °C to 800 °C

High temperature region: according to pressures to 500 bar and temperatures to 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of v and u the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. When calculating wet steam the value for x between 0 and 1 is calculated (0 for saturated liquid, 1 for saturated steam). If the state point to be calculated is located in the single-phase region the result x = -1 will be returned.

Results for wrong input values

Result XVU97, X = -1 or $x_vu_97 = -1$ for input values:

if the state point is located in the single phase region

p > 220.64 bar or p < 0.00611 bar

Backward Function: Vapor Fraction x = f(p,s)

Function Name: x_ps_97

Sub-program with function value: REAL*8 FUNCTION XPS97(P,S)

for call from Fortran REAL*8 P,S

Sub-program with parameter: INTEGER*4 FUNCTION C_XPS97(X,P,S)

for call from DLL REAL*8 X,P,S

Input values

P - Pressure p in bar

S - Specific entropy s in kJ/kg K

Result

XPS97, X or **x_ps_97** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Range of validity

Pressure range: from 0.00611 bar to 1000 bar

Entropy range: according to pressures from 0.00611 bar to 1000 bar and

temperatures from 0 °C to 800 °C

High temperature region: according pressures to 500 bar and temperatures to 2000 °C

Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. When calculating wet steam the value for x between 0 and 1 is calculated (0 for saturated liquid, 1 for saturated steam). If the state point to be calculated is located in the single-phase region the result x = -1 will be returned.

Results for wrong input values

Result XPS97, X = -1 or $x_ps_97 = -1$ for input values: if the state point is located in the single phase region

p > 220.64 bar or p < 0.00611 bar

Compression Factor z = f(p,t,x)

Function Name: z_ptx_97

Sub-program with function value: REAL*8 FUNCTION ZPTX97(P,T,X)

for call from Fortran REAL*8 P,T,X

Sub-program with parameter: INTEGER*4 FUNCTION C_ ZPTX97 (Z,P,T,X)

for call from DLL REAL*8 Z,P,T,X

Input values

P - Pressure *p* in bar **T** - Temperature *t* in °C

X - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

Result

ZPTX97, **Z** or **z_ptx_97** - Compression factor *z*

Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar High temperature region: to 2000 °C at pressures to 500 bar

Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from $t_t = 0$ °C to $t_c = 373.946$ °C

Pressure ranges from $p_t = 0.00611$ bar to $p_c = 220.64$ bar)

Results for wrong input values

Result **ZPTX97**, Z = -1 or $z_ptx_97 = -1$ for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$ or $t < 0 \,^{\circ}\text{C}$ or

 $t > 800 \,^{\circ}\text{C}$ at $p > 500 \,^{\circ}\text{bar}$

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

(x = 0 or x = 1) at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

4 14 4 (m) 1 . 0 4 1/2

at $|t-t_{\rm S}(p)| > 0.1 \text{ K}$

ZITTAU/GOERLITZ UNIVERSITY OF APPLIED SCIENCES

Department of Technical Thermodynamics www.thermodynamics-zittau.de

4. Property Libraries for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators

Water and Steam

Library LibIF97

- Industrial Formulation IAPWS-IF97 (Revision 2007)
- Supplementary Standards
- IAPWS-IF97-S01
- IAPWS-IF97-S03rev
- IAPWS-IF97-S04
- IAPWS-IF97-S05
- IAPWS Revised Advisory Note No. 3 on Thermodynamic Derivatives (2008)

Humid Combustion Gas Mixtures

Library LibHuGas

Model: Ideal mixture of the real fluids:

CO₂ - Span and Wagner O₂ - Schmidt and Wagner

H₂O - IAPWS-95

Ar - Tegeler et al.

N₂ - Span et al.

and of the ideal gases:

SO₂, CO, Ne (Scientific Formulation of Bücker et al.)

Consideration of:

Dissociation from VDI 4670 and Poynting effect

Humid Air

Library LibHuAir

Model: Ideal mixture of the real fluids:

- Dry Air from Lemmon et al.
- Steam, water and ice from IAPWS-IF97 and IAPWS-06

Consideration of:

- Condensation and freezing of steam
- Dissociation from the VDI 4670
- Poynting effect from ASHRAE RP-1485

Carbon Dioxide including Dry Ice Library LibCO2

Formulation of Span and Wagner (1994)

Seawater

Library LibSeaWa

IAPWS Formulation 2008 of Feistel and IAPWS-IF97

Ice

Library LibICE

Ice from IAPWS-06, Melting and sublimation pressures from IAPWS-08, Water from IAPWS-IF97, Steam from IAPWS-95 and -IF97

Ideal Gas Mixtures

Library LibIdGasMix

Model: Ideal mixture of the ideal gases:

Ar	NO	не	Propylene
Ne	H ₂ O	F_2	Propane
N_2	SO ₂	NH ₃	Iso-Butane
O_2	H ₂	Methane	n-Butane
CO	H₂S	Ethane	Benzene
CO ₂	ОН	Ethylene	Methanol
Air			

Consideration of:

Dissociation from the VDI Guideline 4670

Library LibIDGAS

Model: Ideal gas mixture from VDI Guideline 4670

Consideration of:

Dissociation from the VDI Guideline 4670

Dry Air including Liquid Air Library LibRealAir

Formulation of Lemmon et al. (2000)

Nitrogen

Library LibN2

Formulation of Span et al. (2000)

Hydrogen

Library LibH2

Formulation of Leachman et al. (2007)

Refrigerants

Ammonia

Library LibNH3

Formulation of Tillner-Roth (1995)

R134a

Library LibR134a

Formulation of Tillner-Roth and Baehr (1994)

Iso-Butane

Library LibButane_Iso

Formulation of Bücker et al. (2003)

n-Butane

Library LibButane n

Formulation of Bücker et al. (2003)

Mixtures for Absorption Processes

Ammonia/Water Mixtures Library LibAmWa

IAPWS Guideline 2001 of Tillner-Roth and Friend (1998)

Helmholtz energy equation for the mixing term
(also useable for calculating Kalina Cycle)

Water/Lithium Bromide Mixtures

Library LibWaLi

Formulation of Kim and Infante Ferreira (2004)
Gibbs energy equation for the mixing term

Liquid Coolants

Liquid Secondary Refrigerants

Library LibSecRef

Liquid solutions of water with

 $\begin{array}{lll} \textbf{C}_2\textbf{H}_6\textbf{O}_2 & \textbf{Ethylene glycol} \\ \textbf{C}_3\textbf{H}_8\textbf{O}_2 & \textbf{Propylene glycol} \\ \textbf{C}_2\textbf{H}_5\textbf{OH} & \textbf{Ethyl alcohol} \\ \textbf{CH}_3\textbf{OH} & \textbf{Methyl alcohol} \\ \textbf{C}_3\textbf{H}_8\textbf{O}_3 & \textbf{Glycerol} \end{array}$

K2CO3Potassium carbonateCaCl2Calcium chlorideMgCl2Magnesium chlorideNaClSodium chlorideC2H3KO2Potassium acetate

Formulation of the International Institute of Refrigeration (1997)

Siloxanes as ORC Working Fluids

Octamethylcyclotetrasiloxane C₈H₂₄O₄Si₄ Library LibD4

Decamethylcyclopentasiloxane C₁₀H₃₀O₅Si₅ Library LibD5

Tetradecamethylhexasiloxane C₁₄H₄₂O₅Si₆ Library LibMD4M

Hexamethyldisiloxane C₆H₁₈OSi₂ Library LibMM

Formulation of Colonna et al. (2006)

Dodecamethylcyclohexasiloxane C₁₂H₃₆O₆Si₆ Library LibD6

Decamethyltetrasiloxane C₁₀H₃₀O₃Si₄ Library LibMD2M

Dodecamethylpentasiloxane C₁₂H₃₆O₄Si₅ Library LibMD3M

Octamethyltrisiloxane C₈H₂₄O₂Si₃ Library LibMDM

Formulation of Colonna et al. (2008)

Propane

Library LibPropane

Formulation of Lemmon et al. (2007)

Methanol

Library LibCH3OH

Formulation of de Reuck and Craven (1993)

Ethanol

Library LibC2H5OH

Formulation of Schroeder et al. (2012)

Helium Library LibHe

Formulation of Arp et al. (1998)

Hydrocarbons

Decane C₁₀H₂₂ Library LibC10H22

Isopentane C₅H₁₂ Library LibC5H12_ISO

Neopentane C₅H₁₂ Library LibC5H12_NEO

Isohexane C₅H₁₄ Library LibC5H14

Toluene C₇H₈ Library LibC7H8

Formulation of Lemmon and Span (2006)

Further Fluids

Carbon monoxide CO Library LibCO

Carbonyl sulfide COS Library LibCOS

Hydrogen sulfide H₂S Library LibH2S

Dinitrogen monooxide N₂O Library LibN2O

Sulfur dioxide SO₂ Library LibSO2

Acetone C₃H₆O Library LibC3H6O

Formulation of Lemmon and Span (2006)

For more information please contact:

Zittau/Goerlitz University of Applied Sciences

Department of Technical Thermodynamics

Professor Hans-Joachim Kretzschmar

Dr. Ines Stoecker

Theodor-Koerner-Allee 16

02763 Zittau, Germany

Internet: www.thermodynamics-zittau.de

E-mail: hj.kretzschmar@hs-zigr.de

Phone: +49-3583-61-1846 Fax.: +49-3583-61-1846

The following thermodynamic and transport properties can be calculated^a:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature T_s
- ullet Density ho
- Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_{p}
- Isochoric heat capacity c_v
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Transport Properties

- \bullet Dynamic viscosity η
- Kinematic viscosity v
- \bullet Thermal conductivity λ
- Prandtl-number Pr

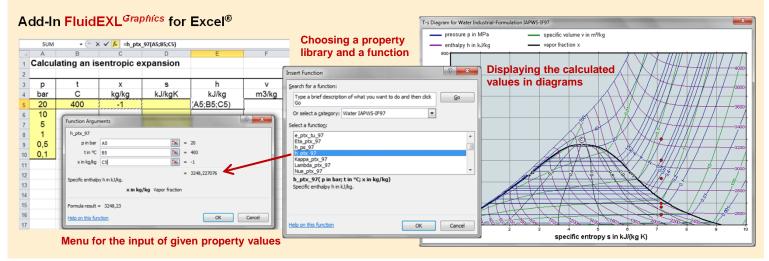
Backward Functions

- T, v, s (p,h)
- *T*, *v*, *h* (*p*,*s*)
- p, T, v (h,s)
- p, T (v,h)p, T (v,u)

Thermodynamic Derivatives

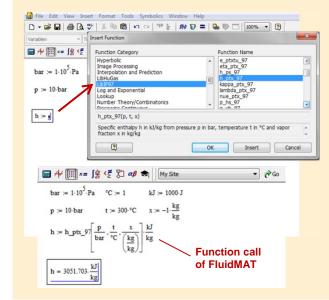
Partial derivatives can be calculated.

^a Not all of these property functions are available in all property libraries.

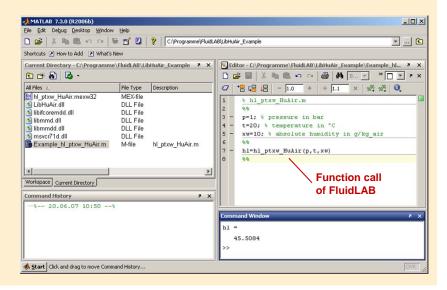


ZITTAU/GOERLITZ UNIVERSITY OF APPLIED SCIENCES

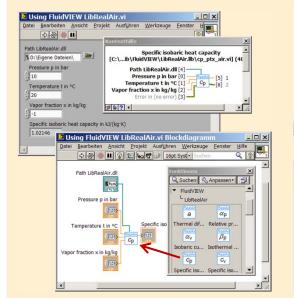
Department of Technical Thermodynamics www.thermodynamics-zittau.de



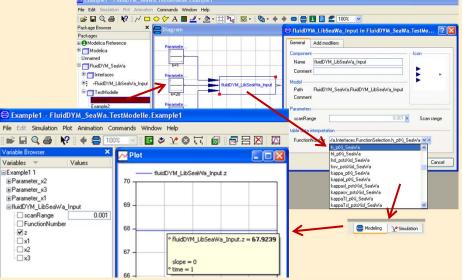
Property Software for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators


Add-In FluidMAT for Mathcad®

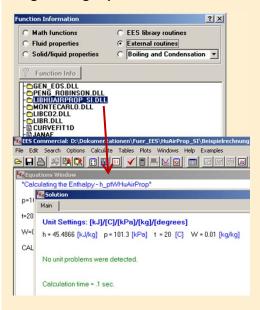
The property libraries can be used in Mathcad[®].


Add-In FluidLAB for MATLAB®

Using the Add-In FluidLAB the property functions can be called in MATLAB®.

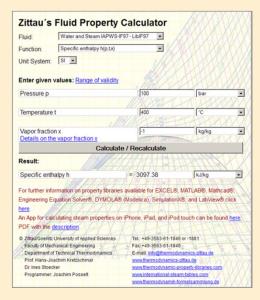

Add-On FluidVIEW for LabVIEW®

The property functions can be calculated in LabVIEW®.



Add-In FluidDYM for DYMOLA® (Modelica) and SimulationX®

The property functions can be called in DYMOLA® and SimulationX®


Add-In FluidEES for Engineering Equation Solver®

App International Steam Tables for iPhone, iPad, iPod touch, Android smart phones and tablets

Online Property Calculator at www.thermodynamics-zittau.de

Property Software for Pocket Calculators

For more information please contact:

Zittau/Goerlitz University of Applied Sciences Department of Technical Thermodynamics Professor Hans-Joachim Kretzschmar Dr. Ines Stoecker Theodor-Koerner-Allee 16 02763 Zittau, Germany E-mail: hj.kretzschmar@hs-zigr.de Internet: www.thermodynamics-zittau.de

Phone: +49-3583-61-1846 Fax.: +49-3583-61-1846

The following thermodynamic and transport properties^a can be calculated in Excel[®], MATLAB[®], Mathcad[®], Engineering Equation Solver[®] EES, DYMOLA[®] (Modelica), SimulationX[®], and LabVIEW[®]:

Thermodynamic Properties

- Vapor pressure p_s
- Saturation temperature T_s
- Density ρ
- · Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_p
- Isochoric heat capacity c_v
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Transport Properties

- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Thermal conductivity
- Prandtl-number Pr

Backward Functions

- T, v, s (p,h)
- T, v, h (p,s)
- p, T, v (h,s)
- p, T (v,h)
- p, T (v,u)

Thermodynamic Derivatives

 Partial derivatives can be calculated.

^a Not all of these property functions are available in all property libraries.

5. References

- [1] Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam IAPWS-IF97.

 Available at the IAPWS website http://www.iapws.org
- [2] Wagner, W.; Kretzschmar, H.-J.: International Steam Tables. Springer-Verlag, Berlin (2008)
- [3] Wagner, W.; Cooper, J.R.; Dittmann, A.; Kijima, J.; Kretzschmar, H.-J.; Kruse, A.; Mares, R.; Oguchi, K.; Sato, H.; Stöcker, I.; Sifner, O.; Takaishi, Y.; Tanishita, I.; Trübenbach, J.; Willkommen, Th.: The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam.

 Journal of Eng. for Gas Turbines and Power 122 (2000) No 1, pp. 150-182
- [4] Advisory Note No. 3, Calculation of Thermodynamic Derivatives for Water and Steam from the IAPWS Formulations 2007. Available at the IAPWS website http://www.iapws.org
- [5] Kretzschmar, H.-J.:Mollier h-s Diagram.Springer-Verlag, Berlin (1998, 2008)
- [6] Release on the IAPWS Formulation 2011 for the Thermal Conductivity of Ordinary Water Substance. Available at the IAPWS website http://www.iapws.org
- [7] Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance. Available at the IAPWS website http://www.iapws.org
- [8] Release on Surface Tension of Ordinary Water Substance 1994. Available at the IAPWS website http://www.iapws.org
- [9] Supplementary Release on Backward Equations for Specific Volume as a Function of Pressure and Temperature v(p,T) for Region 3 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam 2005. Available at the IAPWS website http://www.iapws.org
- [10] Supplementary Release on Backward Equations p(h,s) for Region 3, Equations as a Function of h and s for the Region Boundaries, and an Equation T_{sat}(h,s) for Region 4 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam 2004. Available at the IAPWS website http://www.iapws.org

[11] Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. Available at the IAPWS website http://www.iapws.org

[12] Grigull, U.:

Properties of Water and Steam in SI Units.

Springer-Verlag, Berlin (1989)

[13] Kretzschmar, H.-J.:

Zur Aufbereitung und Darbietung thermophysikalischer Stoffdaten für die Energietechnik.

Habilitation, TU Dresden, Fakultät Maschinenwesen (1990)

[14] Baehr, H.D.; Diederichsen, Ch.:

Berechnungsgleichungen für Enthalpie und Entropie der Komponenten von Luft und Verbrennungsgasen.

BWK 40 (1988) No 1/2, pp. 30-33

[15] Brandt, F.:

Wärmeübertragung in Dampferzeugern und Wärmetauschern. FDBR-Fachbuchreihe, 2nd edition, Vulkan Verlag Essen (1995)

[16] VDI-Wärmeatlas, 7. Auflage. VDI-Verlag, Düsseldorf (1995)

[17] Blanke, W.:

Thermophysikalische Stoffgrößen.

Springer-Verlag, Berlin (1989)

[18] VDI-Richtlinie 4670

Thermodynamische Stoffwerte von feuchter Luft und Verbrennungsgasen. VDI-Handbuch Energietechnik, VDI-Gesellschaft Energietechnik, Düsseldorf (2000)

[19] Lemmon, E. W.; Jacobsen, R. T.; Penoncello, S. G.; Friend, D. G.: Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon and Oxygen from 60 to 2000 K at Pressures to 2000 MPa.

J. Phys. Chem. Ref. Data 29 (2000) No 2, pp. 331-385

[20] Lemmon, E. W.; Jacobsen, R. T:

Transport Properties of Air.

National Institute of Standards and Technology, Boulder CO, (2000), private communication

- [21] Revised Supplementary Release on Saturation Properties of Ordinary Water Substance 1992. Available at the IAPWS website http://www.iapws.org
- [22] Hyland, R. W.; Wexler, A.:

Formulations for the Thermodynamic Properties of Saturated Phases of H₂O from 173.15 K to 473.15 K.

Report No. 2793 (RP-216), National Bureau of Standards, Washington, D.C. (1983)

6. Satisfied Customers

Date: 10/2011

The following companies and institutions use the property libraries

- FluidEXL^{Graphics} for Excel[®]
- FluidLAB for MATLAB®
- FluidMAT for Mathcad®
- FluidEES for Engineering Equation Solver[®] EES
- FluidDYM for Dymola[®] (Modelica)
- FluidVIEW for LabVIEW®:

2011

Lance Managia Oncia	40/0044
Lopez, Munguia, Spain	10/2011
University of KwaZulu-Natal, Westville, South Africa	10/2011
Voith, Heidenheim	09/2011
SpgBe Montreal, Canada	09/2011
SPG TECH, Montreuil Cedex, France	09/2011
Voith, Heidenheim-Mergelstetten	09/2011
MTU Aero Engines, Munich	08/2011
MIBRAG, Zeitz	08/2011
RWE, Essen	07/2011
Fels, Elingerode	07/2011
Weihenstephan University of Applied Sciences	07/2011, 09/2011, 10/2011
Forschungszentrum Juelich	07/2011
RWTH Aachen University	07/2011, 08/2011
INNEO Solutions, Ellwangen	06/2011
Caliqua, Basel, Switzerland	06/2011
Technical University of Freiberg	06/2011
Fichtner IT Consulting, Stuttgart	05/2011, 06/2011, 08/2011
Salzgitter Flachstahl, Salzgitter	05/2011
Helbling Beratung & Bauplanung, Zurich, Switzerland	05/2011
INEOS, Cologne	04/2011
Enseleit Consulting Engineers, Siebigerode	04/2011
Witt Consulting Engineers, Stade	03/2011

Helbling, Zurich, Switzerland	03/2011
MAN Diesel, Copenhagen, Denmark	03/2011
AGO, Kulmbach	03/2011
University of Duisburg	03/2011, 06/2011
CCP, Marburg	03/2011
BASF, Ludwigshafen	02/2011
ALSTOM Power, Baden, Switzerland	02/2011
Universität der Bundeswehr, Munich	02/2011
Calorifer, Elgg, Switzerland	01/2011
STRABAG, Vienna, Austria	01/2011
TUEV Sued, Munich	01/2011
ILK Dresden	01/2011
Technical University of Dresden	01/2011, 05/2011, 06/2011, 08/2011
	00/2011, 00/2011
2010	
Umweltinstitut Neumarkt	12/2010
YIT Austria, Vienna, Austria	12/2010
MCI Innsbruck, Austria	12/2010
University of Stuttgart	12/2010
HS Cooler, Wittenburg	12/2010
Visteon, Novi Jicin, Czech Republic	12/2010
CompuWave, Brunntal	12/2010
Stadtwerke Leipzig	12/2010
MCI Innsbruck, Austria	12/2010
EVONIK Energy Services, Zwingenberg	12/2010
Caliqua, Basel, Switzerland	11/2010
Shanghai New Energy Resources Science & Technology, China	11/2010
Energieversorgung Halle	11/2010
Hochschule für Technik Stuttgart, University of Applied Sciences	11/2010
Steinmueller, Berlin	11/2010
Amberg-Weiden University of Applied Sciences	11/2010
AREVA NP, Erlangen	10/2010
MAN Diesel, Augsburg	10/2010
KRONES, Neutraubling	10/2010
Vaillant, Remscheid	10/2010

PC Ware, Leipzig	10/2010
Schubert Consulting Engineers, Weißenberg	10/2010
Fraunhofer Institut UMSICHT, Oberhausen	10/2010
Behringer Consulting Engineers, Tagmersheim	09/2010
Saacke, Bremen	09/2010
WEBASTO, Neubrandenburg	09/2010
Concordia University, Montreal, Canada	09/2010
Compañía Eléctrica de Sochagota, Bogota, Colombia	08/2010
Hannover University of Applied Sciences	08/2010
ERGION, Mannheim	07/2010
Fichtner IT Consulting, Stuttgart	07/2010
TF Design, Matieland, South Africa	07/2010
MCE, Berlin	07/2010, 12/2010
IPM, Zittau/Goerlitz University of Applied Sciences	06/2010
TUEV Sued, Dresden	06/2010
RWE IT, Essen	06/2010
Glen Dimplex, Kulmbach	05/2010, 07/2010 10/2010
	10/2010
Hot Rock, Karlsruhe	05/2010
Hot Rock, Karlsruhe Darmstadt University of Applied Sciences	
	05/2010
Darmstadt University of Applied Sciences	05/2010 05/2010
Darmstadt University of Applied Sciences Voith, Heidenheim	05/2010 05/2010 04/2010
Darmstadt University of Applied Sciences Voith, Heidenheim CombTec, Zittau	05/2010 05/2010 04/2010 04/2010
Darmstadt University of Applied Sciences Voith, Heidenheim CombTec, Zittau University of Glasgow, Great Britain	05/2010 05/2010 04/2010 04/2010 04/2010
Darmstadt University of Applied Sciences Voith, Heidenheim CombTec, Zittau University of Glasgow, Great Britain Universitaet der Bundeswehr, Munich	05/2010 05/2010 04/2010 04/2010 04/2010
Darmstadt University of Applied Sciences Voith, Heidenheim CombTec, Zittau University of Glasgow, Great Britain Universitaet der Bundeswehr, Munich Technical University of Hamburg-Harburg	05/2010 05/2010 04/2010 04/2010 04/2010 04/2010
Darmstadt University of Applied Sciences Voith, Heidenheim CombTec, Zittau University of Glasgow, Great Britain Universitaet der Bundeswehr, Munich Technical University of Hamburg-Harburg Vattenfall Europe, Berlin	05/2010 05/2010 04/2010 04/2010 04/2010 04/2010 04/2010
Darmstadt University of Applied Sciences Voith, Heidenheim CombTec, Zittau University of Glasgow, Great Britain Universitaet der Bundeswehr, Munich Technical University of Hamburg-Harburg Vattenfall Europe, Berlin HUBER Consulting Engineers, Berching	05/2010 05/2010 04/2010 04/2010 04/2010 04/2010 04/2010 04/2010
Darmstadt University of Applied Sciences Voith, Heidenheim CombTec, Zittau University of Glasgow, Great Britain Universitaet der Bundeswehr, Munich Technical University of Hamburg-Harburg Vattenfall Europe, Berlin HUBER Consulting Engineers, Berching VER, Dresden	05/2010 05/2010 04/2010 04/2010 04/2010 04/2010 04/2010 04/2010 04/2010
Darmstadt University of Applied Sciences Voith, Heidenheim CombTec, Zittau University of Glasgow, Great Britain Universitaet der Bundeswehr, Munich Technical University of Hamburg-Harburg Vattenfall Europe, Berlin HUBER Consulting Engineers, Berching VER, Dresden CCP, Marburg	05/2010 05/2010 04/2010 04/2010 04/2010 04/2010 04/2010 04/2010 04/2010 04/2010
Darmstadt University of Applied Sciences Voith, Heidenheim CombTec, Zittau University of Glasgow, Great Britain Universitaet der Bundeswehr, Munich Technical University of Hamburg-Harburg Vattenfall Europe, Berlin HUBER Consulting Engineers, Berching VER, Dresden CCP, Marburg Offenburg University of Applied Sciences	05/2010 05/2010 04/2010 04/2010 04/2010 04/2010 04/2010 04/2010 04/2010 03/2010
Darmstadt University of Applied Sciences Voith, Heidenheim CombTec, Zittau University of Glasgow, Great Britain Universitaet der Bundeswehr, Munich Technical University of Hamburg-Harburg Vattenfall Europe, Berlin HUBER Consulting Engineers, Berching VER, Dresden CCP, Marburg Offenburg University of Applied Sciences Technical University of Berlin	05/2010 05/2010 04/2010 04/2010 04/2010 04/2010 04/2010 04/2010 04/2010 03/2010 03/2010 03/2010
Darmstadt University of Applied Sciences Voith, Heidenheim CombTec, Zittau University of Glasgow, Great Britain Universitaet der Bundeswehr, Munich Technical University of Hamburg-Harburg Vattenfall Europe, Berlin HUBER Consulting Engineers, Berching VER, Dresden CCP, Marburg Offenburg University of Applied Sciences Technical University of Berlin NIST Boulder CO, USA	05/2010 05/2010 04/2010 04/2010 04/2010 04/2010 04/2010 04/2010 04/2010 03/2010 03/2010 03/2010

ALSTOM Power, Baden, Switzerland	02/2010, 05/2010
MIT Massachusetts Institute of Technology Cambridge MA, USA	02/2010
Wieland Werke, Ulm	01/2010
Siemens Energy, Goerlitz	01/2010, 12/2010
Technical University of Freiberg	01/2010
ILK, Dresden	01/2010, 12/2010
Fischer-Uhrig Consulting Engineers, Berlin	01/2010
2009	
ALSTOM Power, Baden, Schweiz	01/2009, 03/2009, 05/2009
Nordostschweizerische Kraftwerke AG, Doettingen, Switzerland	02/2009
RWE, Neurath	02/2009
Brandenburg University of Technology, Cottbus	02/2009
Hamburg University of Applied Sciences	02/2009
Kehrein, Moers	03/2009
EPP Software, Marburg	03/2009
Bernd Münstermann, Telgte	03/2009
Suedzucker, Zeitz	03/2009
CPP, Marburg	03/2009
Gelsenkirchen University of Applied Sciences	04/2009
Regensburg University of Applied Sciences	05/2009
Gatley & Associates, Atlanta, USA	05/2009
BOSCH, Stuttgart	06/2009, 07/2009
Dr. Nickolay, Consulting Engineers, Gommersheim	06/2009
Ferrostal Power, Saarlouis	06/2009
BHR Bilfinger, Essen	06/2009
Intraserv, Wiesbaden	06/2009
Lausitz University of Applied Sciences, Senftenberg	06/2009
Nuernberg University of Applied Sciences	06/2009
Technical University of Berlin	06/2009
Fraunhofer Institut UMSICHT, Oberhausen	07/2009
Bischoff, Aurich	07/2009
Fichtner IT Consulting, Stuttgart	07/2009
Techsoft, Linz, Austria	08/2009
DLR, Stuttgart	08/2009

Wienstrom, Vienna, Austria	08/2009
RWTH Aachen University	09/2009
Vattenfall, Hamburg	10/2009
AIC, Chemnitz	10/2009
Midiplan, Bietigheim-Bissingen	11/2009
Institute of Air Handling and Refrigeration ILK, Dresden	11/2009
FZD, Rossendorf	11/2009
Techgroup, Ratingen	11/2009
Robert Sack, Heidelberg	11/2009
EC, Heidelberg	11/2009
MCI, Innsbruck, Austria	12/2009
Saacke, Bremen	12/2009
ENERKO, Aldenhoven	12/2009
2008	
Pink, Langenwang	01/2008
Fischer-Uhrig, Berlin	01/2008
University of Karlsruhe	01/2008
MAAG, Kuesnacht, Switzerland	02/2008
M&M Turbine Technology, Bielefeld	02/2008
Lentjes, Ratingen	03/2008
Siemens Power Generation, Goerlitz	04/2008
Evonik, Zwingenberg (general EBSILON program license)	04/2008
WEBASTO, Neubrandenburg	04/2008
CFC Solutions, Munich	04/2008
RWE IT, Essen	04/2008
Rerum Cognitio, Zwickau	04/2008, 05/2008
ARUP, Berlin	05/2008
Research Center, Karlsruhe	07/2008
AWECO, Neukirch	07/2008
Technical University of Dresden, Professorship of Building Services	07/2008
Technical University of Cottbus, Chair in Power Plant Engineering	07/2008, 10/2008
Ingersoll-Rand, Unicov, Czech Republic	08/2008
Technip Benelux BV, Zoetermeer, Netherlands	08/2008
Fennovoima Oy, Helsinki, Finland	08/2008

	Fichtner Consulting & IT, Stuttgart	09/2008
	PEU, Espenhain	09/2008
	Poyry, Dresden	09/2008
	WINGAS, Kassel	09/2008
	TUEV Sued, Dresden	10/2008
	Technical University of Dresden, Professorship of Thermic Energy Machines and Plants	10/2008, 11/2008
	AWTEC, Zurich, Switzerland	11/2008
	Siemens Power Generation, Erlangen	12/2008
20	007	
	Audi, Ingolstadt	02/2007
	ANO Abfallbehandlung Nord, Bremen	02/2007
	TUEV NORD SysTec, Hamburg	02/2007
	VER, Dresden	02/2007
	Technical University of Dresden, Chair in Jet Propulsion Systems	02/2007
	Redacom, Nidau, Switzerland	02/2007
	Universität der Bundeswehr, Munich	02/2007
	Maxxtec, Sinsheim	03/2007
	University of Rostock, Chair in Technical Thermodynamics	03/2007
	AGO, Kulmbach	03/2007
	University of Stuttgart, Chair in Aviation Propulsions	03/2007
	Siemens Power Generation, Duisburg	03/2007
	ENTHAL Haustechnik, Rees	05/2007
	AWECO, Neukirch	05/2007
	ALSTOM, Rugby, Great Britain	06/2007
	SAAS, Possendorf	06/2007
	Grenzebach BSH, Bad Hersfeld	06/2007
	Reichel Engineering, Haan	06/2007
	Technical University of Cottbus, Chair in Power Plant Engineering	06/2007
	Voith Paper Air Systems, Bayreuth	06/2007
	Egger Holzwerkstoffe, Wismar	06/2007
	Tissue Europe Technologie, Mannheim	06/2007
	Dometic, Siegen	07/2007
	RWTH Aachen University, Institute for Electrophysics	09/2007
	National Energy Technology Laboratory, Pittsburg, USA	10/2007

	Energieversorgung Halle		10/2007
	AL-KO, Jettingen		10/2007
	Grenzebach BSH, Bad Hersfeld		10/2007
	Wiesbaden University of Applied Sciences, Department of Engineering Sciences		10/2007
	Endress+Hauser Messtechnik, Hannover		11/2007
	Munich University of Applied Sciences, Department of Mechanical Engineering		11/2007
	Rerum Cognitio, Zwickau		12/2007
	Siemens Power Generation, Erlangen		11/2007
	University of Rostock, Chair in Technical Thermodynamics	11/2007,	12/2007
20	06		
	STORA ENSO Sachsen, Eilenburg		01/2006
	Technical University of Munich, Chair in Energy Systems		01/2006
	NUTEC Engineering, Bisikon, Switzerland	01/2006,	04/2006
	Conwel eco, Bochov, Czech Republic		01/2006
	Offenburg University of Applied Sciences		01/2006
	KOCH Transporttechnik, Wadgassen		01/2006
	BEG Bremerhavener Entsorgungsgesellschaft		02/2006
	Deggendorf University of Applied Sciences, Department of Mechanical Engineering and Mechatronics		02/2006
	University of Stuttgart, Department of Thermal Fluid Flow Engines		02/2006
	Technical University of Munich, Chair in Apparatus and Plant Engineering		02/2006
	Energietechnik Leipzig (company license),		02/2006
	Siemens Power Generation, Erlangen	02/2006,	03/2006
	RWE Power, Essen		03/2006
	WAETAS, Pobershau		04/2006
	Siemens Power Generation, Goerlitz		04/2006
	Technical University of Braunschweig, Department of Thermodynamics		04/2006
	EnviCon & Plant Engineering, Nuremberg		04/2006
	Brassel Engineering, Dresden		05/2006
	University of Halle-Merseburg, Department of USET Merseburg incorporated society		05/2006
	Technical University of Dresden, Professorship of Thermic Energy Machines and Plants		05/2006

Fichtner Consulting & IT Stuttgart (company licenses and distribution)	05/2006
Suedzucker, Ochsenfurt	06/2006
M&M Turbine Technology, Bielefeld	06/2006
Feistel Engineering, Volkach	07/2006
ThyssenKrupp Marine Systems, Kiel	07/2006
Caliqua, Basel, Switzerland (company license)	09/2006
Atlas-Stord, Rodovre, Denmark	09/2006
Konstanz University of Applied Sciences, Course of Studies Construction and Development	10/2006
Siemens Power Generation, Duisburg	10/2006
Hannover University of Applied Sciences, Department of Mechanical Engineering	10/2006
Siemens Power Generation, Berlin	11/2006
Zikesch Armaturentechnik, Essen	11/2006
Wismar University of Applied Sciences, Seafaring Department	11/2006
BASF, Schwarzheide	12/2006
Enertech Energie und Technik, Radebeul	12/2006
2005	
TUEV Nord, Hannover	01/2005
J.H.K Plant Engineering and Service, Bremerhaven	01/2005
Electrowatt-EKONO, Zurich, Switzerland	01/2005
FCIT, Stuttgart	01/2005
Energietechnik Leipzig (company license)	02/2005, 04/2005, 07/2005
eta Energieberatung, Pfaffenhofen	02/2005
FZR Forschungszentrum, Rossendorf/Dresden	04/2005
University of Saarbruecken	04/2005
Technical University of Dresden Professorship of Thermic Energy Machines and Plants	04/2005
Grenzebach BSH, Bad Hersfeld	04/2005
TUEV Nord, Hamburg	04/2005
Technical University of Dresden, Waste Management	05/2005
Siemens Power Generation, Goerlitz	05/2005
Duesseldorf University of Applied Sciences, Department of Mechanical Engineering and Process Engineering	05/2005

	Redacom, Nidau, Switzerland	06/2005
	Dumas Verfahrenstechnik, Hofheim	06/2005
	Alensys Engineering, Erkner	07/2005
	Stadtwerke Leipzig	07/2005
	SaarEnergie, Saarbruecken	07/2005
	ALSTOM ITC, Rugby, Great Britain	08/2005
	Technical University of Cottbus, Chair in Power Plant Engineering	08/2005
	Vattenfall Europe, Berlin (group license)	08/2005
	Technical University of Berlin	10/2005
	Basel University of Applied Sciences, Department of Mechanical Engineering, Switzerland	10/2005
	Midiplan, Bietigheim-Bissingen	11/2005
	Technical University of Freiberg, Chair in Hydrogeology	11/2005
	STORA ENSO Sachsen, Eilenburg	12/2005
	Energieversorgung Halle (company license)	12/2005
	KEMA IEV, Dresden	12/2005
20	004	
	Vattenfall Europe (group license)	01/2004
	TUEV Nord, Hamburg	01/2004
	University of Stuttgart, Institute of Thermodynamics and Heat Engineering	02/2004
	MAN B&W Diesel A/S, Copenhagen, Denmark	02/2004
	Siemens AG Power Generation, Erlangen	02/2004
	Ulm University of Applied Sciences	03/2004
	Visteon, Kerpen 03/2004	, 10/2004
	Technical University of Dresden, Professorship of Thermic Energy Machines and Plants	04/2004
	Rerum Cognitio, Zwickau	04/2004
	University of Saarbruecken	04/2004
	Grenzebach BSH, Bad Hersfeld	04/2004
	SOFBID Zwingenberg (general EBSILON program license)	04/2004
	EnBW Energy Solutions, Stuttgart	05/2004
	HEW-Kraftwerk, Tiefstack	06/2004
	h s energieanlagen, Freising	07/2004
	FCIT, Stuttgart	08/2004
	Physikalisch Technische Bundesanstalt (PTB), Braunschweig	08/2004
	Mainova Frankfurt	08/2004

Rietschle Energieplaner, Winterthur, Switzerland	08/2004
MAN Turbo Machines, Oberhausen	09/2004
TUEV Sued, Dresden	10/2004
STEAG Kraftwerk, Herne	10/2004, 12/2004
University of Weimar	10/2004
energeticals (e-concept), Munich	11/2004
SorTech, Halle	11/2004
Enertech EUT, Radebeul (company license)	11/2004
Munich University of Applied Sciences	12/2004
STORA ENSO Sachsen, Eilenburg	12/2004
Technical University of Cottbus, Chair in Power Plant Engineering	12/2004
Freudenberg Service, Weinheim	12/2004
2003	
Paper Factory, Utzenstorf, Switzerland	01/2003
MAB Plant Engineering, Vienna, Austria	01/2003
Wulff Energy Systems, Husum	01/2003
Technip Benelux BV, Zoetermeer, Netherlands	01/2003
ALSTOM Power, Baden, Switzerland	01/2003, 07/2003
VER, Dresden	02/2003
Rietschle Energieplaner, Winterthur, Switzerland	02/2003
DLR, Leupholdhausen	04/2003
Emden University of Applied Sciences, Department of Technology	05/2003
Petterssson+Ahrends, Ober-Moerlen	05/2003
SOFBID ,Zwingenberg (general EBSILON program license)	05/2003
Ingenieurbuero Ostendorf, Gummersbach	05/2003
TUEV Nord, Hamburg	06/2003
Muenstermann GmbH, Telgte-Westbevern	06/2003
University of Cali, Colombia	07/2003
Atlas-Stord, Rodovre, Denmark	08/2003
ENERKO, Aldenhoven	08/2003
STEAG RKB, Leuna	08/2003
eta Energieberatung, Pfaffenhofen	08/2003
exergie, Dresden	09/2003
AWTEC, Zurich, Switzerland	09/2003
Energie, Timelkam, Austria	09/2003

	Electrowatt-EKONO, Zurich, Switzerland	09/2003
	LG, Annaberg-Buchholz	10/2003
	FZR Forschungszentrum, Rossendorf/Dresden	10/2003
	EnviCon & Plant Engineering, Nuremberg	11/2003
	Visteon, Kerpen	11/2003
	VEO Vulkan Energiewirtschaft Oderbruecke, Eisenhuettenstadt	11/2003
	Stadtwerke Hannover	11/2003
	SaarEnergie, Saarbruecken	11/2003
	Fraunhofer-Gesellschaft, Munich	12/2003
	Erfurt University of Applied Sciences, Department of Supply Engineering	12/2003
	SorTech, Freiburg	12/2003
	Mainova, Frankfurt	12/2003
	Energieversorgung Halle	12/2003
20	002	
	Hamilton Medical AG, Rhaezuens, Switzerland	01/2002
	Bochum University of Applied Sciences, Department of Thermo- and Fluid Dynamics	01/2002
	SAAS, Possendorf/Dresden	02/2002
	Siemens, Karlsruhe (general license for the WinIS information system)	02/2002
	FZR Forschungszentrum, Rossendorf/Dresden	03/2002
	CompAir, Simmern	03/2002
	GKS Gemeinschaftskraftwerk, Schweinfurt	04/2002
	ALSTOM Power Baden, Switzerland (group licenses)	05/2002
	InfraServ, Gendorf	05/2002
	SoftSolutions, Muehlhausen (company license)	05/2002
	DREWAG, Dresden (company license)	05/2002
	SOFBID, Zwingenberg (general EBSILON program license)	06/2002
	Kleemann Engineering, Dresden	06/2002
	Caliqua, Basel, Switzerland (company license)	07/2002
	PCK Raffinerie, Schwedt (group license)	07/2002
	Fischer-Uhrig Engineering, Berlin	08/2002
	Fichtner Consulting & IT, Stuttgart (company licenses and distribution)	08/2002
	Stadtwerke Duisburg	08/2002

	Stadtwerke Hannover	00/2002
		09/2002
	Siemens Power Generation, Goerlitz	10/2002
	Energieversorgung Halle (company license)	10/2002
	Bayer, Leverkusen	11/2002
	Dillinger Huette, Dillingen	11/2002
	G.U.N.T. Geraetebau, Barsbuettel (general license and training test benches)	12/2002
	VEAG, Berlin (group license)	12/2002
2	001	
	ALSTOM Power, Baden, Switzerland	01/2001, 06/2001, 12/2001
	KW2 B. V., Amersfoot, Netherlands	01/2001, 11/2001
	Eco Design, Saitamaken, Japan	01/2001
	M&M Turbine Technology, Bielefeld	01/2001, 09/2001
	MVV Energie, Mannheim	02/2001
	Technical University of Dresden, Department of Power Machinery and Plants	02/2001
	PREUSSAG NOELL, Wuerzburg	03/2001
	Fichtner Consulting & IT Stuttgart (company licenses and distribution)	04/2001
	Muenstermann GmbH, Telgte-Westbevern	05/2001
	SaarEnergie, Saarbruecken	05/2001
	Siemens, Karlsruhe (general license for the WinIS information system)	08/2001
	Neusiedler AG, Ulmerfeld, Austria	09/2001
	h s energieanlagen, Freising	09/2001
	Electrowatt-EKONO, Zurich, Switzerland	09/2001
	IPM Zittau/Goerlitz University of Applied Sciences (general lic	ense) 10/2001
	eta Energieberatung, Pfaffenhofen	11/2001
	ALSTOM Power Baden, Switzerland	12/2001
	VEAG, Berlin (group license)	12/2001
2	000	
_	SOFBID, Zwingenberg (general EBSILON program license)	01/2000
	AG KKK - PGW Turbo, Leipzig	01/2000
	PREUSSAG NOELL, Wuerzburg	01/2000
	M&M Turbine Technology, Bielefeld	01/2000

	IBR Engineering Reis, Nittendorf-Undorf	02/2000
	GK, Hannover	03/2000
	KRUPP-UHDE, Dortmund (company license)	03/2000
	UMAG W. UDE, Husum	03/2000
	VEAG, Berlin (group license)	03/2000
	Thinius Engineering, Erkrath	04/2000
	SaarEnergie, Saarbruecken	05/2000, 08/2000
	DVO Data Processing Service, Oberhausen	05/2000
	RWTH Aachen University	06/2000
	VAUP Process Automation, Landau	08/2000
	Knuerr-Lommatec, Lommatzsch	09/2000
	AVACON, Helmstedt	10/2000
	Compania Electrica, Bogota, Colombia	10/2000
	G.U.N.T. Geraetebau, Barsbuettel (general license for training test benches)	11/2000
	Steinhaus Informationssysteme, Datteln (general license for process data software)	12/2000
19	999	
	Bayernwerk, Munich	01/1999
	DREWAG, Dresden (company license)	02/1999
	KEMA IEV, Dresden	03/1999
	Regensburg University of Applied Sciences	04/1999
	Fichtner Consulting & IT, Stuttgart (company licenses and distribution)	07/1999
	Technical University of Cottbus, Chair in Power Plant Engineering	07/1999
	Technical University of Graz, Department of Thermal Engineering, Aus	stria 11/1999
	Ostendorf Engineering, Gummersbach	12/1999
19	998	
	Technical University of Cottbus, Chair in Power Plant Engineering	05/1998
	Fichtner Consulting & IT (CADIS information systems) Stuttgart (general KPRO program license)	05/1998
	M&M Turbine Technology Bielefeld	06/1998
	B+H Software Engineering Stuttgart	08/1998
	Alfa Engineering, Switzerland	09/1998
	VEAG Berlin (group license)	09/1998
	NUTEC Engineering, Bisikon, Switzerland	10/1998

SCA Hygiene Products, Munich	10/1998
RWE Energie, Neurath	10/1998
Wilhelmshaven University of Applied Sciences	10/1998
BASF, Ludwigshafen (group license)	11/1998
Energieversorgung, Offenbach	11/1998
1997	
Gerb, Dresden	06/1997
Siemens Power Generation, Goerlitz	07/1997