

Faculty of MECHANICAL ENGINEERING

Department of TECHNICAL THERMODYNAMICS

Property Library for Ice, Water, and Steam

FluidEXL Graphics
with LibICE
for Excel®

Prof. Hans-Joachim Kretzschmar
Dr. Ines Stoecker
Sebastian Herrmann
Tobias Göpfert
Matthias Kunick

Property Library for Ice, Water, and Steam

Including DLL and Add-In for Excel®

FluidEXL Graphics Liblce

Contents

- 0. Package Contents
 - 0.1 Zip-files for 32-bit Windows®
 - 0.2 Zip-files for 64-bit Windows®
- 1. Property Functions
 - 1.1 Property Functions of LibICE
 - 1.2 Range of Validity
- 2. Application of FluidEXLGraphics in Excel®
 - 2.1 Installing FluidEXLGraphics
 - 2.2 Registering FluidEXL Graphics as Add-In in Excel®
 - 2.3 The FluidEXLGraphics Help System
 - 2.4 Licensing the Liblce Property Library
 - 2.5 Example: Calculation of h = f(p,t,x)
 - 2.6 Removing FluidEXLGraphics
- 3. Program Documentation
- 4. Property Libraries for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators
- 5. References
- 6. Satisfied Customers

© Zittau/Goerlitz University of Applied Sciences Faculty of Mechanical Engineering Department of Technical Thermodynamics

Professor Hans-Joachim Kretzschmar

Dr. Ines Stoecker

Phone: +49 3583-61-1846 or -1881

Fax: +49 3583-61-1846

E-mail: hj.kretzschmar@hs-zigr.de Internet: www.thermodynamics-zittau.de

0. Package Contents

0.1 Zip files for 32-bit Windows®

The following zip files are delivered for your computer running a 32-bit version of Windows[®].

English zip file "CD_FluidEXL_Graphics_Liblce_Eng.zip" including the following files:

FluidEXL_Graphics_Eng_Setup.exe - English installation program for the

Add-In FluidEXLGraphics for use in

 $\mathsf{Excel}^{\mathbb{B}}$

FluidEXL_Graphics_Eng.xla - English Add-In for FluidEXL^{Graphics}

Liblce.dll - Dynamic Link Library for use in

Windows programs

Liblce.hlp - Help file for the Liblce property library

FluidEXL_Graphics_LibIce_Docu_Eng.pdf - User's guide

German zip file "CD_FluidEXL_Graphics_Liblce.zip" including the following files:

FluidEXL_Graphics_Setup.exe - German installation program for the

Add-In FluidEXL *Graphics* for application

in Excel[®].

FluidEXL_Graphics.xla - German Add-In for FluidEXL Graphics

Liblce.dll - Dynamic Link Library for use in

Windows[®] programs

Liblce.hlp - Help file for the Liblce property library

FluidEXL_Graphics_LibIce_Docu_Eng.pdf - User's guide

0.2 Zip files for 64-bit Windows®

The following zip files are delivered for your computer running a 64-bit version of Windows[®].

English zip file "CD_FluidEXL_Graphics_Liblce_x64_Eng.zip" including the following files and folders:

F	i	I۵e	
	ı	163	

FluidEXL_Graphics_LibIce_Docu_Eng.pdf - User's guide

FluidEXL_Graphics_Eng.xla - English Add-In for FluidEXLGraphics

FluidEXL_Graphics_Eng_64_Setup.msi - Self-extracting and self-installing

program

Liblce.dll - Dynamic link library for use in

Windows[®] programs

Liblce.hlp - Help file for the Liblce property library

Setup.exe - Self-extracting and self-installing

program for FluidEXLGraphics

Folders:

vcredist_x64 - Folder containing the "Microsoft Visual

C++ 2010 x64 Redistributable Pack"

WindowsInstaller3_1 - Folder containing the "Microsoft

Windows Installer"

German zip file "CD_FluidEXL_Graphics_Liblce_x64.zip" including the following files and folders:

Files:

FluidEXL_Graphics_LibIce_Docu_Eng.pdf - User's guide

FluidEXL_Graphics.xla - German Add-In for FluidEXL Graphics

FluidEXL_Graphics_64_Setup.msi - Self-extracting and self-installing

program

Liblce.dll - Dynamic link library for use in

Windows[®] programs

Liblce.hlp - Help file for the Liblce property library

Setup.exe - Self-extracting and self-installing

program for FluidEXLGraphics

Folders:

vcredist_x64 - Folder containing the "Microsoft Visual

C++ 2010 x64 Redistributable Pack"

WindowsInstaller3_1 - Folder containing the "Microsoft

Windows Installer"

1. Property Functions

1.1 Property Functions of LibICE

Functional Dependence	Function Name	Fortran Program	Property or Function	Unit of the Result
a = f(p,t,x)	a_ptx_ICE	APTXICE(P,T,X)	Thermal diffusivity	m ² /s
$\alpha_V = f(p, t, x)$	alphav_ptx_ICE	ALPHAVPTXICE(P,T,X)	Isobaric cubic expansion coefficient	1/K
$c_p = f(p, t, x)$	cp_ptx_ICE	CPPTXICE(P,T,X)	Specific isobaric heat capacity	kJ/(kg K)
$c_V = f(p, t, x)$	cv_ptx_ICE	CVPTXICE(P,T,X)	Specific isochoric heat capacity	kJ/(kg K)
$\eta = f(\rho,t,x)$	eta_ptx_ICE	ETAPTXICE(P,T,X)	Dynamic viscosity (only for liquid and steam)	Pa s
h = f(p,t,x)	h_ptx_ICE	HPTXICE(P,T,X)	Specific enthalpy	kJ/kg
$\kappa = f(p, t, x)$	kappa_ptx_ICE	KAPPAPTXICE(P,T,X)	Isentropic exponent	-
$\kappa_T = f(p,t,x)$	kappaT_ptx_ICE	KAPPATPTXICE(P,T,X)	Isothermal compressibility	1/kPa
$\lambda = f(p,t,x)$	lambda_ptx_ICE	LAMBDAPTXICE(P,T,X)	Thermal conductivity	W/(m K)
$p_{\text{mel}} = f(t)$	pmel_t_08_ICE	PMEL_T_08_ICE(T)	Melting pressure	bar
$p_{\rm S} = f(t)$	ps_t_97_ICE	PS_T_97_ICE(T)	Vapor pressure	bar
$p_{\text{sub}} = f(t)$	psub_t_08_ICE	PSUB_T_08_ICE(T)	Sublimation pressure	bar
$\rho = f(\rho, t, x)$	rho_ptx_ICE	RHOPTXICE(P,T,X)	Density	kg/m³

Functional Dependence	Function Name	Fortran Program	Property or Function	Unit of the Result
s = f(p,t,x)	s_ptx_ICE	SPTXICE(P,T,X)	Specific entropy	kJ/(kg K)
t = f(p,h)	t_ph_ICE	TPHICE(P,H)	Backward function: Temperature from pressure and specific enthalpy	°C
t = f(p, s)	t_ps_ICE	TPSICE(P,S)	Backward function: Temperature from pressure and specific entropy	°C
$t_{\text{mel}} = f(p)$	tmel_p_08_ICE	TMEL_P_08_ICE(P)	Melting temperature	°C
$t_{\rm S} = f(p)$	ts_p_97_ICE	TS_P_97_ICE(P)	Saturation temperature	°C
$t_{\text{sub}} = f(p)$	tsub_p_08_ICE	TSUB_P_08_ICE(P)	Sublimation temperature	°C
$u = f(\rho, t, x)$	u_ptx_ICE	UPTXICE(P,T,X)	Specific internal energy	kJ/kg
V = f(p, t, x)	v_ptx_ICE	VPTXICE(P,T,X)	Specific volume	m³/kg
w = f(p,t,x)	w_ptx_ICE	WPTXICE(P,T,X)	Isentropic speed of sound	m/s
x = f(p,h)	x_ph_ICE	XPHICE(P,H)	Backward function: Phase fraction from pressure and specific enthalpy	kg/kg
x = f(p,s)	x_ps_ICE	XPSICE(P,S)	Backward function: Phase fraction from pressure and specific entropy	kg/kg

Units: p in bar t in °C

x in kg/kg (Phase fraction; see description in the following)

Reference State:

h = 0.0006118 kJ/kg and s = 0 kJ/(kg K) at $p_{\rm t}$ = 6.11657·10⁻³ bar and $t_{\rm t}$ = 0.01 °C (273.16 K)

Details on the Phase Fraction x

If the state point to be calculated is located in one of the single phase regions ice, liquid, superheated steam or gas, x = -1 must be entered as a pro-forma value. Here the backward functions will result in x = -1.

The two phase regions wet stem region, melting region and sublimation region (see log *p-h* diagram in Chapter 1.2) are divided automatically by the subprograms. Please consider the following facts:

1. Wet Stem Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region $x = \frac{m''}{(m' + m'')}$. Its unit is (kg saturated steam)/(kg wet steam).

When calculating properties of wet steam, a value between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) has to be entered for x. In this case, the backward functions result in the appropriate value between 0 and 1 for x.

In this case it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x between 0 and 1. If values for both p and t are entered when calculating wet steam, the program will consider p and t to be appropriate to represent the vapor pressure curve. If it is not the case the calculation for the quantity of the chosen function results in -1000.

Wet steam region: Temperature ranges from $t_{\rm t} = 0.01~{\rm ^{\circ}C}$ (273.16 K) to $t_{\rm max} = 350~{\rm ^{\circ}C}$ (623.15 K) Pressure ranges from $p_{\rm t} = 6.11657^{\circ}10^{-3}$ bar to $p_{\rm s}$ ($t_{\rm max}$) = 165.291643 bar

2. Melting Region ($10 \le x \le 11$):

The phase fraction x equates to the liquid fraction x in the melting region $x = 10 + \frac{m_{\text{liq}}}{\left(m_{\text{ice}} + m_{\text{liq}}\right)}$. Its unit is (kg solidified liquid)/(kg melt), whereas melt is a

mixture of melting ice and solidified liquid.

When calculating properties of the melting region, a value between 10 and 11 (x = 10 for melted solid, x = 11 for solidified liquid) has to be entered for x. In this case, the backward functions result in the appropriate value between 10 and 11 for x.

In this case it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x between 10 and 11. If values for both p and t are entered, the program will consider p and t to be appropriate to represent the melting pressure curve. If it is not the case the calculation for the quantity of the chosen function results in -1000.

Melting region: Temperature ranges from $t_{\text{mel}}(p_{\text{max}}) = -8.9412 \,^{\circ}\text{C}$ (264.2088 K) to $t_t = 0.01 \,^{\circ}\text{C}$ (273.16 K) Pressure ranges from $p_t = 6.11657 \,^{\circ}10^{-3}$ bar to $p_{\text{max}} = 1000$ bar

3. Sublimation Region (100 \leq x \leq 101):

The phase fraction x equates to the gas fraction x in the sublimation region $x = 100 + \frac{m_{\rm gas}}{\left(m_{\rm ice} + m_{\rm gas}\right)}$. Its unit is (kg desublimated gas)/(kg sublimation

powder), whereas sublimation powder is a mixture of sublimated ice and desublimated gas.

When calculating properties of sublimation region, a value between 100 and 101 (x = 100 for sublimated ice, x = 101 for desublimated gas) has to be entered for x. In this case, the backward functions result in the appropriate value between 100 and 101 for x.

In this case it is adequate to enter either the given value for t and p = -1000, or the given value for p and t = -1000, plus the value for x between 100 and 101. If values for both p and t are entered, the program will consider p and t to be appropriate to represent the sublimation pressure curve. If it is not the case the calculation for the quantity of the chosen function results in -1000.

Sublimation region: Temperature ranges from $t_{min} = -223.15$ °C (50 K) to $t_t = 0.01$ °C (273.16 K)

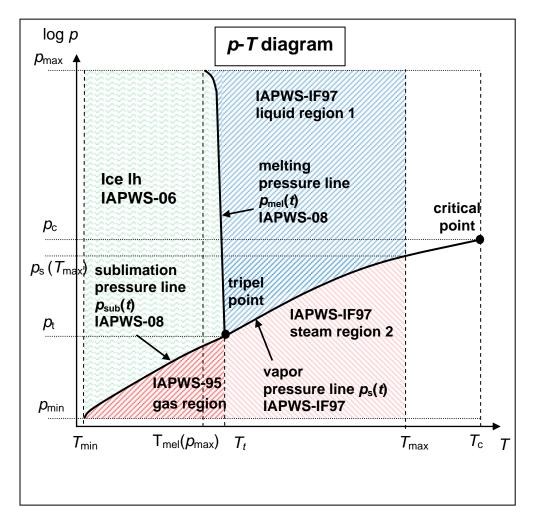
Pressure ranges from $p_{min} = p_{sub}(t_{min}) = 1.9349584868 \cdot 10^{-45}$ bar to $p_{t} = 6.11657 \cdot 10^{-3}$ bar

Note:

If the input values are located outside the range of validity, the calculated function will always result in –1000. Please find more exact details on every function and its corresponding range of validity in the enclosed program documentation in Chapter 3. The same information may also be accessed via the online help pages.

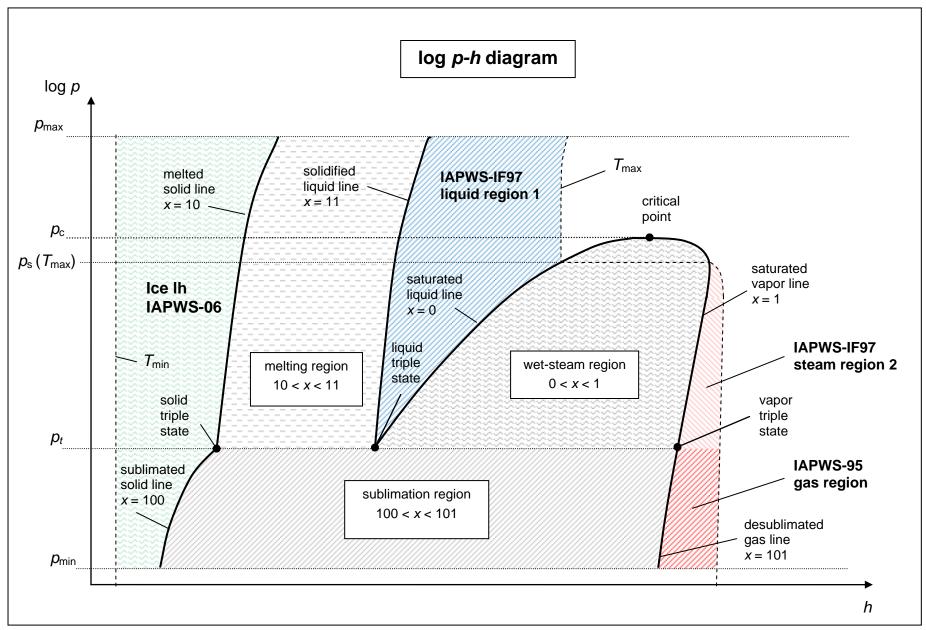
1.2 Range of Validity of LibICE

The LibICE property library calculates the thermodynamic and transport properties of ice lh, water and steam. As shown in the following p-T and log p-t diagrams, different formulations are used to describe the entire Range of validity of LibICE.


The thermodynamic properties of ice Ih are calculated by the IAPWS Formulation 2006 [7]. This region is marked with green color in the following log p-T diagram. This region ranges from minimum pressure to maximum pressure and from minimum temperature to the melting temperature for pressures $p \ge p_t$ and to the sublimation temperature for pressures $p < p_t$. The melting and sublimation pressures are calculated from the IAPWS 2008 Formulation [8].

The liquid-water region ranges from triple point pressure to maximum pressure and from melting temperature to saturation temperature for $p \le p_s(T_{max})$ and the maximum temperature for $p > p_s(T_{max})$. In this region, the fundamental equation of IAPWS-IF97 Region 1 [1,2] is used. This region is marked with blue color in the following p-T diagram.

The vapor region covers the range from minimum pressure to saturation pressure and from triple point temperature to the maximum temperature for pressures $p < p_t$ and from saturation temperature to maximum temperature for pressures $p \ge p_t$. The thermodynamic properties are calculated by the fundamental equation of IAPWS-IF97 Region 2 [1,2]. This region is marked with light red color in the following p-T diagram.


The red region in the p-T diagram is covered by the Scientific Formulation IAPWS-95 [6]. This region covers the range from minimum pressure to the sublimation pressure and from sublimation temperature to the triple point temperature.

For given property values, the region is chosen automatically by the subprograms. The two-phase regions wet steam region, melting region and sublimation region are also chosen automatically.

Values at Important State Points

Property	Variable	Value and Unit
Minimum temperature	T _{min}	50 K (– 223.15 °C)
Maximum temperature	T _{max}	623.15 K (350 °C)
Triple temperature	T _t	273.16 K (0.01 °C)
Temperature at the critical point	T _c	647.096 K (373.946 °C)
Melting temperature at maximum pressure	$T_{mel}(p_{max})$	264.2088 K (-8.9412 °C)
Minimum pressure	$p_{\min} = p_{\text{sub}}(T_{\min})$	1.9349584868 ⁻ 10 ⁻⁴⁶ MPa
Maximum pressure	p _{max}	100 MPa
Triple pressure	p_{t}	6.11657 [·] 10 ⁻⁴ MPa
Pressure at the critical point	p _c	22.064 MPa
Vapor pressure at maximum temperature	$p_{\rm s}(T_{\rm max})$	16.5291643 MPa

Zittau/Goerlitz University of Applied Sciences, Department of Technical Thermodynamics, Professor H.-J. Kretzschmar, Dr. I. Stoecker

2. Application of FluidEXLGraphics in Excel®

The FluidEXL^{Graphics} Add-In has been developed to calculate thermodynamic properties in Excel more conveniently. Within Excel[®], it enables the direct call of functions relating to Water and Water-Ice Ih from the LibIce property library.

2.1 Installing FluidEXL Graphics

If FluidEXL*Graphics* has not yet been installed or if there is a version installed which has been delivered before June 2010, please complete the initial installation procedure described below.

If FluidEXL^{Graphics} has already been installed in a version which has been delivered after June 2010, you simply need to copy the files which belong to the LibIce library. In this case, follow the subsection "Adding the LibIce Library" on page 2/11.

Installing FluidEXL^{Graphics} for 32-bit Windows[®]

Complete the following steps for initial installation of FluidEXL^{Graphics}. Before you begin, it is best to uninstall any trial version or full version of FluidEXL^{Graphics} delivered before June 2010. After you have downloaded and extracted the zip-file

```
"CD_FluidEXL_Graphics_LibIce_Eng.zip" (for English version of Windows)
"CD_FluidEXL_Graphics_LibIce.zip" (for German version of Windows)
```

you will see the folder

```
CD_FluidEXL_Graphics_LibIce_Eng (for English version of Windows)
CD_FluidEXL_Graphics_LibIce (for German version of Windows)
```

in your Windows Explorer, Norton Commander etc. Now, open this folder by double-clicking on it. Within this folder you will see the following files:

```
FluidEXL_Graphics_Eng_Setup.exe (for English version of Windows)
FluidEXL_Graphics_Setup.exe (for German version of Windows)
FluidEXL_Graphics_Eng.xla (for English version of Windows)
FluidEXL_Graphics.xla (for German version of Windows)
FluidEXL_Graphics_LibIce_Docu_Eng.pdf
```

Liblce.dll

Liblce.hlp.

In order to run the installation of FluidEXL Graphics double-click the file

```
FluidEXL_Graphics_Eng_Setup.exe (for English version of Windows)
FluidEXL_Graphics_Setup.exe (for German version of Windows).
```

Installation may start with a window noting that all Windows programs should be closed. When this is the case, the installation can be continued. Click the "Continue" button.

In the following dialog box, "Choose Destination Location", the default path offered automatically for the installation of FluidEXL^{Graphics} is

```
C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows) C:\Programme\FluidEXL_Graphics (for German version of Windows).
```

By clicking the "Browse..." button, you can change the installation directory before installation (see figure below).

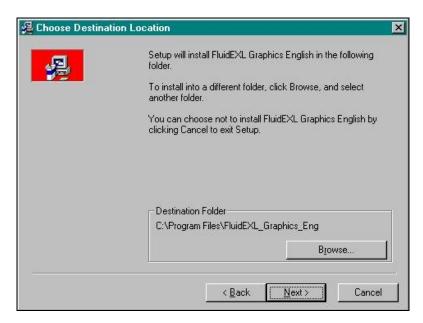


Figure 2.1: Choose Destination Location

Finally, click on "Next" to continue installation; click "Next" again in the "Start Installation" window which follows in order to start the installation of FluidEXL^{Graphics}. After FluidEXL^{Graphics} has been installed, the sentence

"FluidEXL Graphics English has been successfully installed."

will be shown. Confirm this by clicking the "Finish" button. During the installation process the following files

Advapi32.dll LC.dll
DFORMD.dll Msvcp60.dll
Dforrt.dll Msvcrt.dll
UNWISE.EXE UNWISE.INI

INSTALL EXL.LOG

have been copied into the chosen destination folder, in the standard case

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL_Graphics (for German version of Windows).

In the next step, the following files

FluidEXL_Graphics_Eng.xla (for English version of Windows)
FluidEXL_Graphics.xla (for German version of Windows)

Liblce.dll Liblce.hlp

from the extracted folder

CD_FluidEXL_Graphics_LibIce_Eng (for English version of Windows)
CD_FluidEXL_Graphics_LibIce (for German version of Windows)

must be copied into the chosen destination folder (the standard being

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL_Graphics (for German version of Windows)),

using an appropriate program such as Windows Explorer or Norton Commander.

Installing FluidEXLGraphics for 64-bit Windows®

Complete the following steps for initial installation of FluidEXL^{Graphics}. Before you begin, it is best to uninstall any trial version or full version of FluidEXL^{Graphics} delivered before June 2010. After you have downloaded and extracted the zip-file

```
"CD_FluidEXL_Graphics_LibIce_x64_Eng.zip" (for English version of Windows)

"CD_FluidEXL_Graphics_LibIce_x64.zip" (for German version of Windows)

you will see the folder

CD_FluidEXL_Graphics_LibIce_Eng
CD_FluidEXL_Graphics_LibIce (for English version of Windows)

(for German version of Windows)
```

in your Windows Explorer, Norton Commander etc. Now, open this folder by double-clicking on it. Within this folder you will see the following files

```
FluidEXL_Graphics_Liblce_Docu_Eng
FluidEXL_Graphics_Eng.xla (for English version of Windows)
FluidEXL_Graphics.xla (for German version of Windows)
FluidEXL_Graphics_Eng_Setup_64.msi (for English version of Windows)
FluidEXL_Graphics_Setup_64.msi (for German version of Windows)
Liblce.dll
Liblce.hlp
```

and the folders

Setup.exe

vcredist x64

WindowsInstaller3_1.

In order to run the installation of FluidEXLGraphics double-click the file

Setup.exe.

If the "Microsoft Visual C++ 2010 x64 Redistributable Pack" is not running on your computer yet, installation will start with a window noting that the "Visual C++ 2010 runtime library (x64)" will be installed on your machine (see figure below).



Figure 2.2: Installing the "Visual C++ 2010 runtime library (x64)"

Click on "Install" to continue.

In the following window you are required to accept the Microsoft[®] license terms to install the "Microsoft Visual C++ 2010 x64 Redistributable Pack" by ticking the box next to "I have read and accept the license terms" (see figure below).

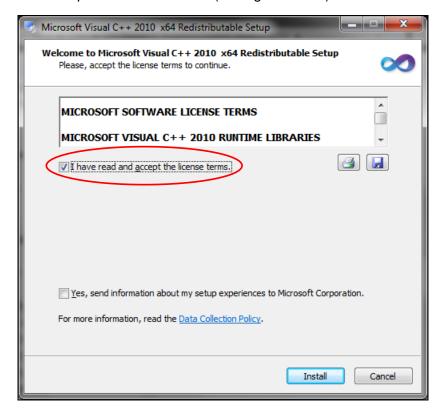


Figure 2.3: Accepting the license terms

Now click on "Install" to continue installation.

After the "Microsoft Visual C++ 2010 x64 Redistributable Pack" has been installed, you will see the sentence "Microsoft Visual C++ 2010 x64 Redistributable has been installed." Confirm this by clicking "Finish."

Now the installation of FluidEXL_Graphics_Eng_64 starts with a window noting that the installer will guide you through the installation. Click the "Next >" button to continue. In the following dialog box, "Select Installation Folder," the default path offered automatically for the installation of FluidEXL**Graphics* is

```
C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows).
C:\Programme\FluidEXL_Graphics (for German version of Windows).
```

By clicking the "Browse..." button, you can change the installation directory before installation (see Figure 2.4).

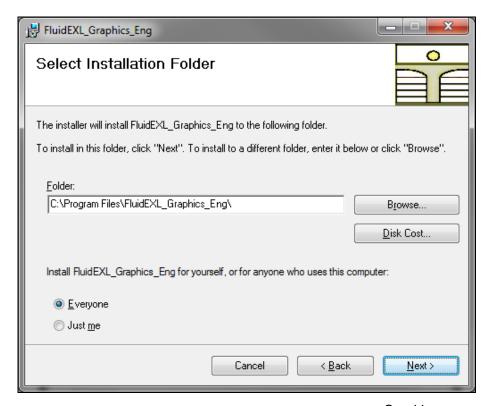


Figure 2.4: Choosing the Installation Folder of FluidEXL^{Graphics}

Finally, click on "Next >" to continue installation; click "Next >" again in the "Confirm Installation" window which follows in order to start the installation of FluidEXL *Graphics*.

After FluidEXL^{Graphics} has been installed, you will see the sentence "FluidEXL_Graphics_Eng has been successfully installed." Confirm this by clicking the "Close" button.

During the installation process the following files will have been copied into the destination folder chosen, the standard being C:\Program Files\FluidEXL_Graphics_Eng:

capt_ico_big.ico libmmd.dll libifcoremd.dll LC.dll libiomp5md.dll.

In addition, the two subdirectories \FORMULATION97 and \FLuft were created in the destination folder.

In the next step, the files below,

FluidEXL_Graphics_Eng.xla (for English version of Windows)
FluidEXL_Graphics.xla (for German version of Windows)
LibIce.dll

Liblce.hlp

found in your CD folder, must be copied into the chosen destination folder (the standard being

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL_Graphics (for German version of Windows))

using an appropriate program such as Explorer or Norton Commander.

2.2 Registering FluidEXL^{Graphics} as Add-In in Excel[®]

Registering FluidEXL^{Graphics} as Add-In in Excel[®], versions 2003 or earlier

After the installation of FluidEXL*Graphics*, the program must be registered as an Add-In in Excel[®]. In order to do so, start Excel[®] and carry out the following steps:

- Click "Tools" in the upper menu bar of Excel[®].
- Here, click the "Add-Ins..." menu item.
 After a short delay the "Add-Ins" dialog box will appear.
- Click "Browse...."
- In the following dialog box, choose your chosen destination folder (the standard being

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL_Graphics (for German version of Windows))

here select

"FluidEXL_Graphics_Eng.xla" (for English version of Windows)
"FluidEXL_Graphics.xla" (for German version of Windows)

and afterwards click "OK".

- Now, the entry

"FluidEXL_Graphics_Eng" (for English version of Windows)
"FluidEXL_Graphics" (for German version of Windows)

will appear in the Add-Ins list.

Note:

As long as the check box next to the file name "FluidEXL Graphics Eng" is checked, this Add-In will be loaded automatically every time you start Excel[®] until you unmark the box by clicking on it again.

In order to register FluidEXL*Graphics* as an Add-In, click "OK" in the "Add-Ins" dialog box. Now, the new FluidEXL*Graphics* menu bar will appear in the upper menu area of your Excel[®] screen, marked with a red circle in Figure 2.5.

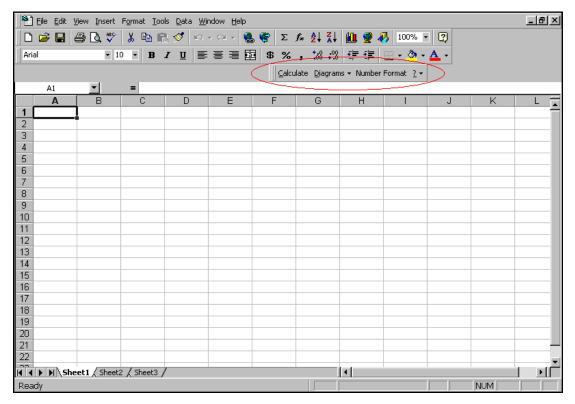


Figure 2.5: Menu bar of FluidEXLGraphics

From within Excel you can now select the "Liblce" DLL library property functions via this menu bar (see section 2.5 on page 2/20).

Registering FluidEXL^{Graphics} as Add-In in Excel[®] 2007 (or later versions)

After installation in Windows[®], FluidEXL^{Graphics} must be registered in Excel[®] versions 2007 and later as an Add-In. To do this, start Excel[®] and carry out the following steps:

- Click the Windows Office[®] button in the upper left hand corner of Excel[®]
- Click on the "Excel Options" button in the menu which appears (see Figure 2.6)

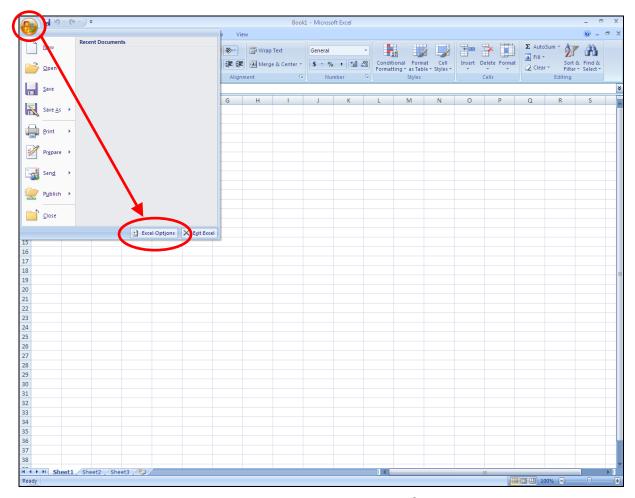


Figure 2.6: Registering FluidEXL Graphics as Add-In in Excel® 2007

Click on "Add-Ins" in the next menu

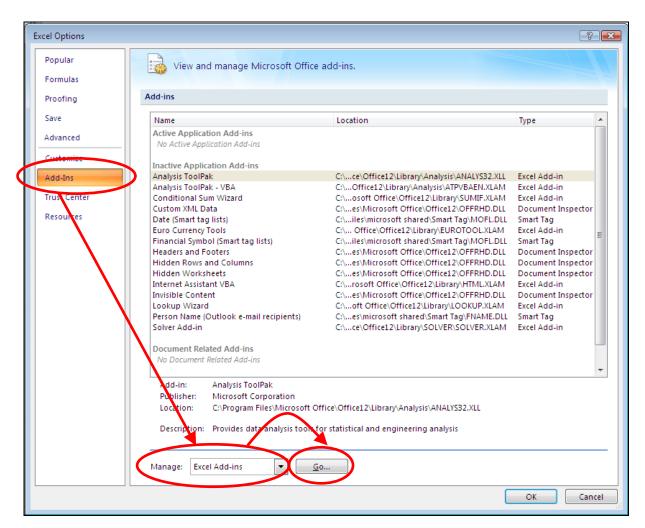


Figure 2.7: Dialog window "Excel Options"

- Should it not be shown in the list automatically, select "Excel Add-ins" (found next to "Manage:" in the lower area of the menu)
- Then click the "Go..." button
- Click "Browse" in the following window and locate the destination folder, generally

C:\Program Files\FluidEXL_Graphics_Eng C:\Programme\FluidEXL_Graphics

(for English version of Windows) (for German version of Windows);

within that folder click on the file named

"FluidEXL_Graphics_Eng.xla"

"FluidEXL_Graphics.xla"

(for English version of Windows) (for German version of Windows)

and then hit "OK."

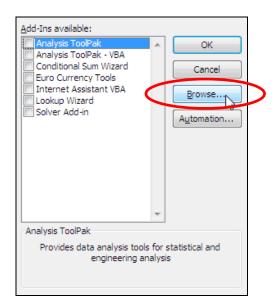


Figure 2.8: Dialog window "Add-Ins available"

Now, "FluidEXL Graphics Eng" will be shown in your list of Add-Ins.
 (If a check-mark is situated in the box next to the name "FluidEXL Graphics Eng," this Add-In will automatically be loaded whenever Excel[®] starts. This will continue to occur unless the check-mark is removed from the box by clicking on it.)

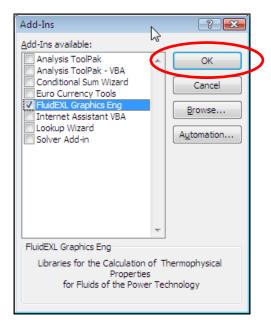


Figure 2.9: Dialog window "Add-Ins"

- In order to register the Add-In click the "OK" button in the "Add-Ins" window.

In order to use FluidEXL^{Graphics} in the following example, click on the menu item "Add-Ins" shown in Figure 2.10.

Figure 2.10: Menu item "Add-Ins"

In the upper menu region of Excel, the FluidEXL^{Graphics} menu bar will appear as marked with the red circle in the next figure.

Figure 2.11: FluidEXL Graphics menu bar

Installation of FluidEXL^{Graphics} in Excel[®] (versions 2007 and later) is now finished. FluidEXL^{Graphics} can be used analogous to the description for using with earlier Excel[®] versions.

Adding the LibIce Library (FluidEXL Graphics is already installed)

If FluidEXL^{Graphics} has already been installed in the June 2010 version, you only have to copy the following files

FluidEXL_Graphics_Eng.xla (for English version of Windows)
FluidEXL_Graphics.xla (for German version of Windows)
Liblce.dll

Libice.hlp

provided in the extracted folder

CD_FluidEXL_Graphics_LibIce_Eng (for English version of Windows)
CD_FluidEXL_Graphics_LibIce (for German version of Windows)

into the folder you have chosen for the installation of FluidEXLGraphics (the standard being

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL_Graphics (for German version of Windows)

using an appropriate program such as Explorer® or Norton Commander.

From within Excel you can now select the "LibIce" DLL library property functions for nitrogen via this menu bar (the example calculation can be found in section 2.5 on page 2/20).

2.3 The FluidEXL^{Graphics} Help System

As mentioned earlier, FluidEXL^{Graphics} also provides detailed online help functions. If you are running Windows Vista or Windows 7, please note the paragraph

"Using the FluidEXL Graphics Online-Help in Windows Vista or Windows 7."

For general information in Excel[®] click on "?" and then "Help" in the FluidEXL^{Graphics} menu bar. Information on individual property functions may be accessed via the following steps:

- Click "Calculate" in the FluidEXL Graphics menu bar.
- Click on the "ICE LibIce" library under "Or select a <u>category:</u>" in the "Insert Function" window which will appear.
- Click the "Help on this function" button in the lower left-hand edge of the "Insert Function" window.
- If the "Office Assistant" is active, first double-click "Help on this feature" and in the next menu click "Help on selected function".

If the LibIce.hlp function help cannot be found, confirm the question whether you want to look for it yourself with "Yes". Select the LibIce.hlp file in the installation folder of FluidEXL*Graphics* in the window which is opened, in the standard case

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL_Graphics (for German version of Windows)

and click "Yes" in order to complete the search.

Using the FluidEXL Graphics Online Help in Windows Vista or Windows 7

If you are running Windows Vista or Windows 7 on your computer, you might not be able to open Help files. To view these files you have to install the Microsoft[®] Windows Help program which is provided by Microsoft[®]. Please carry out the following steps in order to download and install the Windows Help program. Open Microsoft Internet Explorer[®] and go to the following address:

http://support.microsoft.com/kb/917607/

You will see the following web page:

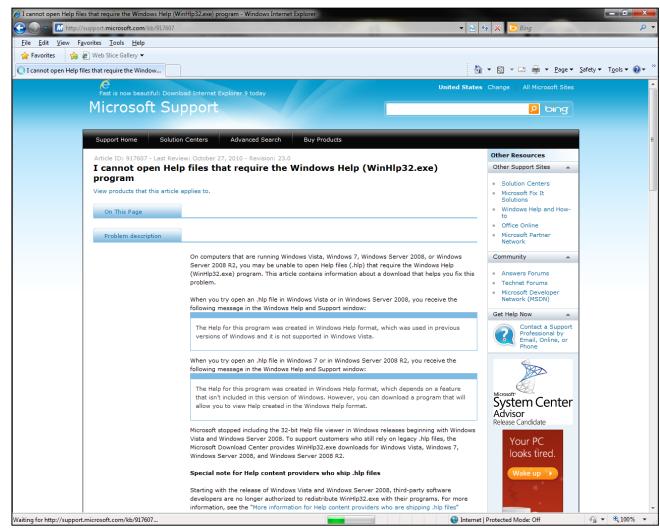


Figure 2.12: Microsoft® Support web page

Scroll down until you see the headline "Resolution." Here you can see the bold hint:

"Download the appropriate version of Windows Help program (WinHlp32.exe), depending on the operating system that you are using:"

The following description relates to Windows[®] 7. The procedure is analogous for Windows[®] Vista.

Click on the link "Windows Help program (WinHlp32.exe) for Windows 7" (see Figure 2.13).

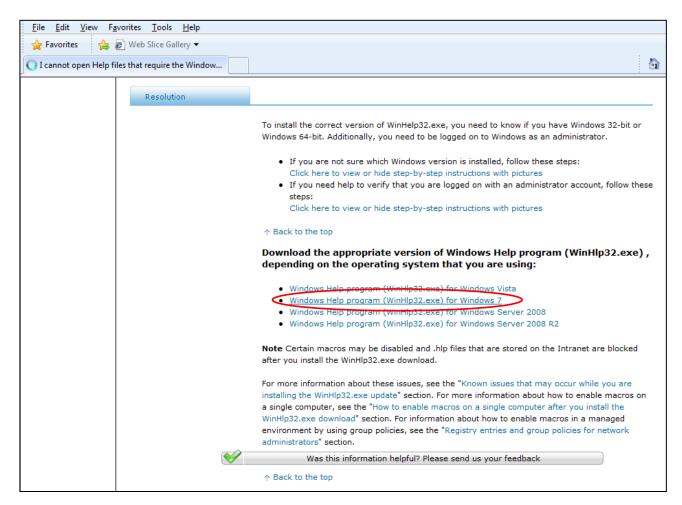


Figure 2.13: Selecting your Windows version

You will be forwarded to the Microsoft Download Center where you can download the Microsoft Windows Help program.

First, a validation of your Windows License is required.

To do this click on the "Continue" button (see Figure 2.14).

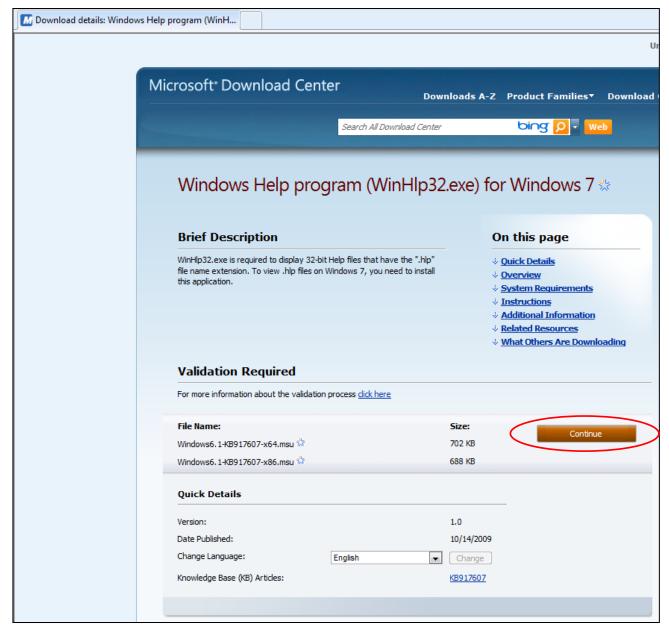


Figure 2.14: Microsoft® Download Center

You will be forwarded to a web page with instructions on how to install the Genuine Windows Validation Component.

At the top of your Windows Internet Explorer you will see a yellow information bar. Right-click this bar and select "Install ActiveX Control" in the context menu (see Figure 2.15).

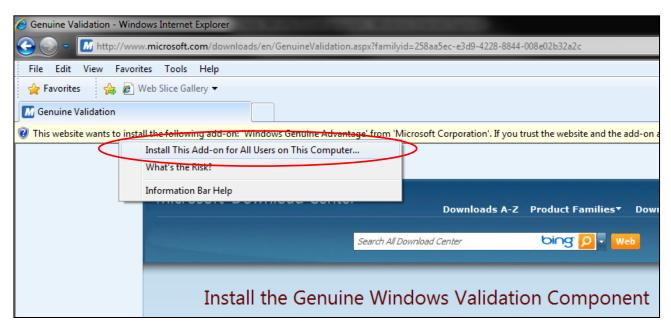


Figure 2.15: Installing the Genuine Windows Validation Component

A dialog window appears in which you will be asked if you want to install the software. Click the "Install" button to continue (see Figure 2.16).

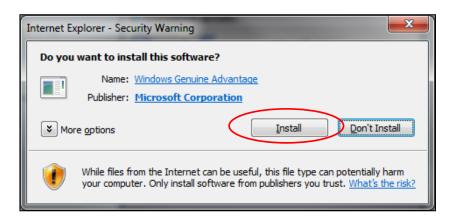


Figure 2.16: Internet Explorer – Security Warning

After the validation has been carried out you will be able to download the appropriate version of Windows Help program (see Figure 2.17).

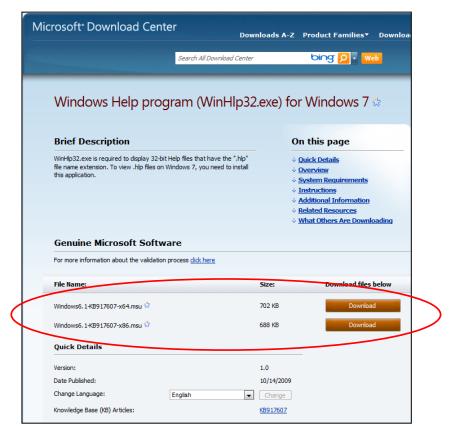


Figure 2.17: Downloading the Windows Help program

To download and install the correct file you need to know which Windows version (32-bit or 64-bit) you are running on your computer.

If you are running a 64-bit operating system, please download the file

Windows6.1-KB917607-x64.msu.

If you are running a 32-bit operating system, please download the file

Windows6.1-KB917607-x86.msu.

In order to run the installation of the Windows Help program double-click the file you have just downloaded on your computer:

Windows6.1-KB917607-x64.msu (for 64-bit operating system) Windows6.1-KB917607-x86.msu. (for 32-bit operating system).

Installation starts with a window searching for updates on your computer. After the program has finished searching you may see the following window.

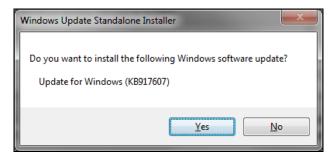


Figure 2.18: Windows Update Standalone Installer

In this case, the installation can be continued by clicking the "Yes" button.

(If you have already installed this update, you will see the message "Update for Windows (KB917607) is already installed on this computer.")

In the next window you have to accept the Microsoft license terms before installing the update by clicking on "I Accept" (see Figure 2.19)

Figure 2.19: Windows License Terms

Installation starts once you have clicked the "I Accept" button (see Figure 2.20).

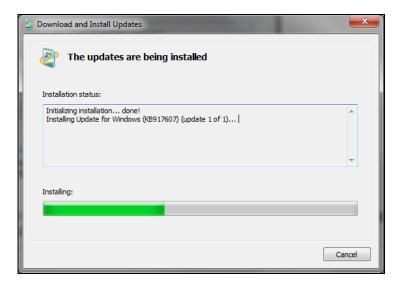


Figure 2.20: Installation process

After the Windows Help program has been installed, the notification "Installation complete" will appear. Confirm this by clicking the "Close" button.

The installation of the Windows Help program has been completed and you will now be able to open the Help files.

2.4 Licensing the Liblce Property Library

The licensing procedure has to be carried out when Excel[®] starts up and a FluidEXL^{Graphics} prompt message appears. In this case, you will see the "License Information" window (see figure below).

Figure 2.21: "License Information" window

Here you will have to type in the license key which you have obtained from the Zittau/Goerlitz University of Applied Sciences. You can find contact information on the "Content" page of this User's Guide or by clicking the yellow question mark in the "License Information" window. Then the following window will appear:

Figure 2.22: "Help" window

If you do not enter a valid license it is still possible to start Excel by clicking "Cancel" twice. In this case, the LibIce property library will display the result "–11111111" for every calculation. The "License Information" window will appear every time you start Excel unless you uninstall FluidEXL *Graphics* according to the description in section 2.6 of this user's guide. Should you not wish to license the LibIce property library, you have to delete the files

Liblce.dll Liblce.hlp

in the installation folder of FluidEXLGraphics (the standard being

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL_Graphics (for German version of Windows))

using an appropriate program such as Explorer® or Norton Commander.

2.5 Example: Calculation of h = f(p,t,x)

Now we will calculate, step by step, the specific enthalpy h as a function of the pressure p, the temperature t and the vapor fraction x using FluidEXL Graphics .

- Start Excel®
- Enter a value for p in bar in a cell
- \Rightarrow e. g.: Enter the value 10 into cell A2
- Enter a value for t in °C in a cell
 - ⇒ e. g.: Enter the value -50 into cell B2
- Enter a value for x in kg/kg in a cell.
 In this example we want to calculate the specific enthalpy in the single phase region, we therefore need to insert the value -1 for x.
 - ⇒ e. g.: Enter the value -1 into cell C2
- Click the cell in which the specific enthalpy *h* in kJ/kg is to be displayed.
 - \Rightarrow e.g.: Click the D2 cell.
- Click "Calculate" in the menu bar of FluidEXL^{Graphics}.
 Now the "Insert Function" window appears (see Figure 2.23).

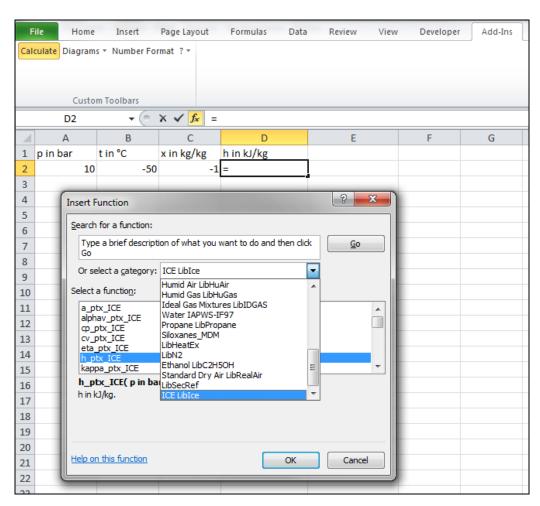


Figure 2.23: Choice of library and function name

- Search and click the "Ice LibIce" library under "Or select a category:" in the upper part of the window.
- Search and click the h_ptx_Ice function under "Select a function:" right below.
 Here it is possible to get more information on the range of validity, measuring units, error responses, etc. by clicking the "Help on this function" button.
- Click "OK".
 The window shown in Figure 2.24 will now appear.

Figure 2.24: Input menu for the function

- Situate the cursor next to "p in bar" and enter the value for p by clicking the cell with the value for p, by entering the name of the cell with the value for p, or by entering the value for p directly.
 - ⇒ e. g.: Type A2 into the window next to "p"
- Situate the cursor next to "T in °C" and enter the value for T by clicking the cell with the value for T, by entering the name of the cell with the value for T, or by entering the value for t directly.
 - ⇒ e. g.: Click on the cell B2
- Situate the cursor next to "x in kg/kg" and enter the value for x by clicking the cell with the value for x, by entering the name of the cell with the value for x, or by entering the value for x directly.
 - ⇒ e. g.: Type C2 into the window next to "x"

The window should now look like the following figure:

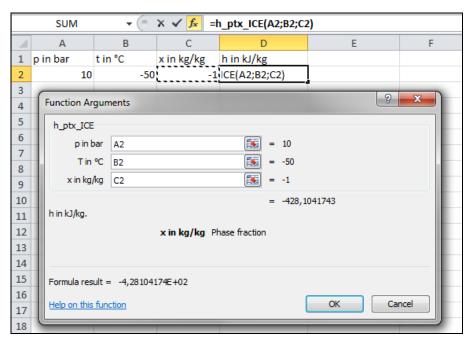


Figure 2.25: Input menu showing the result

- Click the "OK" button.
 The result for h in kJ/kg appears in the cell selected above.
 - \Rightarrow The result for h in our sample calculation here is: 428.1041743 kJ/kg.

The calculation of h = f(p,t,x) has been carried out. You can now arbitrarily change the values for p, t or x in the appropriate cells. This shows that the Excel[®] data flow and the DLL calculations are working together successfully.

Note:

If the calculation results in -1000, this indicates that the values entered are located outside the range of validity. More detailed information on each function and its range of validity is available in Chapter 3.

For further property functions calculable in FluidEXL^{Graphics}, see the function table in Chapter 1.

2.6 Removing FluidEXL Graphics

Should you wish to remove only the Liblce library, delete the files

Liblce.dll Liblce.hlp

in the directory selected for the installation of FluidEXL^{Graphics} (in the standard case C:\Programme\FluidEXL_Graphics

by using an appropriate program such as Explorer®, Windows, or Norton Commander.

Unregistering FluidEXL^{Graphics} as Add-In in Excel[®], versions 2003 or earlier

To remove FluidEXL Graphics completely, proceed as follows: First the registration of

FluidEXL_Graphics_Eng.xla (for English version of Windows)
FluidEXL_Graphics.xla (for German version of Windows)

has to be cancelled in Excel[®].

In order to do that, click "Tools" in the upper menu bar of Excel and here "Add-Ins...". Untick the box on the left-hand side of

"FluidEXL Graphics Eng" (for English version of Windows)
"FluidEXL Graphics" (for German version of Windows)

in the window that appears and click the "OK" button. The additional menu bar of FluidEXL*Graphics* disappears from the upper part of the Excel window. Afterwards, we recommend closing Excel.

If the FluidEXL^{Graphics} menu bar does not disappear, take the following steps: Click "View" in the upper menu bar of Excel, then "Toolbars" and then "Customize..." in the list box which appears.

"FluidEXL Graphics Eng" (for English version of Windows)
"FluidEXL Graphics" (for German version of Windows),

is situated at the bottom of the "Toolbars" entries, which must be selected by clicking on it. Delete the entry by clicking "Delete". You will be asked whether you really want to delete the toolbar – click "OK".

Within the next step delete the files

Liblce.dll, Liblce.hlp

in the directory selected for the installation of FluidEXL Graphics (in the standard case

C:\Program Files\FluidEXL_Graphics_Eng (for English version of Windows)
C:\Programme\FluidEXL_Graphics (for German version of Windows),

using an appropriate program such as Explorer® or Norton Commander.

In order to remove FluidEXL*Graphics* from Windows and the hard disk drive, click "Start" in the Windows task bar, select "Settings" and click "Control Panel". Now double-click on "Add or Remove Programs". In the list box of the "Add/Remove Programs" window that appears select

"FluidEXL Graphics Eng" (for English version of Windows)
"FluidEXL Graphics" (for German version of Windows)

by clicking on it and click the "Add/Remove..." button. In the following dialog box click "Automatic" and thereafter "Next >". Click "Finish" in the "Perform Uninstall" window. Answer the question whether all shared components shall be removed with "Yes to All". Finally, close the "Add/Remove Programs" and "Control Panel" windows.

Now FluidEXLGraphics has been removed.

Unregistering FluidEXL^{Graphics} as Add-In in Excel[®] 2007 (or later versions)

In order to unregister the FluidEXL*Graphics* Add-In in Excel[®] 2007 start Excel and carry out the following commands:

- Click the Windows Office[®] button in the upper left corner of Excel
- Click on the "Excel Options" button in the menu which appears

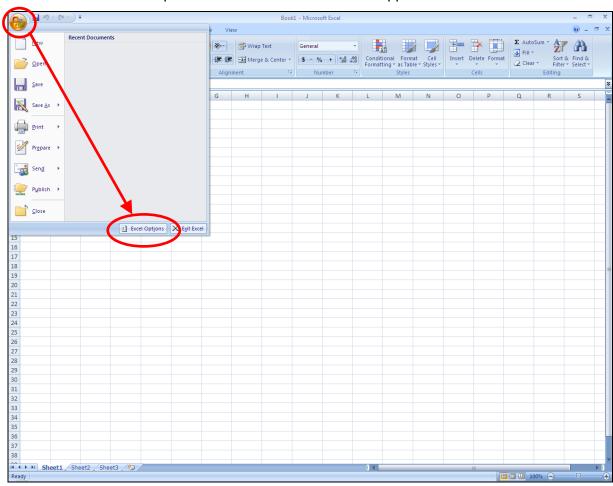


Figure 2.26: Unregistering FluidEXL^{Graphics} as Add-In in Excel[®] 2007

- Click on "Add-Ins" in the next menu

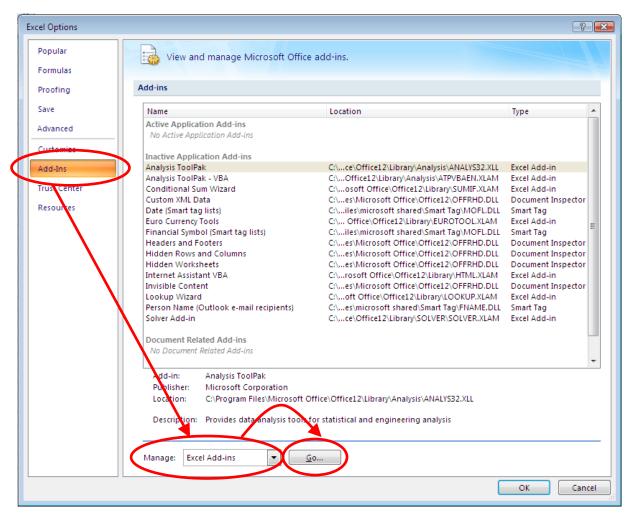


Figure 2.27: Dialog window "Add-Ins"

- If it is not shown in the list automatically, chose and click "Excel Add-ins" next to "Manage:" in the lower area of the menu
- Afterwards click the "Go..." button
- Remove the checkmark in front of

"FluidEXL Graphics Eng" (for English version of Windows)
"FluidEXL Graphics" (for German version of Windows)

in the window which now appears. Click the "OK" button to confirm your entry.

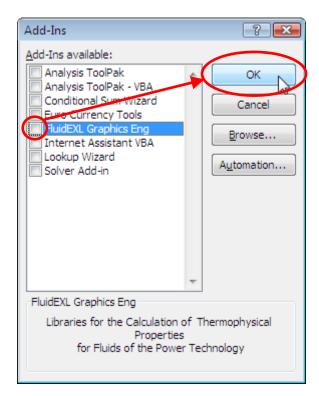


Figure 2.28: Dialog window "Add-Ins"

In order to remove FluidEXL^{Graphics} from Windows and the hard drive, click "Start" in the Windows task bar, select "Settings" and click "Control Panel."

Now, double click on "Add or Remove Programs."

In the list box of the "Add or Remove Programs" window that appears, select

"FluidEXL Graphics Eng" (for English version of Windows)

"FluidEXL Graphics" (for German version of Windows)

by clicking on it and then clicking the "Add/Remove..." button.

Click "Automatic" in the following dialog box and then the "Next >" button.

Click "Finish" in the "Perform Uninstall" window.

Answer the question of whether all shared components should be removed with "Yes to All." Finally, close the "Add or Remove Programs" and "Control Panel" windows.

Now FluidEXL*Graphics* has been completely removed from your computer.

3. Program Documentation

Thermal Diffusivity a = f(p,t,x)

Function Name: a_ptx_ICE

Subprogram with value of the function: **REAL*8 FUNCTION APTXICE(P,T,X)**

for call from Fortran REAL*8 P,T,X

Input Values

P - Pressure p in bar

T - Temperature T in °C

X - x in kg / kg (Phase fraction, see the following explanations)

Result

APTXICE or **a_ptx_ICE** – Thermal diffusivity
$$a = \frac{\lambda^* v}{c_p}$$
 in m²/s

Range of Validity (cp. *p,t*-diagram in chapter 1.2)

Temperature range: from T_{min} to T_{max} Pressure range: from p_{min} to p_{max}

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x = -1000 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. lg p-h diagram chapter 1.2):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region $x = \frac{m''}{(m' + m'')}$. Its unit is

(kg saturated steam)/(kg wet steam).

The calculation for x values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t and x are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from T_t to T_{max}

Pressure range from p_t to p_s (T_{max})

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region $x = 10 + \frac{m_{\text{liq}}}{\left(m_{\text{ice}} + m_{\text{liq}}\right)}$. Its unit

is (kg solidified liquid)/(kg melt), whereas melt is a mixture of melting ice and solidified liquid.

The calculation for *x* values between 10 and 11 is not possible.

If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000and the value for x (x = 10 or x = 11). If p and t and x are entered as given values, the program tests whether *p* and *t* fulfil the melting pressure curve.

Solidification curve: Temperature range from T_t to T_{mel} (p_{max})

Pressure range from p_t to p_{max}

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the gas fraction x in the sublimation region $x = 100 + \frac{m_{\rm gas}}{\left(m_{\rm ice} + m_{\rm gas}\right)}$. Its

unit is (kg desublimated gas)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating ice and desublimated gas.

The calculation for *x* values between 100 and 101 is not possible.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for x (x = 100 or x = 101). If p and t are entered as given values the program tests whether p and t fulfil the sublimation-pressure-curve.

Sublimation and

desublimation curve: Temperatur range from T_{min} to T_{t}

Pressure range from p_{min} to p_{t}

Results for wrong input values

Result **APTXICE = -1000** or **a_ptx_ICE = -1000** for input values:

Single phase region:

Solid, liquid, overheated steam (x = -1000):

- at $p < p_{\min}$ or $p > p_{\max}$
- at $T < T_{min}$ or $T > T_{max}$

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $T < T_t$ or $T > T_{max}$
- at t = -1000 and $p < p_t$ or $p > p_s(T_{max})$
- at $p < p_t$ or $p > p_s(T_{max})$
- at $T < T_t$ or $T > T_{max}$

Melting region ($10 \le x \le 11$):

- at 10 < x < 11, i.e. calculation in the melting region not possible!
- at p = -1000 and $T > T_t$ or $T < T_{mel}(p_{max})$
- at t = -1000 and $p < p_t$ or $p > p_{max}$
- at $p < p_t$ or $p > p_{max}$
- at $T > T_t$ or $T < T_{mel}(p_{max})$

Sublimation region (100 $\leq x \leq$ 101):

- at 100 < x < 101, i.e. calculation in the sublimation region not possible!
- at p = -1000 and $T < T_{min}$ or $T > T_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{\min}$ or $p > p_{t}$
- at $T < T_{min}$ or $T > T_{t}$

Isobaric cubic expansion coefficient $\alpha_v = f(p,t,x)$

Function Name: alphav_ptx_ICE

Subprogram with value of the function: REAL*8 FUNCTION ALPHAVPTXICE (P,T,X)

for call from Fortran REAL*8 P,T,X

Input Values

P - Pressure p in bar

T - Temperature T in °C

X - x in kg / kg (Phase fraction, see the following explanations)

Result

ALPHAVPTXICE or **alphav_ptx_ICE** – Isobaric cubic expansion coefficient α_v in 1/K

Range of Validity (cp. p,t-diagram in chapter 1.2)

Temperature range: from T_{min} to T_{max} Pressure range: from p_{min} to p_{max}

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x = -1000 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p-h$ diagram chapter 1.2):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region $x = \frac{m''}{(m' + m'')}$. Its unit is

(kg saturated steam)/(kg wet steam).

The calculation for *x* values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from T_t to T_{max}

Pressure range from p_t to p_s (T_{max})

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region $x = 10 + \frac{m_{\text{liq}}}{\left(m_{\text{ice}} + m_{\text{liq}}\right)}$. Its unit

is (kg solidified liquid)/(kg melt), whereas melt is a mixture of melting ice and solidified liquid. The calculation for *x* values between 10 and 11 is not possible.

If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for x (x = 10 or x = 11). If p and t are entered as given values, the program tests whether p and t fulfil the melting pressure curve.

Melting and

Solidification curve: Temperature range from T_t to T_{mel} (p_{max})

Pressure range from p_t to p_{max}

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the gas fraction x in the sublimation region $x = 100 + \frac{m_{\rm gas}}{\left(m_{\rm ice} + m_{\rm gas}\right)}$. Its

unit is (kg desublimated gas)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating ice and desublimated gas.

The calculation for x values between 100 and 101 is not possible.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values the program tests whether p and p

Sublimation and

desublimation curve: Temperatur range from T_{min} to T_{t}

Pressure range from p_{min} to p_{t}

Results for wrong input values

Result ALPHAVPTXICE = -1000 or alphav_ptx_ICE = -1000 for input values:

Single phase region:

Solid, liquid, overheated steam (x = -1000):

- at $p < p_{\min}$ or $p > p_{\max}$
- at $T < T_{min}$ or $T > T_{max}$

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $T < T_t$ or $T > T_{max}$
- at t = -1000 and $p < p_t$ or $p > p_s(T_{max})$
- at $p < p_t$ or $p > p_s(T_{max})$
- at $T < T_t$ or $T > T_{max}$

Melting region ($10 \le x \le 11$):

- at 10 < x < 11, i.e. calculation in the melting region not possible!
- at p = -1000 and $T > T_t$ or $T < T_{mel}(p_{max})$
- at t = -1000 and $p < p_t$ or $p > p_{max}$
- at $p < p_t$ or $p > p_{max}$
- at $T > T_t$ or $T < T_{mel}(p_{max})$

Sublimation region (100 $\leq x \leq$ 101):

- at 100 < x < 101, i.e. calculation in the sublimation region not possible!
- at p = -1000 and $T < T_{min}$ or $T > T_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_{t}$
- at $T < T_{min}$ or $T > T_{t}$

Specific Isobaric Heat Capacity $c_p = f(p,t,x)$

Function Name: cp_ptx_ICE

Subprogram with value of the function: REAL*8 FUNCTION CPPTXICE(P,T,X)

for call from Fortran REAL*8 P,T,X

Input Values

P – Pressure *p* in bar

T – Temperature T in °C

X - x in kg / kg (Phase fraction, see the following explanations)

Result

CPPTXICE or **cp ptx ICE** - specific isobaric heat capacity c_0 in kJ/(kg K)

Range of Validity (cp. p,t-diagram in chapter 1.2)

Temperature range: from T_{min} to T_{max} Pressure range: from p_{\min} to p_{\max}

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x = -1000 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. lg p-h diagram chapter 1.2):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region $x = \frac{m''}{(m' + m'')}$. Its unit is

(kg saturated steam)/(kg wet steam).

The calculation for x values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam If p and t and x are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from T_t to T_{max}

Pressure range from p_t to p_s (T_{max})

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region $x = 10 + \frac{m_{\text{liq}}}{\left(m_{\text{ice}} + m_{\text{liq}}\right)}$. Its unit

is (kg solidified liquid)/(kg melt), whereas melt is a mixture of melting ice and solidified liquid

The calculation for *x* values between 10 and 11 is not possible.

If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for x (x = 10 or x = 11). If p and t and x are entered as given values, the program tests whether *p* and *t* fulfil the melting pressure curve.

Melting and

Temperature range from T_t to T_{mel} (p_{max}) Solidification curve:

Pressure range from p_t to p_{max}

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the gas fraction x in the sublimation region $x = 100 + \frac{m_{\rm gas}}{\left(m_{\rm ice} + m_{\rm gas}\right)}$. Its

unit is (kg desublimated gas)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating ice and desublimated gas.

The calculation for x values between 100 and 101 is not possible.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values the program tests whether p and p

Sublimation and

desublimation curve: Temperatur range from T_{min} to T_{t}

Pressure range from p_{min} to p_{t}

Results for wrong input values

Result CPPTXICE = -1000 or cp_ptx_ICE = -1000 for input values:

Single phase region:

Solid, liquid, overheated steam (x = -1000):

- at
$$p < p_{min}$$
 or $p > p_{max}$

- at
$$T < T_{min}$$
 or $T > T_{max}$

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $T < T_t$ or $T > T_{max}$
- at t = -1000 and $p < p_t$ or $p > p_s(T_{max})$
- at $p < p_t$ or $p > p_s(T_{max})$
- at $T < T_t$ or $T > T_{max}$

Melting region ($10 \le x \le 11$):

- at 10 < x < 11, i.e. calculation in the melting region not possible!
- at p = -1000 and $T > T_t$ or $T < T_{mel}(p_{max})$
- at t = -1000 and $p < p_t$ or $p > p_{max}$
- at $p < p_t$ or $p > p_{max}$
- at $T > T_t$ or $T < T_{mel}(p_{max})$

Sublimation region (100 $\leq x \leq$ 101):

- at 100 < x < 101, i.e. calculation in the sublimation region not possible!
- at p = -1000 and $T < T_{min}$ or $T > T_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_{t}$
- at $T < T_{min}$ or $T > T_{t}$

Specific Isochoric Heat Capacity $c_v = f(p,t,x)$

Function Name: cv ptx ICE

Subprogram with value of the function: REAL*8 FUNCTION CVPTXICE(P,T,X)

for call from Fortran REAL*8 P,T,X

Input Values

P – Pressure *p* in bar

T – Temperature T in °C

X - x in kg / kg (Phase fraction, see the following explanations)

Result

CVPTXICE or **cv ptx ICE** - specific isochoric heat capacity c_v in kJ/(kg K)

Range of Validity (cp. p,t-diagram in chapter 1.2)

Temperature range: from T_{min} to T_{max} Pressure range: from p_{min} to p_{max}

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x = -1000 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. lg p-h diagram chapter 1.2):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region $x = \frac{m''}{(m' + m'')}$. Its unit is

(kg saturated steam)/(kg wet steam).

The calculation for x values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam If p and t and x are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from T_t to T_{max}

Pressure range from p_t to p_s (T_{max})

Melting Region $(10 \le x \le 11)$: 2.

The phase fraction x equates to the liquid fraction x in the melting region $x = 10 + \frac{m_{\text{liq}}}{\left(m_{\text{ice}} + m_{\text{liq}}\right)}$. Its unit

is (kg solidified liquid)/(kg melt), whereas melt is a mixture of melting ice and solidified liquid

The calculation for *x* values between 10 and 11 is not possible.

If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for x (x = 10 or x = 11). If p and t and x are entered as given values, the program tests whether *p* and *t* fulfil the melting pressure curve.

Melting and

Temperature range from T_t to T_{mel} (p_{max}) Solidification curve:

Pressure range from p_t to p_{max}

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the gas fraction x in the sublimation region $x = 100 + \frac{m_{\rm gas}}{\left(m_{\rm ice} + m_{\rm gas}\right)}$. Its

unit is (kg desublimated gas)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating ice and desublimated gas.

The calculation for x values between 100 and 101 is not possible.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values the program tests whether p and p

Sublimation and

desublimation curve: Temperatur range from T_{min} to T_{t}

Pressure range from p_{min} to p_{t}

Results for wrong input values

Result CVPTXICE = -1000 or cv_ptx_ICE = -1000 for input values:

Single phase region:

Solid, liquid, overheated steam (x = -1000):

- at
$$p < p_{\min}$$
 or $p > p_{\max}$

- at
$$T < T_{min}$$
 or $T > T_{max}$

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $T < T_t$ or $T > T_{max}$
- at t = -1000 and $p < p_t$ or $p > p_s(T_{max})$
- at $p < p_t$ or $p > p_s(T_{max})$
- at $T < T_t$ or $T > T_{max}$

Melting region ($10 \le x \le 11$):

- at 10 < x < 11, i.e. calculation in the melting region not possible!
- at p = -1000 and $T > T_t$ or $T < T_{mel}(p_{max})$
- at t = -1000 and $p < p_t$ or $p > p_{max}$
- at $p < p_t$ or $p > p_{max}$
- at $T > T_t$ or $T < T_{mel}(p_{max})$

Sublimation region (100 $\leq x \leq$ 101):

- at 100 < x < 101, i.e. calculation in the sublimation region not possible!
- at p = -1000 and $T < T_{min}$ or $T > T_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_{t}$
- at $T < T_{min}$ or $T > T_{t}$

Dynamic Viscosity $\eta = f(p,t,x)$

Function Name: eta_ptx_ICE

Subprogram with value of the function: **REAL*8 FUNCTION ETAPTXICE(P,T,X)**

for call from Fortran REAL*8 P,T,X

Input Values

P – Pressure *p* in bar

T - Temperature T in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

ETAPTXICE or **eta_ptx_ICE** – dynamic viscosity η in Pa s

Range of Validity (cp. p,t-diagram in chapter 1.2)

Temperature range: from T_{min} to T_{max} Pressure range: from p_{min} to p_{max}

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (liquid or superheated steam), x = -1000 must be entered as a pro-forma value. This function can only by used for liquid and steam region.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 1.2):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region $x = \frac{m''}{(m' + m'')}$. Its unit is

(kg saturated steam)/(kg wet steam).

The calculation for *x* values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from T_t to T_{max}

Pressure range from p_t to $p_s(T_{max})$

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region $x = 10 + \frac{m_{\text{liq}}}{\left(m_{\text{ice}} + m_{\text{liq}}\right)}$. Its unit

is (kg solidified liquid)/(kg melt), whereas melt is a mixture of melting ice and solidified liquid.

The calculation for x values unequal to 11 is not possible .

For solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a solidifying liquid it it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for x (x = 11). If p and t are entered as given values, the program tests whether p and t fulfil the melting pressure curve.

Solidification curve: Temperature range from T_t to T_{mel} (p_{max})

Pressure range from p_t to p_{max}

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the gas fraction x in the sublimation region $x = 100 + \frac{m_{\rm gas}}{\left(m_{\rm ice} + m_{\rm gas}\right)}$. Its

unit is (kg desublimated gas)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating ice and desublimated gas.

The calculation for x values unequal to 101 is not possible.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for x (x = 101). If p and t and x are entered as given values the program tests whether p and t fulfil the sublimation-pressure-curve.

Desublimation curve: Temperatur range from T_{min} to T_{t}

Pressure range from p_{min} to p_{t}

Results for wrong input values

Result **ETAPTXICE = -1000** or **eta_ptx_ICE = -1000** for input values:

Single phase region:

Solid, liquid, overheated steam (x = -1000):

- at $p < p_{min}$ or $p > p_{max}$
- at $T < T_{min}$ or $T > T_{max}$

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $T < T_t$ or $T > T_{max}$
- at t = -1000 and $p < p_t$ or $p > p_s(T_{max})$
- at $p < p_t$ or $p > p_s(T_{max})$
- at $T < T_t$ or $T > T_{max}$

Melting region ($10 \le x \le 11$):

- at x < 11, i.e. calculation in the melting region not possible!
- at p = -1000 and $T > T_t$ or $T < T_{mel}(p_{max})$
- at t = -1000 and $p < p_t$ or $p > p_{max}$
- at $p < p_t$ or $p > p_{max}$
- at $T > T_t$ or $T < T_{mel}(p_{max})$

Sublimation region ($100 \le x \le 101$):

- at x < 101, i.e. calculation in the sublimation region not possible!
- at p = -1000 and $T < T_{min}$ or $T > T_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_{t}$
- at $T < T_{min}$ or $T > T_{t}$

Specific Enthalpy h = f(p,t,x)

Function Name: h_ptx_ICE

Subprogram with value of the function: **REAL*8 FUNCTION HPTXICE(P,T,X)**

for call from Fortran REAL*8 P,T,X

Input Values

 \mathbf{P} – Pressure p in bar

T - Temperature T in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

HPTXICE or **h_ptx_ICE** - specific enthalpy *h* in kJ/kg

Range of Validity (cp. *p,t*-diagram in chapter 1.2)

Temperature range: from T_{min} to T_{max} Pressure range: from p_{min} to p_{max}

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x= -1000 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 1.2):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region $x = \frac{m''}{(m' + m'')}$. Its unit is

(kg saturated steam)/(kg wet steam).

If the state point to be calculated is located in the wet steam region, a value between 0 and 1 must be entered for x. If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from T_t to T_{max}

Pressure range from p_t to $p_s(T_{max})$

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region $x = 10 + \frac{m_{\text{liq}}}{\left(m_{\text{ice}} + m_{\text{liq}}\right)}$. Its unit

is (kg solidified liquid)/(kg melt), whereas melt is a mixture of melting ice and solidified liquid. If the state point to be calculated is located in the melting region, a value between 10 and 11 must be entered for x. If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values, the program tests whether p and p and

Solidification curve: Temperature range from T_t to T_{mel} (p_{max})

Pressure range from p_t to p_{max}

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the gas fraction x in the sublimation region $x = 100 + \frac{m_{\rm gas}}{\left(m_{\rm ice} + m_{\rm gas}\right)}$. Its

unit is (kg desublimated gas)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating ice and desublimated gas. If the state point to be calculated is located in the melting region, a value between 100 and 101 must be entered for x.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for t (t = 100 or t = 101). If t and t are entered as given values the program tests whether t and t fulfil the sublimation-pressure-curve.

Melting and

Solidification curve: Temperatur range from T_{min} to T_{t}

Pressure range from p_{min} to p_t

Results for wrong input values

Result **HPTXICE = -1000** or **h_ptx_ICE = -1000** for input values:

Single phase region:

Solid, liquid, overheated steam (x = -1000):

- at $p < p_{min}$ or $p > p_{max}$
- at $T < T_{min}$ or $T > T_{max}$

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at p = -1000 and $T < T_t$ or $T > T_{max}$
- at t = -1000 and $p < p_t$ or $p > p_s(T_{max})$
- at $p < p_t$ or $p > p_s(T_{max})$
- at $T < T_t$ or $T > T_{max}$

Melting region ($10 \le x \le 11$):

- at p = -1000 and $T > T_t$ or $T < T_{mel}(p_{max})$
- at t = -1000 and $p < p_t$ or $p > p_{max}$
- at $p < p_t$ or $p > p_{max}$
- at $T > T_t$ or $T < T_{mel}(p_{max})$

Sublimation region (100 $\leq x \leq$ 101):

- at p = -1000 and $T < T_{min}$ or $T > T_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{\min}$ or $p > p_{t}$
- at $T < T_{min}$ or $T > T_{t}$

Isentropic Exponent K = f(p,t,x)

Function Name: kappa_ptx_ICE

Subprogram with value of the function: REAL*8 FUNCTION KAPPAPTXICE (P,T,X)

for call from Fortran REAL*8 P,T,X

Input Values

P - Pressure p in bar

T - Temperature T in °C

X - x in kg / kg (Phase fraction, see the following explanations)

Result

KAPPAPTXICE or **kappa_ptx_ICE** – Isentropic exponent
$$\kappa = \frac{w^2}{\rho^* v}$$

Range of Validity (cp. p,t-diagram in chapter 1.2)

Temperature range: from T_{min} to T_{max} Pressure range: from p_{min} to p_{max}

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x = -1000 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p-h$ diagram chapter 1.2):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region $x = \frac{m''}{(m' + m'')}$. Its unit is

(kg saturated steam)/(kg wet steam).

The calculation for x values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from T_t to T_{max} Pressure range from p_t to p_s (T_{max})

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region $x = 10 + \frac{m_{\text{liq}}}{\left(m_{\text{ice}} + m_{\text{liq}}\right)}$. Its unit

is (kg solidified liquid)/(kg melt), whereas melt is a mixture of melting ice and solidified liquid. The calculation for x values between 10 and 11 is not possible.

If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for x (x = 10 or x = 11). If p and t are entered as given values, the program tests whether p and t fulfil the melting pressure curve.

Solidification curve: Temperature range from T_t to T_{mel} (p_{max})

Pressure range from p_t to p_{max}

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the gas fraction x in the sublimation region $x = 100 + \frac{m_{\rm gas}}{\left(m_{\rm ice} + m_{\rm gas}\right)}$. Its

unit is (kg desublimated gas)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating ice and desublimated gas.

The calculation for *x* values between 100 and 101 is not possible.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for x (x = 100 or x = 101). If p and t are entered as given values the program tests whether p and t fulfil the sublimation-pressure-curve.

Sublimation and

desublimation curve: Temperatur range from T_{min} to T_{t}

Pressure range from p_{min} to p_{t}

Results for wrong input values

Result KAPPAPTXICE = -1000 or kappa_ptx_ICE = -1000 for input values:

Single phase region:

Solid, liquid, overheated steam (x = -1000):

- at $p < p_{\min}$ or $p > p_{\max}$
- at $T < T_{min}$ or $T > T_{max}$

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $T < T_t$ or $T > T_{max}$
- at t = -1000 and $p < p_t$ or $p > p_s(T_{max})$
- at $p < p_t$ or $p > p_s(T_{max})$
- at $T < T_t$ or $T > T_{max}$

Melting region ($10 \le x \le 11$):

- at 10 < x < 11, i.e. calculation in the melting region not possible!
- at p = -1000 and $T > T_t$ or $T < T_{mel}(p_{max})$
- at t = -1000 and $p < p_t$ or $p > p_{max}$
- at $p < p_t$ or $p > p_{max}$
- at $T > T_t$ or $T < T_{mel}(p_{max})$

Sublimation region (100 $\leq x \leq$ 101):

- at 100 < x < 101, i.e. calculation in the sublimation region not possible!
- at p = -1000 and $T < T_{min}$ or $T > T_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{\min}$ or $p > p_{t}$
- at $T < T_{min}$ or $T > T_{t}$

Isothermal compressibility $K_t = f(p,t,x)$

Function Name: kappaT_ptx_ICE

Subprogram with value of the function: REAL*8 FUNCTION KAPPATPTXICE (P,T,X)

for call from Fortran REAL*8 P,T,X

Input Values

P - Pressure p in bar

T - Temperature T in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

KAPPATPTXICE or **kappaT_ptx_ICE** – Isothermal compressibility κ_T in 1/kPa

Range of Validity (cp. p,t-diagram in chapter 1.2)

Temperature range: from T_{min} to T_{max} Pressure range: from p_{min} to p_{max}

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x = -1000 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p-h$ diagram chapter 1.2):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region $x = \frac{m''}{(m' + m'')}$. Its unit is

(kg saturated steam)/(kg wet steam).

The calculation for *x* values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t and x are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from T_t to T_{max}

Pressure range from p_t to p_s (T_{max})

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region $x = 10 + \frac{m_{\text{liq}}}{\left(m_{\text{ice}} + m_{\text{liq}}\right)}$. Its unit

is (kg solidified liquid)/(kg melt), whereas melt is a mixture of melting ice and solidified liquid. The calculation for *x* values between 10 and 11 is not possible.

If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for x (x = 10 or x = 11). If p and t are entered as given values, the program tests whether p and t fulfil the melting pressure curve.

Melting and

Solidification curve: Temperature range from T_t to T_{mel} (p_{max})

Pressure range from p_t to p_{max}

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the gas fraction x in the sublimation region $x = 100 + \frac{m_{\rm gas}}{\left(m_{\rm ice} + m_{\rm gas}\right)}$. Its

unit is (kg desublimated gas)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating ice and desublimated gas.

The calculation for x values between 100 and 101 is not possible.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values the program tests whether p and p

Sublimation and

desublimation curve: Temperatur range from T_{min} to T_{t}

Pressure range from p_{min} to p_t

Results for wrong input values

Result **KAPPATPTXICE = -1000** or **kappaT_ptx_ICE = -1000** for input values:

Single phase region:

Solid, liquid, overheated steam (x = -1000):

- at $p < p_{\min}$ or $p > p_{\max}$
- at $T < T_{min}$ or $T > T_{max}$

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $T < T_t$ or $T > T_{max}$
- at t = -1000 and $p < p_t$ or $p > p_s(T_{max})$
- at $p < p_t$ or $p > p_s(T_{max})$
- at $T < T_t$ or $T > T_{max}$

Melting region ($10 \le x \le 11$):

- at 10 < x < 11, i.e. calculation in the melting region not possible!
- at p = -1000 and $T > T_t$ or $T < T_{mel}(p_{max})$
- at t = -1000 and $p < p_t$ or $p > p_{max}$
- at $p < p_t$ or $p > p_{max}$
- at $T > T_t$ or $T < T_{mel}(p_{max})$

Sublimation region (100 $\leq x \leq$ 101):

- at 100 < x < 101, i.e. calculation in the sublimation region not possible!
- at p = -1000 and $T < T_{min}$ or $T > T_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_{t}$
- at $T < T_{min}$ or $T > T_{t}$

Thermal Conductivity $\lambda = f(p,t,x)$

Function Name: lambda_ptx_ICE

Subprogram with value of the function: REAL*8 FUNCTION LAMBDAPTXICE (P,T,X)

for call from Fortran REAL*8 P,T,X

Input Values

 \mathbf{P} – Pressure p in bar

T – Temperature *T* in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

LAMBDAPTXICE or **lambda_ptx_ICE** – Thermal conductivity λ in W/(m K)

Range of Validity (cp. *p*,*t*-diagram in chapter 1.2)

Temperature range: from T_{min} to T_{max} Pressure range: from p_{min} to p_{max}

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x = -1000 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p-h$ diagram chapter 1.2):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region $x = \frac{m''}{(m' + m'')}$. Its unit is

(kg saturated steam)/(kg wet steam).

The calculation for x values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t and x are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from T_t to T_{max}

Pressure range from p_t to p_s (T_{max})

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region $x = 10 + \frac{m_{\text{liq}}}{\left(m_{\text{ice}} + m_{\text{liq}}\right)}$. Its unit

is (kg solidified liquid)/(kg melt), whereas melt is a mixture of melting ice and solidified liquid. The calculation for *x* values between 10 and 11 is not possible.

If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values, the program tests whether p and p and

Solidification curve: Temperature range from T_t to T_{mel} (p_{max})

Pressure range from p_t to p_{max}

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the gas fraction x in the sublimation region $x = 100 + \frac{m_{\rm gas}}{\left(m_{\rm ice} + m_{\rm gas}\right)}$. Its

unit is (kg desublimated gas)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating ice and desublimated gas.

The calculation for *x* values between 100 and 101 is not possible.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for x (x = 100 or x = 101). If p and t are entered as given values the program tests whether p and t fulfil the sublimation-pressure-curve.

Sublimation and

desublimation curve: Temperatur range from T_{min} to T_{t}

Pressure range from p_{min} to p_{t}

Results for wrong input values

Result LAMBDAPTXICE = -1000 or lambda_ptx_ICE = -1000 for input values:

Single phase region:

Solid, liquid, overheated steam (x = -1000):

- at $p < p_{\min}$ or $p > p_{\max}$
- at $T < T_{min}$ or $T > T_{max}$

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $T < T_t$ or $T > T_{max}$
- at t = -1000 and $p < p_t$ or $p > p_s(T_{max})$
- at $p < p_t$ or $p > p_s(T_{max})$
- at $T < T_t$ or $T > T_{max}$

Melting region ($10 \le x \le 11$):

- at 10 < x < 11, i.e. calculation in the melting region not possible!
- at p = -1000 and $T > T_t$ or $T < T_{mel}(p_{max})$
- at t = -1000 and $p < p_t$ or $p > p_{max}$
- at $p < p_t$ or $p > p_{max}$
- at $T > T_t$ or $T < T_{mel}(p_{max})$

Sublimation region ($100 \le x \le 101$):

- at 100 < x < 101, i.e. calculation in the sublimation region not possible!
- at p = -1000 and $T < T_{min}$ or $T > T_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{\min}$ or $p > p_{t}$
- at $T < T_{min}$ or $T > T_{t}$

Melting Pressure $p_{mel} = f(t)$

Function Name: pmel_t_08_ICE

Subprogram with value of the function: REAL*8 FUNCTION PMEL_T_08_ICE (T)

for call from Fortran REAL*8 T

Input Values

T - Temperature T in °C

Result

PMEL_T_08_ICE or **pmel_t_08_ICE** – Melting pressure p_{mel} in bar

Range of Validity (cp. *p,t*-diagram in chapter 1.2)

Temperature range from T_t to $T_{mel}(p_{max})$

Results for wrong input values

Result PMEL_T_08_ICE = -1000 or pmel_t_08_ICE = -1000 for input values:

- at T > T_t or $T < T_{mel}(p_{max})$

References: [8]

Vapor Pressure $p_s = f(t)$

Function Name: ps_t_97_ICE

Subprogram with value of the function: REAL*8 FUNCTION PS_T_97_ICE (T)

for call from Fortran REAL*8 T

Input Values

T - Temperature T in °C

Result

PS_T_97_ICE or **ps_t_97_ICE** – vapor pressure p_s in bar

Range of Validity (cp. p,t-diagram in chapter 1.2)

Temperature range: from T_t to T_c

Results for wrong input values

Result $PS_T_97_ICE = -1000$ or $ps_t_97_ICE = -1000$ for input values:

- at $T < T_t \text{ or } T > T_c$

References: [1], [2]

Sublimation Pressure $p_{sub} = f(t)$

Function Name: psub_t_08_ICE

Subprogram with value of the function: REAL*8 FUNCTION PSUB_T_08_ICE (T)

for call from Fortran REAL*8 T

Input Values

T - Temperature T in °C

Result

PSUB_T_08_ICE or **psub_t_08_ICE** – Sublimation pressure p_{sub} in bar

Range of Validity (cp. p,t-diagram in chapter 1.2)

Temperature range: from T_{min} to T_{t}

Results for wrong input values

Result $PSUB_T_08_ICE = -1000$ or $psub_t_08_ICE = -1000$ for input values:

- at $T < T_{min} \text{ or } T > T_{t}$

References: [8]

Density $\rho = f(p,t,x)$

Function Name: rho_ptx_ICE

Subprogram with value of the function: REAL*8 FUNCTION RHOPTXICE (P,T,X)

for call from Fortran REAL*8 P,T,X

Input Values

 \mathbf{P} – Pressure p in bar

T - Temperature T in °C

X - x in kg / kg (Phase fraction, see the following explanations)

Result

RHOPTXICE or **rho_ptx_ICE** - Density ρ in kg/m³

Range of Validity (cp. p,t-diagram in chapter 1.2)

Temperature range: from T_{min} to T_{max} Pressure range: from p_{min} to p_{max}

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x= -1000 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 1.2):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region $x = \frac{m''}{(m' + m'')}$. Its unit is

(kg saturated steam)/(kg wet steam).

If the state point to be calculated is located in the wet steam region, a value between 0 and 1 must be entered for x. If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from T_t to T_{max} Pressure range from p_t to p_s (T_{max})

The source range from p_t to p_s (r_m

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region $x = 10 + \frac{m_{\text{liq}}}{\left(m_{\text{ice}} + m_{\text{liq}}\right)}$. Its unit

is (kg solidified liquid)/(kg melt), whereas melt is a mixture of melting ice and solidified liquid. If the state point to be calculated is located in the melting region, a value between 10 and 11 must be entered for x. If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values, the program tests whether p and p and

Solidification curve: Temperature range from T_t to T_{mel} (p_{max})

Pressure range from p_t to p_{max}

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the gas fraction x in the sublimation region $x = 100 + \frac{m_{\rm gas}}{\left(m_{\rm ice} + m_{\rm gas}\right)}$. Its

unit is (kg desublimated gas)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating ice and desublimated gas. If the state point to be calculated is located in the melting region, a value between 100 and 101 must be entered for x.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for t (t = 100 or t = 101). If t and t are entered as given values the program tests whether t and t fulfil the sublimation-pressure-curve.

Melting and

Solidification curve: Temperatur range from T_{min} to T_{t}

Pressure range from p_{min} to p_t

Results for wrong input values

Result RHOPTXICE = -1000 or rho_ptx_ICE = -1000 for input values:

Single phase region:

Solid, liquid, overheated steam (x = -1000):

- at $p < p_{\min}$ or $p > p_{\max}$
- at $T < T_{min}$ or $T > T_{max}$

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at p = -1000 and $T < T_t$ or $T > T_{max}$
- at t = -1000 and $p < p_t$ or $p > p_s(T_{max})$
- at $p < p_t$ or $p > p_s(T_{max})$
- at $T < T_t$ or $T > T_{max}$

Melting region ($10 \le x \le 11$):

- at p = -1000 and $T > T_t$ or $T < T_{mel}(p_{max})$
- at t = -1000 and $p < p_t$ or $p > p_{max}$
- at $p < p_t$ or $p > p_{max}$
- at $T > T_t$ or $T < T_{mel}(p_{max})$

Sublimation region (100 $\leq x \leq$ 101):

- at p = -1000 and $T < T_{min}$ or $T > T_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{\min}$ or $p > p_{t}$
- at $T < T_{min}$ or $T > T_{t}$

Specific Entropy s = f(p, t, x)

Function Name: s_ptx_ICE

Subprogram with value of the function: REAL*8 FUNCTION SPTXICE (P,T,X)

for call from Fortran REAL*8 P,T,X

Input Values

P – Pressure *p* in bar

T – Temperature *T* in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

SPTXICE or s_ptx_ICE - Specific entropy s in kJ/(kg K)

Range of Validity (cp. p,t-diagram in chapter 1.2)

Temperature range: from T_{min} to T_{max} Pressure range: from p_{min} to p_{max}

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x= -1000 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 1.2):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region $x = \frac{m''}{(m' + m'')}$. Its unit is

(kg saturated steam)/(kg wet steam).

If the state point to be calculated is located in the wet steam region, a value between 0 and 1 must be entered for x. If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from T_t to T_{max}

Pressure range from p_t to p_s (T_{max})

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region $x = 10 + \frac{m_{\text{liq}}}{\left(m_{\text{ice}} + m_{\text{liq}}\right)}$. Its unit

is (kg solidified liquid)/(kg melt), whereas melt is a mixture of melting ice and solidified liquid. If the state point to be calculated is located in the melting region, a value between 10 and 11 must be entered for x. If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, Concerning pressure and temperature, to put in either the value given for t and t = -1000 or the value given for t and t = -1000 and the value for t (t = 10 or t = 11). If t and t are entered as given values, the program tests whether t and t fulfil the melting pressure curve.

Solidification curve: Temperature range from T_t to T_{mel} (p_{max})

Pressure range from p_t to p_{max}

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the gas fraction x in the sublimation region $x = 100 + \frac{m_{\rm gas}}{\left(m_{\rm ice} + m_{\rm gas}\right)}$. Its

unit is (kg desublimated gas)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating ice and desublimated gas. If the state point to be calculated is located in the melting region, a value between 100 and 101 must be entered for x.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for t (t = 100 or t = 101). If t and t are entered as given values the program tests whether t and t fulfil the sublimation-pressure-curve.

Melting and

Solidification curve: Temperatur range from T_{min} to T_{t}

Pressure range from p_{min} to p_{t}

Results for wrong input values

Result **SPTXICE = -1000** or **s_ptx_ICE = -1000** for input values:

Single phase region:

Solid, liquid, overheated steam (x = -1000):

- at $p < p_{min}$ or $p > p_{max}$
- at $T < T_{min}$ or $T > T_{max}$

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at p = -1000 and $T < T_t$ or $T > T_{max}$
- at t = -1000 and $p < p_t$ or $p > p_s(T_{max})$
- at $p < p_t$ or $p > p_s(T_{max})$
- at $T < T_t$ or $T > T_{max}$

Melting region ($10 \le x \le 11$):

- at p = -1000 and $T > T_t$ or $T < T_{mel}(p_{max})$
- at t = -1000 and $p < p_t$ or $p > p_{max}$
- at $p < p_t$ or $p > p_{max}$
- at $T > T_t$ or $T < T_{mel}(p_{max})$

Sublimation region (100 $\leq x \leq$ 101):

- at p = -1000 and $T < T_{min}$ or $T > T_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_{t}$
- at $T < T_{min}$ or $T > T_{t}$

Backward Function: Temperature t = f(p,h)

Function Name: t_ph_ICE

Subprogram with value of the function: REAL*8 FUNCTION TPHICE (P,H)

for call from Fortran REAL*8 P,H

Input Values

P – Pressure *p* in bar

H - Specific enthalpy h in kJ/kg

Result

TPHICE or **t_ph_ICE** – Temperature *t* in °C

Range of Validity (cp. p,t-diagram in chapter 1.2)

Pressure range: from p_{min} to p_{max}

Enthalpy range: from $h < h_{\text{max}} = h(p_{\text{min}}, T_{\text{max}})$ to $h > h_{\text{min}} = h(p_{\text{min}}, T_{\text{min}})$

Temperature range: from T_{min} to T_{max} (resulting from internal calculation of the subprograms)

Details on calculating the two phase regions

Using the given values for p and h, the program determines whether the point of state to be calculated is located in the single phase region (solid, liquid or steam) or in the two phase region. The two phase regions wet steam region, melting region and sublimation region (cp. lg p,h-diagram chapter 1.2) are calculated automatically by the subprograms. After that, the calculation is realized for the certain region.

Results for wrong input values

Result **TPHICE = -1000** or **t_ph_ICE = -1000** for input values:

Single phase region:

Solid, liquid, overheated steam:

- at $p < p_{\min}$ or $p > p_{\max}$
- at calculation result $T < T_{min}$ or $T > T_{max}$ or $T > T_{mel}$ (p_{max}) when calculating melting region

Two phase regions:

Wet steam region:

- at $p < p_t$ or $p > p_s(T_{max})$
- at calculation result $T < T_t$ or $T > T_{max}$

Melting region:

- at $p < p_t$ or $p > p_{max}$
- at calculation result $T > T_t$ or $T < T_{mel}(p_{max})$

Sublimation region:

- at $p < p_{\min}$ or $p > p_{t}$
- at calculation result $T < T_{min}$ or $T > T_{t}$

Backward Function: Temperature t = f(p,s)

Function Name: t_ps_ICE

Subprogram with value of the function: REAL*8 FUNCTION TPSICE (P,S)

for call from Fortran REAL*8 P,S

Input Values

P – Pressure *p* in bar

S - Specific entropy s in kJ/(kg K)

Result

TPSICE or **t_ps_ICE** – Temperature *t* in °C

Range of Validity (cp. p,t-diagram in chapter 1.2)

Pressure range: from p_{min} to p_{max}

Entropy range: from $s < s_{max} = s(p_{min}, T_{max})$ to $s > s_{min} = s(p_{min}, T_{min})$

Temperature range: from T_{min} to T_{max} (resulting from internal calculation of the subprograms)

Details on calculating the two phase regions

Using the given values for p and s, the program determines whether the point of state to be calculated is located in the single phase region (solid, liquid or steam) or in the two phase region. The two phase regions wet steam region, melting region and sublimation region (cp. lg p,h-diagram chapter 1.2) are calculated automatically by the subprograms. After that, the calculation is realized for the certain region.

Results for wrong input values

Result **TPSICE = -1000** or $t_ps_ICE = -1000$ for input values:

Single phase region:

Solid, liquid, overheated steam:

- at $p < p_{min}$ or $p > p_{max}$
- at calculation result $T < T_{min}$ or $T > T_{max}$ or $T > T_{mel}(p_{max})$ when calculating melting region

Two phase regions:

Wet steam region:

- at $p < p_t$ or $p > p_s(T_{max})$
- at calculation result $T < T_t$ or $T > T_{max}$

Melting region:

- at $p < p_t$ or $p > p_{max}$
- at calculation result $T > T_t$ or $T < T_{mel}(p_{max})$

Sublimation region:

- at $p < p_{\min}$ or $p > p_{t}$
- at calculation result $T < T_{mel}(p_{max})$ or $T > T_{t}$

Melting Temperature $t_{mel} = f(p)$

Function Name: tmel_p_08_ICE

Subprogram with value of the function: REAL*8 FUNCTION TMEL_P_08_ICE (P)

for call from Fortran REAL*8 P

Input Values

 \mathbf{P} – Pressure p in bar

Result

TMEL_P_08_ICE or **tmel_p_08_ICE** – Melting temperature t_{mel} in °C

Range of Validity (cp. *p,t*-diagram in chapter 1.2)

Pressure range: from p_t to p_{max}

Results for wrong input values

Result **TMELICE = -1000** or **tmel_p_ICE = -1000** for input values:

- at $p < p_t$ or $p > p_{max}$

References: [8]

Saturation Temperature $t_s = f(p)$

Function Name: ts_p_97_ICE

Subprogram with value of the function: REAL*8 FUNCTION TS_P_97_ICE (P)

for call from Fortran REAL*8 P

Input Values

P – Pressure *p* in bar

Result

TS_P_97_ICE or **ts_p_97_ICE** – Saturation temperature t_s in °C

Range of Validity (cp. p,t-diagram in chapter 1.2)

Pressure range: from p_t to p_c

Results for wrong input values

Result $TS_P_97_ICE = -1000$ or $ts_p_97_ICE = -1000$ for input values:

- at $p < p_t$ or $p > p_c$

References: [1], [2]

Sublimation Temperature $t_{sub} = f(p)$

Function Name: tsub_p_08_ICE

Subprogram with value of the function: REAL*8 FUNCTION TSUB_P_08_ICE (P)

for call from Fortran REAL*8 P

Input Values

 \mathbf{P} – Pressure p in bar

Result

TSUB_P_08_ICE or **tsub_p_08_ICE** – Sublimation temperature t_{sub} in °C

Range of Validity (cp. *p,t*-diagram in chapter 1.2)

Pressure range: from p_{min} to p_t

Results for wrong input values

Result TSUB_P_08_ICE = -1000 or $tsub_p_08_ICE = -1000$ for input values:

- at $p < p_{min}$ or $p > p_{t}$

References: [8]

Specific inner energy u = f(p,t,x)

Function Name: u_ptx_ICE

Subprogram with value of the function: REAL*8 FUNCTION UPTXICE (P,T,X)

for call from Fortran REAL*8 P,T,X

Input Values

P – Pressure *p* in bar

T - Temperature T in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

UPTXICE or **u_ptx_ICE** – Specific inner energy *u* in kJ/kg

Range of Validity (cp. p,t-diagram in chapter 1.2)

Temperature range: from T_{min} to T_{max} Pressure range: from p_{min} to p_{max}

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x= -1000 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 1.2):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region $x = \frac{m''}{(m' + m'')}$. Its unit is

(kg saturated steam)/(kg wet steam).

If the state point to be calculated is located in the wet steam region, a value between 0 and 1 must be entered for x. If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from T_t to T_{max}

Pressure range from p_t to p_s (T_{max})

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region $x = 10 + \frac{m_{\text{liq}}}{\left(m_{\text{ice}} + m_{\text{liq}}\right)}$. Its unit

is (kg solidified liquid)/(kg melt), whereas melt is a mixture of melting ice and solidified liquid. If the state point to be calculated is located in the melting region, a value between 10 and 11 must be entered for x. If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values, the program tests whether p and p and

Solidification curve: Temperature range from T_t to T_{mel} (p_{max})

Pressure range from p_t to p_{max}

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the gas fraction x in the sublimation region $x = 100 + \frac{m_{\rm gas}}{\left(m_{\rm ice} + m_{\rm gas}\right)}$. Its

unit is (kg desublimated gas)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating ice and desublimated gas. If the state point to be calculated is located in the melting region, a value between 100 and 101 must be entered for x.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for t (t = 100 or t = 101). If t and t are entered as given values the program tests whether t and t fulfil the sublimation-pressure-curve.

Melting and

Solidification curve: Temperatur range from T_{min} to T_{t}

Pressure range from p_{min} to p_{t}

Results for wrong input values

Result **UPTXICE = -1000** or $u_ptx_ICE = -1000$ for input values:

Single phase region:

Solid, liquid, overheated steam (x = -1000):

- at $p < p_{min}$ or $p > p_{max}$
- at $T < T_{min}$ or $T > T_{max}$

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at p = -1000 and $T < T_t$ or $T > T_{max}$
- at t = -1000 and $p < p_t$ or $p > p_s(T_{max})$
- at $p < p_t$ or $p > p_s(T_{max})$
- at $T < T_t$ or $T > T_{max}$

Melting region ($10 \le x \le 11$):

- at p = -1000 and $T > T_t$ or $T < T_{mel}(p_{max})$
- at t = -1000 and $p < p_t$ or $p > p_{max}$
- at $p < p_t$ or $p > p_{max}$
- at $T > T_t$ or $T < T_{mel}(p_{max})$

Sublimation region (100 $\leq x \leq$ 101):

- at p = -1000 and $T < T_{min}$ or $T > T_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_{t}$
- at $T < T_{min}$ or $T > T_{t}$

Specific Volume v = f(p, t, x)

Function Name: v_ptx_ICE

Subprogram with value of the function: **REAL*8 FUNCTION VPTXICE (P,T,X)**

for call from Fortran REAL*8 P,T,X

Input Values

P - Pressure p in bar

T - Temperature T in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

VPTXICE or **v_ptx_ICE** – Specific volume *v* in m³/kg

Range of Validity (cp. p,t-diagram in chapter 1.2)

Temperature range: from T_{min} to T_{max} Pressure range: from p_{min} to p_{max}

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x=-1000 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. $\lg p,h$ -diagram chapter 1.2):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region $x = \frac{m''}{(m' + m'')}$. Its unit is

(kg saturated steam)/(kg wet steam).

If the state point to be calculated is located in the wet steam region, a value between 0 and 1 must be entered for x. If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t are entered, the program will consider p and t to represent the vapor pressure curve.

Boiling and dew curve: Temperature range from $T_{\rm t}$ to $T_{\rm max}$

Pressure range from p_t to p_s (T_{max})

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region $x = 10 + \frac{m_{\text{liq}}}{\left(m_{\text{ice}} + m_{\text{liq}}\right)}$. Its unit

is (kg solidified liquid)/(kg melt), whereas melt is a mixture of melting ice and solidified liquid. If the state point to be calculated is located in the melting region, a value between 10 and 11 must be entered for x. If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values, the program tests whether p and p and

Solidification curve: Temperature range from T_t to T_{mel} (p_{max})

Pressure range from p_t to p_{max}

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the gas fraction x in the sublimation region $x = 100 + \frac{m_{\rm gas}}{\left(m_{\rm ice} + m_{\rm gas}\right)}$. Its

unit is (kg desublimated gas)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating ice and desublimated gas. If the state point to be calculated is located in the melting region, a value between 100 and 101 must be entered for x.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for t (t = 100 or t = 101). If t and t are entered as given values the program tests whether t and t fulfil the sublimation-pressure-curve.

Melting and

Solidification curve: Temperatur range from T_{min} to T_{t}

Pressure range from p_{min} to p_t

Results for wrong input values

Result **VPTXICE = -1000** or **v_ptx_ICE = -1000** for input values:

Single phase region:

Solid, liquid, overheated steam (x = -1000):

- at $p < p_{\min}$ or $p > p_{\max}$
- at $T < T_{min}$ or $T > T_{max}$

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at p = -1000 and $T < T_t$ or $T > T_{max}$
- at t = -1000 and $p < p_t$ or $p > p_s(T_{max})$
- at $p < p_t$ or $p > p_s(T_{max})$
- at $T < T_t$ or $T > T_{max}$

Melting region ($10 \le x \le 11$):

- at p = -1000 and $T > T_t$ or $T < T_{mel}(p_{max})$
- at t = -1000 and $p < p_t$ or $p > p_{max}$
- at $p < p_t$ or $p > p_{max}$
- at $T > T_t$ or $T < T_{mel}(p_{max})$

Sublimation region (100 $\leq x \leq$ 101):

- at p = -1000 and $T < T_{min}$ or $T > T_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_{t}$
- at $T < T_{min}$ or $T > T_{t}$

Isentropic Speed of Sound w = f(p,t,x)

Function Name: w_ptx_ICE

Subprogram with value of the function: REAL*8 FUNCTION WPTXICE (P,T,X)

for call from Fortran REAL*8 P,T,X

Input Values

P - Pressure p in bar

T - Temperature T in °C

X - *x* in kg / kg (Phase fraction, see the following explanations)

Result

WPTXICE or **w_ptx_ICE** – Speed of sound *w* in m/s

Range Range of Validity (cp. p,t-diagram in chapter 1.2)

Temperature range: from T_{min} to T_{max} Pressure range: from p_{min} to p_{max}

Details on the phase fraction x

If the state point to be calculated is located in the single phase region (solid, liquid or superheated steam), x = -1000 must be entered as a pro-forma value.

The two phase regions wet steam region, melting region and sublimation region are calculated automatically by the subprograms. For this purpose the following facts have to be considered (cp. lg p-h diagram chapter 1.2):

1. Wet Vapor Region $(0 \le x \le 1)$:

The phase fraction x equates to the vapor fraction x in the wet steam region $x = \frac{m''}{(m' + m'')}$. Its unit is

(kg saturated steam)/(kg wet steam).

The calculation for x values between 0 and 1 is not possible.

If boiling liquid (boiling curve) is to be calculated, the value 0 has to be entered for x. In case of dry saturated steam (dew curve) x = 1 has to be entered.

Concerning pressure and temperature either the given value for t and p = -1000 or the given value for p and t = -1000 and in both cases the value 0 or 1 for x must be entered when calculating boiling liquid or dry saturated steam. If p and t and x are entered, the program will consider p and t to represent the vapor pressure curve.

Temperature range from T_t to T_{max} Boiling and dew curve:

Pressure range from p_t to p_s (T_{max})

2. Melting Region $(10 \le x \le 11)$:

The phase fraction x equates to the liquid fraction x in the melting region $x = 10 + \frac{m_{\text{liq}}}{\left(m_{\text{ice}} + m_{\text{liq}}\right)}$. Its unit

is (kg solidified liquid)/(kg melt), whereas melt is a mixture of melting ice and solidified liquid. The calculation for *x* values between 10 and 11 is not possible.

If melting solid (melting curve) is to be calculated, the value 10 has to be entered for x. In case of solidifying liquid (solidification curve) x = 11 has to be entered.

When calculating a melting solid or solidifying liquid it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for x (x = 10 or x = 11). If p and t and x are entered as given values, the program tests whether p and t fulfil the melting pressure curve.

Melting and

Solidification curve: Temperature range from T_t to $T_{mel}(p_{max})$

Pressure range from p_t to p_{max}

3. Sublimation Region $(100 \le x \le 101)$:

The phase fraction x equates to the gas fraction x in the sublimation region $x = 100 + \frac{m_{\rm gas}}{\left(m_{\rm ice} + m_{\rm gas}\right)}$. Its

unit is (kg desublimated gas)/(kg sublimation powder), whereas sublimation powder is a mixture of sublimating ice and desublimated gas.

The calculation for x values between 100 and 101 is not possible.

If sublimating solid is to be calculated, the value 100 has to be entered for x. In case of desublimating steam x = 101 has to be entered.

When calculating a sublimating solid or desublimating steam it is adequate, Concerning pressure and temperature, to put in either the value given for t and p = -1000 or the value given for p and t = -1000 and the value for p and p and p and p are entered as given values the program tests whether p and p

Sublimation and

desublimation curve: Temperatur range from T_{min} to T_{t}

Pressure range from p_{min} to p_{t}

Results for wrong input values

Result WPTXICE = -1000 or w_ptx_ICE = -1000 for input values:

Single phase region:

Solid, liquid, overheated steam (x = -1000):

- at $p < p_{\min}$ or $p > p_{\max}$
- at $T < T_{min}$ or $T > T_{max}$

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at 0 < x < 1, i.e. calculation in the wet steam region not possible!
- at p = -1000 and $T < T_t$ or $T > T_{max}$
- at t = -1000 and $p < p_t$ or $p > p_s(T_{max})$
- at $p < p_t$ or $p > p_s(T_{max})$
- at $T < T_t$ or $T > T_{max}$

Melting region ($10 \le x \le 11$):

- at 10 < x < 11, i.e. calculation in the melting region not possible!
- at p = -1000 and $T > T_t$ or $T < T_{mel}(p_{max})$
- at t = -1000 and $p < p_t$ or $p > p_{max}$
- at $p < p_t$ or $p > p_{max}$
- at $T > T_t$ or $T < T_{mel}(p_{max})$

Sublimation region (100 $\leq x \leq$ 101):

- at 100 < x < 101, i.e. calculation in the sublimation region not possible!
- at p = -1000 and $T < T_{min}$ or $T > T_{t}$
- at t = -1000 and $p < p_{min}$ or $p > p_{t}$
- at $p < p_{min}$ or $p > p_{t}$
- at $T < T_{min}$ or $T > T_{t}$

References: [1], [2], [6], [7], [8]

Backward Function: Vapor Fraction x = f(p,h)

Function Name: x_ph_ICE

Subprogram with value of the function: REAL*8 FUNCTION XPHICE (P,H)

for call from Fortran REAL*8 P,H

Input Values

P – Pressure *p* in bar

H - Specific enthalpy h in kJ/kg

Result

XPHICE, **X** or **x_ph_ICE** – Vapor fraction *x* in (kg saturated steam/kg wet steam)

Range of Validity (cp. p,t-diagram in chapter 1.2)

Pressure range: from p_t to $p_s(T_{max})$ for wet steam region

from p_t to p_{max} for melting region from p_{min} to p_t for sublimation region

Enthalpy range: from $h < h_{\text{max}} = h(p_{\text{min}}, T_{\text{max}})$ to $h > h_{\text{min}} = h(p_{\text{min}}, T_{\text{min}})$

Temperature range: from T_{min} to T_{max} (resulting from internal calculation of the subprograms)

Details on calculating the two phase regions

The two phase regions are calculated automatically by the subprograms. Using the given values for p and h, the program determines whether the point of state to be calculated is located in the single phase region (solid, liquid or steam) or in one of the two phase regions wet steam region, melting region and sublimation region (cp. lg p,h-diagram in chapter 1.2). When calculating a two phase mixture, x will be calculated. If the state point to be calculated is located in the single-phase region the result is set to x = -1.

Results for wrong input values

Result **XPHICE = -1** or $x_ph_ICE = -1$ for input values:

If the state point to be calculated is located in the single phase region (cp. lg *p,h*-diagram in chapter 1.2).

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at $p < p_t$ or $p > p_s(T_{max})$
- at calculation result $T < T_t$ or $T > T_{max}$

Melting region ($10 \le x \le 11$):

- at $p < p_t$ or $p > p_{max}$
- at calculation result $T > T_t$ or $T < T_{mel}(p_{max})$

Sublimation region (100 $\leq x \leq$ 101):

- at $p < p_{\min}$ or $p > p_{t}$
- at calculation result $T < T_{min}$ or $T > T_{t}$

References: [1], [2], [6], [7], [8]

Backward Function: Vapor Fraction x = f(p,s)

Function Name: x_ps_ICE

Subprogram with value of the function: REAL*8 FUNCTION XPSICE (P,S)

for call from Fortran REAL*8 P,S

Input Values

P – Pressure *p* in bar

S - Specific entropy s in kJ/(kg K)

Result

XPSICE or **x_ps_ICE** – Vapor fraction *x* in (kg saturated steam/kg wet steam)

Range of Validity (cp. p,t-diagram in chapter 1.2)

Pressure range: from p_t to $p_s(T_{max})$ for wet steam region

from p_t to p_{max} for melting region from p_{min} to p_t for sublimation region

Entropy range: from $s < s_{max} = s(p_{min}, T_{max})$ to $s > s_{min} = s(p_{min}, T_{min})$

Temperature range: from T_{min} to T_{max} (resulting from internal calculation of the subprograms)

Details on calculating the two phase regions

The two phase regions are calculated automatically by the subprograms. Using the given values for p and s, the program determines whether the point of state to be calculated is located in the single phase region (solid, liquid or steam) or in one of the two phase regions wet steam region, melting region and sublimation region (cp. lg p,h-diagram in chapter 1.2). When calculating a two phase mixture, x will be calculated. If the state point to be calculated is located in the single-phase region the result is set to x = -1.

Results for wrong input values

Result **XPSICE = -1** or $x_ps_ICE = -1$ for input values:

If the state point to be calculated is located in the single phase region (cp. lg *p,h*-diagram in chapter 1.2).

Two phase regions:

Wet steam region $(0 \le x \le 1)$:

- at $p < p_t$ or $p > p_s(T_{max})$
- at calculation result $T < T_t$ or $T > T_{max}$

Melting region ($10 \le x \le 11$):

- at $p < p_t$ or $p > p_{max}$
- at calculation result $T > T_t$ or $T < T_{mel}(p_{max})$

Sublimation region (100 $\leq x \leq$ 101):

- at $p < p_{\min}$ or $p > p_{t}$
- at calculation result $T < T_{min}$ or $T > T_{t}$

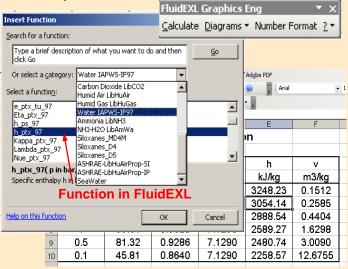
References: [1], [2], [6], [7], [8]

Humid Air

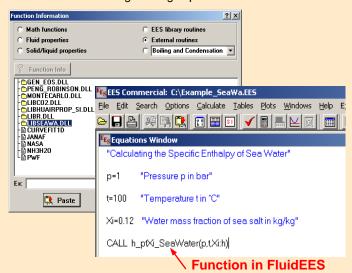
4. Property Libraries for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators

Water and Steam

Humid Combustion Gas Mixtures

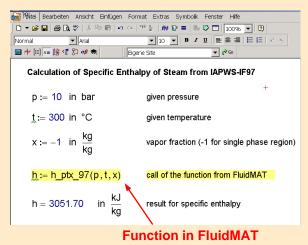

Library LibIF97	Library LibHuGas	Library LibHuAir
Industrial Formulation	Ideal mixture of the real fluids:	Ideal mixture of the real fluids:
IAPWS-IF97 (Revision 2007)	CO ₂ - Span and Wagner O ₂ - Schmidt and Wagner H ₂ O - IAPWS-95 Ar - Tegeler et al.	- Dry air from Lemmon et al. - Steam and water from IAPWS-IF97
Supplementary Standards - IAPWS-IF97-S01 - IAPWS-IF97-S03rev - IAPWS-IF97-S04 - IAPWS-IF97-S05	N ₂ - Span et al. and of the ideal gases: SO ₂ , CO, Ne (scientific equations of Bücker et al.) Consideration of Dissociation from VDI 4670 and Poynting effect	Consideration of - Dissociation from VDI-Guideline 4670 - Poynting effect
IAPWS Revised Advisory Note No. 3 on Thermodynamic Derivatives (2008)	Library LibIDGAS Ideal gas mixture calculated from the VDI-	Library LibldAir Ideal gas mixture calculated from
	Guideline 4670	VDI-Guideline 4670

Carbon Dioxide	I	deal Gas N	lixtures	Seawater
Library LibCO2	L	ibrary Liblo	lGasMix	Library LibSeaWa
Formulation of Span and Wagner (1994)	ldeal n	nixture of th	e ideal gases:	IAPWS Formulation (2008) and IAPWS-IF97
Hydrogen	Ar	SO ₂	Methane	
Library LibH2	Ne	H ₂	Ethane	
Formulation of	N_2	H₂S	Ethylene	Refrigerant R134a
Leachman et al. (2007)	O_2	ОН	Propylene	Library LibR134a
	CO	He	Propane	Formulation of
Helium	CO ₂	F ₂ ·	Iso-Butane	Tillner-Roth and Baehr (1994)
Library LibHe	Air	NH ₃	n-Butane	,
Formulation of McCarty	NO		Benzene	
and Arp (1990)	H₂O		Methanol	Refrigerant NH ₃
Methanol	Consider	ation of		Library LibNH3
Library LibCH3OH	- Dissociation from VDI-Guideline 4670		Formulation of Tillner-Roth	
Formulation of	_ :0000iaii			(1995)
de Reuck and Craven (1993)				

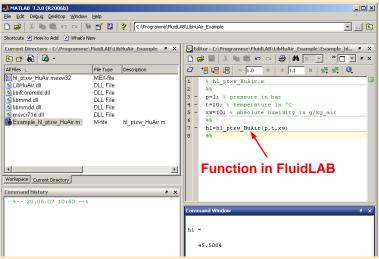

ORC Working Fluids	Mixtures for Absorption Processes	Refrigerants
Library LibMM	Library LibAmWa	Library LibPropan
Siloxane C ₆ H ₁₈ OSi ₂ (MM)	Ammonia/Water Mixtures	Refrigerant Propane
Formulation of Colonna et al. (2006)	IAPWS Guideline 2005 of Tillner-Roth	Formulation of Lemmon
Library LibD4	and Friend (1998)	et al. (2008)
Siloxane C ₈ H ₂₄ O ₄ Si ₄ (D4)	Helmholtz energy formulation for the	Library LibButan_Iso
Formulation of Colonna et al. (2006)	mixing term	Refrigerant Iso-Butane
Library LibD5	Library LibWeli	Formulation of Bücker
Siloxane C ₁₀ H ₃₀ O ₅ Si ₅ (D5)	Library LibWaLi	et al. (2003)
Formulation of Colonna et al. (2006)	Water/Lithium Bromide Mixtures	Library LibButan_n
Library LibMD4M	Formulation of Kim and Infante Ferreira	Refrigerant n-Butane
Siloxane C ₁₄ H ₄₂ O ₅ Si ₆ (MD4M)	(2004)	Formulation of Bücker
14 42 0 0	Gibbs energy equation for the	et al. (2003)
Formulation of Colonna et al. (2006)	mixing term	

Add-In FluidEES for EES®

Using the Add-In FluidEXL a direct call of the property functions in Excel® is possible.



The Add-In FluidEES allows to call the functions of the property libraries within the Engineering Equation Solver EES®.


Add-In FluidMAT for Mathcad®

Using the Add-on FluidMAT, the functions of the property libraries can be used in Mathcad®.

Add-In FluidLAB for MATLAB®

The property functions can be called in MATLAB®.

The following thermodynamic and transport properties can be calculated:

Thermodynamic Properties

- Saturation pressure p_s
- Saturation temperature T_s
- Density ρ
- Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e

- Isobaric heat capacity c_p
- Isochoric heat capacity c_v
- Isentropic exponent κ
- Speed of sound w
- \bullet Surface tension σ

Thermodynamic Derivatives

Partial derivatives can be calculated

Transport Properties

- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl-number Pr

Backward Functions

- T, v, s (p,h)
 - p, T (v,h)
- T, v, h (p,s)
- p, T, v (h,s)

p, T (v,u)

For information please contact:

Zittau/Goerlitz University of Applied Sciences Department of Technical Thermodynamics Prof. Hans-Joachim Kretzschmar

Dr. Ines Stoecker

Theodor-Koerner-Allee 16 02763 Zittau, Germany

E-mail: hj.kretzschmar@hs-zigr.de

Internet: www.thermodynamics-zittau.de

Phone: +49-3583-61-1846 Fax.: +49-3583-61-1846

¹ Not all of these property functions are available in all property libraries listed before.

5. References

[1] IAPWS:

Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam IAPWS-IF97.

Available at the IAPWS Website http://www.iapws.org

[2] Wagner, W.; Kretzschmar, H.-J.:

International Steam Tables.

Springer-Verlag, Berlin (2008)

[3] IAPWS:

Release on the IAPWS Formulation 2011 for the Thermal Conductivity of Ordinary Water Substance.

Available at the IAPWS Website http://www.iapws.org.

[4] IAPWS:

Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance.

IAPWS Secretariat, Dooley, B., EPRI, Palo Alto CA, (1997)

[5] IAPWS:

Release on Surface Tension of Ordinary Water Substance 1994.

Available at the IAPWS Website http://www.iapws.org.

[6] IAPWS:

Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use.

Available at the IAPWS Website http://www.iapws.org

[7] IAPWS:

Revised Release on the Equation of State 2006 for H2O Ice Ih.

Available at the IAPWS Website http://www.iapws.org

[8] IAPWS:

Revised Release 2008 on the Pressure along the Melting and Sublimation Curves of Ordinary Water Substance.

Available at the IAPWS Website http://www.iapws.org

6. Satisfied Customers

Date: 10/2011

The following companies and institutions use the property libraries

- FluidEXL^{Graphics} for Excel[®]
- FluidLAB for MATLAB®
- FluidMAT for Mathcad®
- FluidEES for Engineering Equation Solver[®] EES
- FluidDYM for Dymola[®] (Modelica)
- FluidVIEW for LabVIEW®:

2011

Lopez, Munguia, Spain	10/2011
University of KwaZulu-Natal, Westville, South Africa	10/2011
Voith, Heidenheim	09/2011
SpgBe Montreal, Canada	09/2011
SPG TECH, Montreuil Cedex, France	09/2011
Voith, Heidenheim-Mergelstetten	09/2011
MTU Aero Engines, Munich	08/2011
MIBRAG, Zeitz	08/2011
RWE, Essen	07/2011
Fels, Elingerode	07/2011
Weihenstephan University of Applied Sciences	07/2011, 09/2011, 10/2011
Forschungszentrum Juelich	07/2011
RWTH Aachen University	07/2011, 08/2011
Voith, Zschopau	07/2011
INNEO Solutions, Ellwangen	06/2011
Caliqua, Basel, Switzerland	06/2011
Technical University of Freiberg	06/2011
Fichtner IT Consulting, Stuttgart	05/2011, 06/2011, 08/2011
Salzgitter Flachstahl, Salzgitter	05/2011
Helbling Beratung & Bauplanung, Zurich, Switzerland	05/2011
INEOS, Cologne	04/2011
Enseleit Consulting Engineers, Siebigerode	04/2011

	Witt Consulting Engineers, Stade	03/2011
	Helbling, Zurich, Switzerland	03/2011
	MAN Diesel, Copenhagen, Denmark	03/2011
	AGO, Kulmbach	03/2011
	University of Duisburg	03/2011, 06/2011
	CCP, Marburg	03/2011
	BASF, Ludwigshafen	02/2011
	ALSTOM Power, Baden, Switzerland	02/2011
	Universität der Bundeswehr, Munich	02/2011
	Calorifer, Elgg, Switzerland	01/2011
	STRABAG, Vienna, Austria	01/2011
	TUEV Sued, Munich	01/2011
	ILK Dresden	01/2011
	Technical University of Dresden	01/2011, 05/2011,
		06/2011, 08/2011
2	010	
	Umweltinstitut Neumarkt	12/2010
	YIT Austria, Vienna, Austria	12/2010
	MCI Innsbruck, Austria	12/2010
	University of Stuttgart	12/2010
	HS Cooler, Wittenburg	12/2010
	Visteon, Novi Jicin, Czech Republic	12/2010
	CompuWave, Brunntal	12/2010
	Stadtwerke Leipzig	12/2010
	MCI Innsbruck, Austria	12/2010
	EVONIK Energy Services, Zwingenberg	12/2010
	Caliqua, Basel, Switzerland	11/2010
	Shanghai New Energy Resources Science & Technology, China	11/2010
	Energieversorgung Halle	11/2010
	Hochschule für Technik Stuttgart, University of Applied Sciences	11/2010
	Steinmueller, Berlin	11/2010
	Amberg-Weiden University of Applied Sciences	11/2010
	AREVA NP, Erlangen	10/2010
	MAN Diesel, Augsburg	10/2010
	KRONES, Neutraubling	10/2010

Vaillant, Remscheid	10/2010
PC Ware, Leipzig	10/2010
Schubert Consulting Engineers, Weißenberg	10/2010
Fraunhofer Institut UMSICHT, Oberhausen	10/2010
Behringer Consulting Engineers, Tagmersheim	09/2010
Saacke, Bremen	09/2010
WEBASTO, Neubrandenburg	09/2010
Concordia University, Montreal, Canada	09/2010
Compañía Eléctrica de Sochagota, Bogota, Colombia	08/2010
Hannover University of Applied Sciences	08/2010
ERGION, Mannheim	07/2010
Fichtner IT Consulting, Stuttgart	07/2010
TF Design, Matieland, South Africa	07/2010
MCE, Berlin	07/2010, 12/2010
IPM, Zittau/Goerlitz University of Applied Sciences	06/2010
TUEV Sued, Dresden	06/2010
RWE IT, Essen	06/2010
Glen Dimplex, Kulmbach	05/2010, 07/2010 10/2010
Hot Rock, Karlsruhe	05/2010
Darmstadt University of Applied Sciences	05/2010
Voith, Heidenheim	04/2010
CombTec, Zittau	04/2010
University of Glasgow, Great Britain	04/2010
Universitaet der Bundeswehr, Munich	04/2010
Technical University of Hamburg-Harburg	04/2010
Vattenfall Europe, Berlin	04/2010
HUBER Consulting Engineers, Berching	04/2010
VER, Dresden	04/2010
CCP, Marburg	03/2010
Offenburg University of Applied Sciences	03/2010
Technical University of Berlin	03/2010
NIST Boulder CO, USA	03/2010
Technical University of Dresden	02/2010
Siemens Energy, Nuremberg	02/2010

Augsburg University of Applied Sciences	02/2010
ALSTOM Power, Baden, Switzerland	02/2010, 05/2010
MIT Massachusetts Institute of Technology Cambridge MA, USA	02/2010
Wieland Werke, Ulm	01/2010
Siemens Energy, Goerlitz	01/2010, 12/2010
Technical University of Freiberg	01/2010
ILK, Dresden	01/2010, 12/2010
Fischer-Uhrig Consulting Engineers, Berlin	01/2010
2009	
ALSTOM Power, Baden, Schweiz	01/2009, 03/2009,
	05/2009
Nordostschweizerische Kraftwerke AG, Doettingen, Switzerland	02/2009
RWE, Neurath	02/2009
Brandenburg University of Technology, Cottbus	02/2009
Hamburg University of Applied Sciences	02/2009
Kehrein, Moers	03/2009
EPP Software, Marburg	03/2009
Bernd Münstermann, Telgte	03/2009
Suedzucker, Zeitz	03/2009
CPP, Marburg	03/2009
Gelsenkirchen University of Applied Sciences	04/2009
Regensburg University of Applied Sciences	05/2009
Gatley & Associates, Atlanta, USA	05/2009
BOSCH, Stuttgart	06/2009, 07/2009
Dr. Nickolay, Consulting Engineers, Gommersheim	06/2009
Ferrostal Power, Saarlouis	06/2009
BHR Bilfinger, Essen	06/2009
Intraserv, Wiesbaden	06/2009
Lausitz University of Applied Sciences, Senftenberg	06/2009
Nuernberg University of Applied Sciences	06/2009
Technical University of Berlin	06/2009
Fraunhofer Institut UMSICHT, Oberhausen	07/2009
Bischoff, Aurich	07/2009
Fichtner IT Consulting, Stuttgart	07/2009
Techsoft, Linz, Austria	08/2009

	DLR, Stuttgart		08/2009
	Wienstrom, Vienna, Austria		08/2009
	RWTH Aachen University		09/2009
	Vattenfall, Hamburg		10/2009
	AIC, Chemnitz		10/2009
	Midiplan, Bietigheim-Bissingen		11/2009
	Institute of Air Handling and Refrigeration ILK, Dresden		11/2009
	FZD, Rossendorf		11/2009
	Techgroup, Ratingen		11/2009
	Robert Sack, Heidelberg		11/2009
	EC, Heidelberg		11/2009
	MCI, Innsbruck, Austria		12/2009
	Saacke, Bremen		12/2009
	ENERKO, Aldenhoven		12/2009
20	08		
	Pink, Langenwang		01/2008
	Fischer-Uhrig, Berlin		01/2008
	University of Karlsruhe		01/2008
	MAAG, Kuesnacht, Switzerland		02/2008
	M&M Turbine Technology, Bielefeld		02/2008
	Lentjes, Ratingen		03/2008
	Siemens Power Generation, Goerlitz		04/2008
	Evonik, Zwingenberg (general EBSILON program license)		04/2008
	WEBASTO, Neubrandenburg		04/2008
	CFC Solutions, Munich		04/2008
	RWE IT, Essen		04/2008
	Rerum Cognitio, Zwickau	04/2008,	05/2008
	ARUP, Berlin		05/2008
	Research Center, Karlsruhe		07/2008
	AWECO, Neukirch		07/2008
	Technical University of Dresden, Professorship of Building Services		07/2008
	Technical University of Cottbus, Chair in Power Plant Engineering	07/2008,	10/2008
	Ingersoll-Rand, Unicov, Czech Republic		08/2008
	Technip Benelux BV, Zoetermeer, Netherlands		08/2008

Fennovoima Oy, Helsinki, Finland	08/2008
Fichtner Consulting & IT, Stuttgart	09/2008
PEU, Espenhain	09/2008
Poyry, Dresden	09/2008
WINGAS, Kassel	09/2008
TUEV Sued, Dresden	10/2008
Technical University of Dresden, Professorship of Thermic Energy Machines and Plants	10/2008, 11/2008
AWTEC, Zurich, Switzerland	11/2008
Siemens Power Generation, Erlangen	12/2008
2007	
Audi, Ingolstadt	02/2007
ANO Abfallbehandlung Nord, Bremen	02/2007
TUEV NORD SysTec, Hamburg	02/2007
VER, Dresden	02/2007
Technical University of Dresden, Chair in Jet Propulsion Systems	02/2007
Redacom, Nidau, Switzerland	02/2007
Universität der Bundeswehr, Munich	02/2007
Maxxtec, Sinsheim	03/2007
University of Rostock, Chair in Technical Thermodynamics	03/2007
AGO, Kulmbach	03/2007
University of Stuttgart, Chair in Aviation Propulsions	03/2007
Siemens Power Generation, Duisburg	03/2007
ENTHAL Haustechnik, Rees	05/2007
AWECO, Neukirch	05/2007
ALSTOM, Rugby, Great Britain	06/2007
SAAS, Possendorf	06/2007
Grenzebach BSH, Bad Hersfeld	06/2007
Reichel Engineering, Haan	06/2007
Technical University of Cottbus, Chair in Power Plant Engineering	06/2007
Voith Paper Air Systems, Bayreuth	06/2007
Egger Holzwerkstoffe, Wismar	06/2007
Tissue Europe Technologie, Mannheim	06/2007
Dometic, Siegen	07/2007
RWTH Aachen University, Institute for Electrophysics	09/2007

National Energy Technology Laboratory, Pittsburg, USA	10/2007
Energieversorgung Halle	10/2007
AL-KO, Jettingen	10/2007
Grenzebach BSH, Bad Hersfeld	10/2007
Wiesbaden University of Applied Sciences, Department of Engineering Sciences	10/2007
Endress+Hauser Messtechnik, Hannover	11/2007
Munich University of Applied Sciences, Department of Mechanical Engineering	11/2007
Rerum Cognitio, Zwickau	12/2007
Siemens Power Generation, Erlangen	11/2007
University of Rostock, Chair in Technical Thermodynamics	11/2007, 12/2007
2006	
STORA ENSO Sachsen, Eilenburg	01/2006
Technical University of Munich, Chair in Energy Systems	01/2006
NUTEC Engineering, Bisikon, Switzerland	01/2006, 04/2006
Conwel eco, Bochov, Czech Republic	01/2006
Offenburg University of Applied Sciences	01/2006
KOCH Transporttechnik, Wadgassen	01/2006
BEG Bremerhavener Entsorgungsgesellschaft	02/2006
Deggendorf University of Applied Sciences, Department of Mechanical Engineering and Mechatronics	02/2006
University of Stuttgart, Department of Thermal Fluid Flow Engines	02/2006
Technical University of Munich, Chair in Apparatus and Plant Engineering	02/2006
Energietechnik Leipzig (company license),	02/2006
Siemens Power Generation, Erlangen	02/2006, 03/2006
RWE Power, Essen	03/2006
WAETAS, Pobershau	04/2006
Siemens Power Generation, Goerlitz	04/2006
Technical University of Braunschweig, Department of Thermodynamics	04/2006
EnviCon & Plant Engineering, Nuremberg	04/2006
Brassel Engineering, Dresden	05/2006
University of Halle-Merseburg, Department of USET Merseburg incorporated society	05/2006

	Technical University of Dresden, Professorship of Thermic Energy Machines and Plants	05/2006
	Fichtner Consulting & IT Stuttgart (company licenses and distribution)	05/2006
	Suedzucker, Ochsenfurt	06/2006
	M&M Turbine Technology, Bielefeld	06/2006
	Feistel Engineering, Volkach	07/2006
	ThyssenKrupp Marine Systems, Kiel	07/2006
	Caliqua, Basel, Switzerland (company license)	09/2006
	Atlas-Stord, Rodovre, Denmark	09/2006
	Konstanz University of Applied Sciences, Course of Studies Construction and Development	10/2006
	Siemens Power Generation, Duisburg	10/2006
	Hannover University of Applied Sciences, Department of Mechanical Engineering	10/2006
	Siemens Power Generation, Berlin	11/2006
	Zikesch Armaturentechnik, Essen	11/2006
	Wismar University of Applied Sciences, Seafaring Department	11/2006
	BASF, Schwarzheide	12/2006
	Enertech Energie und Technik, Radebeul	12/2006
20	005	
	TUEV Nord, Hannover	01/2005
	J.H.K Plant Engineering and Service, Bremerhaven	01/2005
	Electrowatt-EKONO, Zurich, Switzerland	01/2005
	FCIT, Stuttgart	01/2005
	Energietechnik Leipzig (company license)	02/2005, 04/2005, 07/2005
	eta Energieberatung, Pfaffenhofen	02/2005
	FZR Forschungszentrum, Rossendorf/Dresden	04/2005
	University of Saarbruecken	04/2005
	Technical University of Dresden Professorship of Thermic Energy Machines and Plants	04/2005
	Grenzebach BSH, Bad Hersfeld	04/2005
	TUEV Nord, Hamburg	04/2005
	Technical University of Dresden, Waste Management	05/2005
	Siemens Power Generation, Goerlitz	05/2005

	Duesseldorf University of Applied Sciences, Department of Mechanical Engineering and Process Engineering	05/2005
	Redacom, Nidau, Switzerland	06/2005
	Dumas Verfahrenstechnik, Hofheim	06/2005
	Alensys Engineering, Erkner	07/2005
	Stadtwerke Leipzig	07/2005
	SaarEnergie, Saarbruecken	07/2005
	ALSTOM ITC, Rugby, Great Britain	08/2005
	Technical University of Cottbus, Chair in Power Plant Engineering	08/2005
	Vattenfall Europe, Berlin (group license)	08/2005
	Technical University of Berlin	10/2005
	Basel University of Applied Sciences, Department of Mechanical Engineering, Switzerland	10/2005
	Midiplan, Bietigheim-Bissingen	11/2005
	Technical University of Freiberg, Chair in Hydrogeology	11/2005
	STORA ENSO Sachsen, Eilenburg	12/2005
	Energieversorgung Halle (company license)	12/2005
	KEMA IEV, Dresden	12/2005
20	004	
	Vattenfall Europe (group license)	01/2004
	TUEV Nord, Hamburg	01/2004
	University of Stuttgart, Institute of Thermodynamics and Heat Engineering	02/2004
	MAN B&W Diesel A/S, Copenhagen, Denmark	02/2004
	Siemens AG Power Generation, Erlangen	02/2004
	Ulm University of Applied Sciences	03/2004
	Visteon, Kerpen 03/2004,	10/2004
	Technical University of Dresden, Professorship of Thermic Energy Machines and Plants	04/2004
	Rerum Cognitio, Zwickau	04/2004
	University of Saarbruecken	04/2004
	Grenzebach BSH, Bad Hersfeld	04/2004
	SOFBID Zwingenberg (general EBSILON program license)	04/2004
	EnBW Energy Solutions, Stuttgart	05/2004
	HEW-Kraftwerk, Tiefstack	06/2004
	h s energieanlagen, Freising	07/2004
	FCIT, Stuttgart	08/2004

	Physikalisch Technische Bundesanstalt (PTB), Braunschweig	08/2004
	Mainova Frankfurt	08/2004
	Rietschle Energieplaner, Winterthur, Switzerland	08/2004
	MAN Turbo Machines, Oberhausen	09/2004
	TUEV Sued, Dresden	10/2004
	STEAG Kraftwerk, Herne	10/2004, 12/2004
	University of Weimar	10/2004
	energeticals (e-concept), Munich	11/2004
	SorTech, Halle	11/2004
	Enertech EUT, Radebeul (company license)	11/2004
	Munich University of Applied Sciences	12/2004
	STORA ENSO Sachsen, Eilenburg	12/2004
	Technical University of Cottbus, Chair in Power Plant Engineering	12/2004
	Freudenberg Service, Weinheim	12/2004
20	003	
	Paper Factory, Utzenstorf, Switzerland	01/2003
	MAB Plant Engineering, Vienna, Austria	01/2003
	Wulff Energy Systems, Husum	01/2003
	Technip Benelux BV, Zoetermeer, Netherlands	01/2003
	ALSTOM Power, Baden, Switzerland	01/2003, 07/2003
	VER, Dresden	02/2003
	Rietschle Energieplaner, Winterthur, Switzerland	02/2003
	DLR, Leupholdhausen	04/2003
	Emden University of Applied Sciences, Department of Technology	05/2003
	Petterssson+Ahrends, Ober-Moerlen	05/2003
	SOFBID ,Zwingenberg (general EBSILON program license)	05/2003
	Ingenieurbuero Ostendorf, Gummersbach	05/2003
	TUEV Nord, Hamburg	06/2003
	Muenstermann GmbH, Telgte-Westbevern	06/2003
	University of Cali, Colombia	07/2003
	Atlas-Stord, Rodovre, Denmark	08/2003
	ENERKO, Aldenhoven	08/2003
	STEAG RKB, Leuna	08/2003
	eta Energieberatung, Pfaffenhofen	08/2003
	exergie, Dresden	09/2003

	AWTEC, Zurich, Switzerland	09/2003
	Energie, Timelkam, Austria	09/2003
	Electrowatt-EKONO, Zurich, Switzerland	09/2003
	LG, Annaberg-Buchholz	10/2003
	FZR Forschungszentrum, Rossendorf/Dresden	10/2003
	EnviCon & Plant Engineering, Nuremberg	11/2003
	Visteon, Kerpen	11/2003
	VEO Vulkan Energiewirtschaft Oderbruecke, Eisenhuettenstadt	11/2003
	Stadtwerke Hannover	11/2003
	SaarEnergie, Saarbruecken	11/2003
	Fraunhofer-Gesellschaft, Munich	12/2003
	Erfurt University of Applied Sciences, Department of Supply Engineering	12/2003
	SorTech, Freiburg	12/2003
	Mainova, Frankfurt	12/2003
	Energieversorgung Halle	12/2003
2	002	
	Hamilton Medical AG, Rhaezuens, Switzerland	01/2002
	Bochum University of Applied Sciences, Department of Thermo- and Fluid Dynamics	01/2002
	SAAS, Possendorf/Dresden	02/2002
	Siemens, Karlsruhe (general license for the WinIS information system)	02/2002
	FZR Forschungszentrum, Rossendorf/Dresden	03/2002
	CompAir, Simmern	03/2002
	GKS Gemeinschaftskraftwerk, Schweinfurt	04/2002
	ALSTOM Power Baden, Switzerland (group licenses)	05/2002
	InfraServ, Gendorf	05/2002
	SoftSolutions, Muehlhausen (company license)	05/2002
	DREWAG, Dresden (company license)	05/2002
	SOFBID, Zwingenberg (general EBSILON program license)	06/2002
	Kleemann Engineering, Dresden	06/2002
	Caliqua, Basel, Switzerland (company license)	07/2002
	PCK Raffinerie, Schwedt (group license)	07/2002
	Fischer-Uhrig Engineering, Berlin	08/2002

	Fichtner Consulting & IT, Stuttgart (company licenses and distribution)			08/2002
	Stadtwerke Duisburg			08/2002
	Stadtwerke Hannover			09/2002
	Siemens Power Generation, Goerlitz			10/2002
	Energieversorgung Halle (company license)			10/2002
	Bayer, Leverkusen			11/2002
	Dillinger Huette, Dillingen			11/2002
	G.U.N.T. Geraetebau, Barsbuettel (general license and training test benches)			12/2002
	VEAG, Berlin (group license)			12/2002
20	001			
	ALSTOM Power, Baden, Switzerland	01/2001,	06/2001,	12/2001
	KW2 B. V., Amersfoot, Netherlands		01/2001,	11/2001
	Eco Design, Saitamaken, Japan			01/2001
	M&M Turbine Technology, Bielefeld		01/2001,	09/2001
	MVV Energie, Mannheim			02/2001
	Technical University of Dresden, Department of Power Machinery and Plants			02/2001
	PREUSSAG NOELL, Wuerzburg			03/2001
	Fichtner Consulting & IT Stuttgart (company licenses and distribution)			04/2001
	Muenstermann GmbH, Telgte-Westbevern			05/2001
	SaarEnergie, Saarbruecken			05/2001
	Siemens, Karlsruhe (general license for the WinIS information system)			08/2001
	Neusiedler AG, Ulmerfeld, Austria			09/2001
	h s energieanlagen, Freising			09/2001
	Electrowatt-EKONO, Zurich, Switzerland			09/2001
	IPM Zittau/Goerlitz University of Applied Sciences (general lice	ense)		10/2001
	eta Energieberatung, Pfaffenhofen			11/2001
	ALSTOM Power Baden, Switzerland			12/2001
	VEAG, Berlin (group license)			12/2001
2000				
	SOFBID, Zwingenberg (general EBSILON program license)			01/2000
	AG KKK - PGW Turbo, Leipzig			01/2000

PREUSSAG NOELL, Wuerzburg	01/2000
M&M Turbine Technology, Bielefeld	01/2000
IBR Engineering Reis, Nittendorf-Undorf	02/2000
GK, Hannover	03/2000
KRUPP-UHDE, Dortmund (company license)	03/2000
UMAG W. UDE, Husum	03/2000
VEAG, Berlin (group license)	03/2000
Thinius Engineering, Erkrath	04/2000
SaarEnergie, Saarbruecken	05/2000, 08/2000
DVO Data Processing Service, Oberhausen	05/2000
RWTH Aachen University	06/2000
VAUP Process Automation, Landau	08/2000
Knuerr-Lommatec, Lommatzsch	09/2000
AVACON, Helmstedt	10/2000
Compania Electrica, Bogota, Colombia	10/2000
G.U.N.T. Geraetebau, Barsbuettel (general license for training test benches)	11/2000
Steinhaus Informationssysteme, Datteln (general license for process data software)	12/2000
1999	
Bayernwerk, Munich	01/1999
DREWAG, Dresden (company license)	02/1999
KEMA IEV, Dresden	03/1999
Regensburg University of Applied Sciences	04/1999
Fichtner Consulting & IT, Stuttgart (company licenses and distribution)	07/1999
Technical University of Cottbus, Chair in Power Plant Engineering	07/1999
Technical University of Graz, Department of Thermal Engineering	, Austria 11/1999
Ostendorf Engineering, Gummersbach	12/1999
1998	
Technical University of Cottbus, Chair in Power Plant Engineering	05/1998
Fichtner Consulting & IT (CADIS information systems) Stuttgart (general KPRO program license)	05/1998
, , ,	05/1998 06/1998
(general KPRO program license)	

VEAG Berlin (group license)	09/1998		
NUTEC Engineering, Bisikon, Switzerland	10/1998		
SCA Hygiene Products, Munich	10/1998		
RWE Energie, Neurath	10/1998		
Wilhelmshaven University of Applied Sciences	10/1998		
BASF, Ludwigshafen (group license)	11/1998		
Energieversorgung, Offenbach	11/1998		
1997			
Gerb, Dresden	06/1997		
Siemens Power Generation, Goerlitz	07/1997		