

Fachbereich MASCHINENWESEN

Fachgebiet TECHNISCHE THERMODYNAMIK

Stoffwertprogramm Bibliothek für R134a

FluidEXL^{Graphics}
LibR134a
für Excel®

Prof. Dr.-Ing. habil. H.-J. Kretzschmar

Dr.-Ing. I. Stöcker

Dipl.-Inf. (FH) I. Jähne Dipl.-Ing. (FH) A. Bläser

Stoffwertprogrammbibliothek für R134a Graphics FluidEXL LibR134a

Inhalt

- 0. Lieferumfang
- 1. Stoffwertfunktionen der Bibliothek "R134a LibR134a"
- 2. Nutzung von FluidEXL Graphics in Excel®
 - 2.1 Installation von FluidEXLGraphics
 - 2.2 Beispiel: Berechnung von h = f(p,t,x)
 - 2.3 De-Installation von FluidEXLGraphics
- 3. Programmdokumentation
- 4. Property Libraries for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators
- 5. Literaturverzeichnis
- 6. Referenzliste

© Hochschule Zittau/Görlitz - University of Applied Sciences Fachbereich Maschinenwesen Fachgebiet Technische Thermodynamik

Prof. Dr.-Ing. habil. H.-J. Kretzschmar

Dr.-Ing. I. Stöcker

Tel.: 03583-61-1846 oder -1881

Fax: 03583-61-1846

E-mail: hj.kretzschmar@hs-zigr.de Internet: www.thermodynamik-zittau

0. Lieferumfang

CD "FluidEXL^{Graphics} mit LibR134a für Excel[®]" mit den Dateien:

FluidEXL_Graphics_Setup.exe - Selbstentpackendes und installierendes Programm

FluidEXL_Graphics.xla - Add-In für FluidEXL*Graphics*

LibR134a.dll - DLL mit Funktionen für R134a

LibR134a.hlp - Online-Hilfe für die Bibliothek LibR134a

Dforrt.dll - zur DLL gehörige Systemdatei

Msvcrt.dll - zur DLL gehörige Systemdatei

Dokumentation

FluidEXL_Graphics_LibR134a_Doku.pdf - Programmdokumentation

Programmdokumentation als gedrucktes Exemplar (bei Versand)

1. Stoffwertfunktionen der Bibliothek "R134a LibR134a"

Funktionale Abhängigkeit	Funktionsname in FluidEXL ^{Graphics}	Aufruf Fortran-Programm	Aufruf in DLL LibR134a als Parameter	Stoffwert bzw. Funktion	Maßeinheit berechneter Wert
a = f(p,t,x)	a_ptx_R134a	A_PTX_R134A(P,T,X)	C_A_PTX_R134A(A,P,T,X)	Temperaturleitfähigkeit	m ² /s
$c_p = f(p, t, x)$	cp_ptx_R134a	CP_PTX_R134A(P,T,X)	C_CP_PTX_R134A(CP,P,T,X)	Spezifische isobare Wärmekapazität	kJ/(kg K)
$c_V = f(p, t, x)$	cv_ptx_R134a	CV_PTX_R134A(P,T,X)	C_CV_PTX_R134A(CV,P,T,X)	Spezifische isochore Wärmekapazität	kJ/(kg K)
$\eta = f(p, t, x)$	eta_ptx_R134a	ETA_PTX_R134A(P,T,X)	C_ETA_PTX_R134A(ETA,P,T,X)	Dynamische Zähigkeit	Pa s
h = f(p, t, x)	h_ptx_R134a	H_PTX_R134A(P,T,X)	C_H_PTX_R134A(H,P,T,X)	Spezifische Enthalpie	kJ/kg
$\kappa = f(p, t, x)$	kappa_ptx_R134a	KAP_PTX_R134A(P,T,X)	C_KAP_PTX_R134A(KAP,P,T,X)	Isentropenexponent	-
$\lambda = f(p,t,x)$	lambda_ptx_R13a	LAM_PTX_R134A(P,T,X	C_LAM_PTX_R134A(LAM,P,T,X)	Wärmeleitfähigkeit	W/m K
V = f(p, t, x)	ny_ptx_R134a	NY_PTX_R134A(P,T,X)	C_NY_PTX_R134A(NY,P,T,X)	Kinematische Viskosität	m ² /s
$p_{\rm S} = f(t)$	ps_t_R134a	PS_T_R134A(T)	C_PS_T_R134A(PS,T)	Dampfdruck aus Temperatur	bar
Pr = f(p, t, x)	Pr_ptx_R134a	PR_PTX_R134A(P,T,X)	C_PR_PTX_R134A(PR,P,T,X)	Prandtl-Zahl	-
$\rho = f(p,t,x)$	rho_ptx_R134a	RHO_PTX_R134A(P,T,X	C_RHO_PTX_R134A(RHO,P,T,X)	Dichte	kg/m³
s = f(p, t, x)	s_ptx_R134a	S_PTX_R134A(P,T,X)	C_S_PTX_R134A(S,P,T,X)	Spezifische Entropie	kJ/(kg K)
t = f(p,h)	t_ph_R134a	T_PH_R134A(P,H)	C_T_PH_R134A(T,P,H)	Umkehrfunktion: Temperatur aus Druck und Enthalpie	°C
t = f(p,s)	t_ps_R134a	T_PS_R134A(P,S)	C_T_PS_R134A(T,P,S)	Umkehrfunktion: Temperatur aus Druck und Entropie	°C
$t_{\rm S} = f(p)$	ts_p_R134a	TS_P_R134A(P)	C_TS_P_R134A(TS,P)	Siedetemperatur aus Druck	°C
u = f(p, t, x)	u_ptx_R134a	U_PTX_R134A(P,T,X)	C_U_PTX_R134A(U,P,T,X)	Spezifische innere Energie	kJ/kg
V = f(p, t, x)	v_ptx_R134a	V_PTX_R134A(P,T,X)	C_V_PTX_R134A(V,P,T,X)	Spezifisches Volumen	m³/kg
w = f(p, t, x)	w_ptx_R134a	W_PTX_R134A(P,T,X)	C_W_PTX_R134A(W,P,T,X)	Isentrope Schallgeschwindigkeit	m/s²
x = f(p,h)	x_ph_R134a	X_PH_R134A(P,H)	C_X_PH_R134A(X,P,H)	Umkehrfunktion: Dampfanteil aus Druck und Enthalpie	kg/kg
x = f(p,s)	x_ps_R134a	X_PS_R134A(P,S)	C_X_PS_R134A(X,P,S)	Umkehrfunktion: Dampfanteil aus Druck und Entropie	kg/kg

Maßeinheiten: *t* in °C

p in bar

x in (kg gesättigter Dampf)/(kg Nassdampf)

Gültigkeitsbereich

Temperaturbereich: von $-103.30\,^{\circ}\text{C}$ bis $181.85\,^{\circ}\text{C}$ Druckbereich: von $0.0038956\,^{\circ}$ bar bis $700\,^{\circ}$ bar

Dichtebereich: bis 1591,7 kg/m³

Bezugszustand

h = 200 kJ/kg und s = 1 kJ/(kg K) bei $t = 0 ^{\circ}\text{C}$ auf der Siedelinie (x = 0)

Erläuterung zum Dampfanteil x

Das Nassdampfgebiet wird von den Unterprogrammen automatisch behandelt. Hierfür sind folgende Festlegungen für den Dampfanteil x zu beachten:

Falls der zu berechnende Zustandspunkt im Einphasengebiet (Flüssigkeit oder überhitzter Dampf) liegt, ist für x formal der Wert x = -1 einzugeben. Die Umkehrfunktionen liefern in diesem Fall ebenfalls den Wert x = -1 als Ergebnis.

Im Falle, dass Nassdampf vorliegt, hat *x* Werte zwischen 0 und 1 (den Wert x = 0 bei siedender Flüssigkeit, den Wert x = 1 bei Sattdampf). Die Umkehrfunktionen liefern in diesem Fall den entsprechenden Wert für *x* zwischen 0 und 1 als Ergebnis.

Im Fall Nassdampf genügt es, entweder den gegebenen Wert für t und p = -1000 oder den gegebenen Wert für p und t = -1000 sowie einen Wert für x zwischen 0 und 1 einzugeben. Wird bei Nassdampf sowohl t als auch p eingegeben, geht das Programm davon aus, dass die beiden Parameter zusammenpassen, d. h. der Dampfdruckkurve genügen. Ist dies nicht der Fall, wird für die zu berechnende Größe der gewählten Funktion der Wert -1000 als Ergebnis ausgegeben.

Nassdampfgebiet: Temperaturbereich von t = -103.30 °C bis $t_c = 101.06$ °C

Druckbereich von p = 0.0038956 bar bis $p_c = 40.59$ bar

Hinweis!

Erscheint als berechnetes Ergebnis der Wert - 1000, deutet dies darauf hin, dass Eingabewerte außerhalb des Gültigkeitsbereiches gewählt wurden. Genauere Angaben zu jeder Funktion und zu deren Gültigkeitsbereich können der Programmdokumentation im Abschnitt 3 entnommen werden.

2. Nutzung von FluidEXLGraphics in Excel®

Zur komfortablen Stoffwertberechnung in Excel[®] steht das Add-In FluidEXL^{Graphics} zur Verfügung. Es ermöglicht innerhalb von Excel[®] den direkten Aufruf von Funktionen aus der Stoffwert-Bibliothek LibR134a für R134a. Des Weiteren ist die Darstellung der berechneten Stoffwerte in verschiedenen thermodynamischen Zustandsdiagrammen möglich.

2.1 Installation von FluidEXLGraphics

Im Falle, dass FluidEXL^{Graphics} noch nicht installiert, bzw. eine Version, die vor September 2002 ausgeliefert wurde, vorhanden ist, muss die im Folgenden beschriebene Erst-Installation durchgeführt werden.

Ist FluidEXL^{Graphics} bereits in der Version ab September 2002 installiert, sind lediglich die zu R134a gehörigen Dateien einzuspielen. Folgen Sie in diesem Fall dem Unterabschnitt "Hinzufügen der Bibliothek LibR134a".

Erst-Installation von FluidEXLGraphics

Bevor die Installation erfolgen kann, ist eine eventuell vorhandene Demo-Version oder eine vor September 2002 erworbenen Version von FluidEXL^{Graphics} gemäß deren Anleitung zu de-installieren.

Zur Erst-Installation von FluidEXL *Graphics* sind die folgenden Schritte auszuführen:

Da Windows[®] während der Installation gegebenenfalls neu gestartet wird, sollten des Weiteren alle geöffneten Windows-Anwendungen geschlossen werden.

Anschließend ist die CD FluidEXL Graphics mit LibR134a einzulegen.

Um die Installation zu starten, ist innerhalb von Windows[®] in der unteren Task-Leiste "Start", darin "Einstellungen" und darin "Systemsteuerung" anzuklicken. Im sich öffnenden Fenster muss anschließend "Software" doppelt angeklickt werden.

Im folgenden Dialogfenster ist die Taste "Installieren..." und im nächsten die Taste "Weiter >" anzuklicken. Im Dialogfenster "Installationsprogramm ausführen" erscheint jetzt automatisch unter "Befehlszeile für das Installationsprogramm:"

<CD-Laufwerk>:\FluidEXL Graphics Setup.exe.

Die Installation wird nun durch Anklicken der Taste "Fertig stellen" begonnen.

Es erscheint ein Menü mit dem Hinweis, dass alle Windows-Programme beendet sein sollten. Ist dies der Fall, kann durch Anklicken der Taste "Weiter" die Installation fortgesetzt werden.

Im folgenden Dialogfenster "Zielverzeichnis wählen" wird als Standard das Verzeichnis C:\Programme\FluidEXL_Graphics für die Installation von FluidEXL*Graphics* angeboten. Durch Betätigen der Taste "Verzeichnis wechseln..." kann das Zielverzeichnis gewechselt werden (vgl. Bild 2.1).

Bild 2.1: Auswahl des Installationsverzeichnisses

Abschließend ist die Taste "Weiter" anzuklicken. Im folgenden Menü "Installation beginnen" muss wiederum die Taste "Weiter" angeklickt werden, um die Installation von FluidEXL*Graphics* zu starten.

Bei bestimmten Einstellungen von Windows erscheint nun das Menü "Installieren" mit dem Hinweis, dass für die Installation Windows neu gestartet werden muss. Hierfür ist zunächst die CD von FluidEXL^{Graphics} zu entfernen und der Neustart durch Anklicken der Taste "OK" auszulösen. Nach dem erneuten Hochfahren ist die Installation von FluidEXL^{Graphics} nochmals von Anfang an auszuführen.

Ist die Installation schließlich erfolgreich, erscheint die Ausschrift "FluidEXL Graphics wurde erfolgreich installiert", die durch Anklicken der Taste "Fertigstellen" zu bestätigen ist.

Schließlich muss das Fenster "Systemsteuerung" geschlossen werden. Damit ist die Installation von FluidEXL*Graphics* beendet.

Bei der Installation wurden die Dateien

FluidEXL_Graphics.xla INSTALL_EXL.LOG

FluidEXL_Graphics.hlp UNWISE.EXE FluidGRAPH.ocx UNWISE.INI

in das gewählte Zielverzeichnis, im Beispiel C:\Programme\FluidEXL_Graphics, kopiert.

Außerdem wurde FluidGRAPH.ocx in Windows als OLE-Steuerelement registriert.

Im nächsten Schritt sind die auf der CD enthaltenen Dateien

FluidEXL_Graphics.xla

LibR134a.dll

LibR134a.hlp

Dforrt.dll

Msvcrt.dll

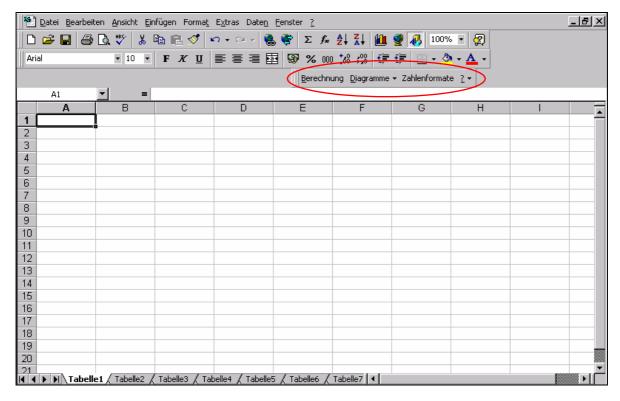
mit einem geeigneten Programm, wie Explorer oder Norton-Commander, in das gewählte Zielverzeichnis, im Beispiel C:\Programme\FluidEXL_Graphics, zu kopieren.

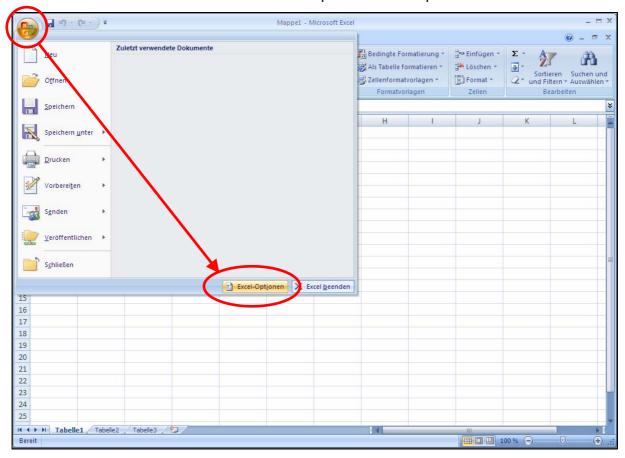
Registrierung von FluidEXL Graphics als Add-In in Excel® bis Version 2003

Nach der Installation muss FluidEXL^{Graphics} nun in Excel[®] als Add-In registriert werden. Hierfür ist Excel[®] zu starten und folgende Kommandos sind auszuführen:

- Anklicken von "Extras" in der oberen Menüzeile von Excel
- Anklicken des Menüpunkts "Add-In-Manager..."
 Nach gegebenenfalls längerer Wartezeit erscheint die Dialogbox "Add-In-Manager".
- Klicken auf die Schaltfläche "Durchsuchen..."
- In der folgenden Dialogbox durchklicken bis zum Zielverzeichnis, im Beispiel C:\Programme\FluidEXL_Graphics, darin anklicken des Dateinamens "FluidEXL_Graphics.xla" und Bestätigen durch Anklicken der Taste "OK"
- In der Auflistung des Add-In-Managers ist nun "FluidEXL Graphics" vorhanden. (Befindet sich ein Haken im Kontrollkästchen vor der Bezeichnung "FluidEXL Graphics", wird dieses Add-In bei jedem weiteren Start von Excel automatisch geladen. Das ist solange der Fall, bis der Haken wieder entfernt wird.)
- Um die Registrierung als Add-In vorzunehmen, ist in der Dialogbox "Add-In-Manager" die Taste "OK" anzuklicken.

Im oberen Menübereich von Excel erscheint die im Bild 2.2 rot gekennzeichnete neue Menüleiste von FluidEXL*Graphics*.

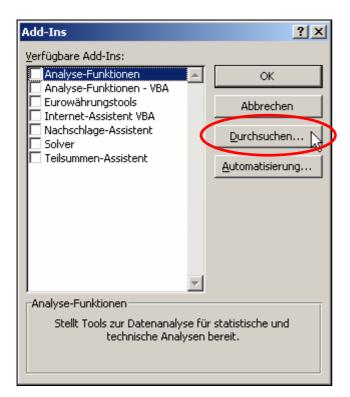


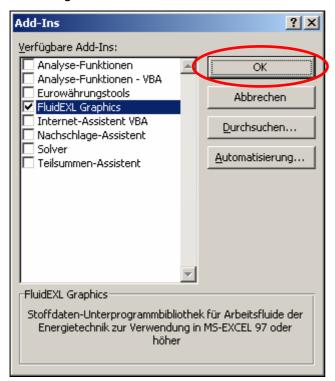

Bild 2.2: Menüleiste von FluidEXLGraphics

Über diese Menüleiste sind nun die Stoffwertfunktionen der DLL-Bibliothek "LibR134a" für Kohlendioxid aus Excel heraus anwählbar (vgl. Abschnitt 2.2).


Registrierung von FluidEXL^{Graphics} als Add-In in Excel[®] ab Version 2007

Nach der Installation muss FluidEXL^{Graphics} nun in Excel[®] ab Version 2007 als Add-In registriert werden. Hierfür ist Excel zu starten und folgende Kommandos sind auszuführen:


- Anklicken des Office® Logos in der linken oberen Ecke von Excel
- Im sich öffnenden Menü anklicken des Menüpunkts "Excel-Optionen"



- Im unteren Bereich neben "Verwalten" "Excel Add-Ins" auswählen, falls nicht angezeigt
- Anschließend im unteren Bereich auf "Gehe zu..." klicken
- Im folgenden Fenster klicken auf "Durchsuchen..." und anschließend durchklicken bis zum Zielverzeichnis, im Beispiel C:\Programme\FluidEXL_Graphics, darin anklicken des Dateinamens "FluidEXL_Graphics.xla" und Bestätigen durch Anklicken der Taste "OK"

In der Auflistung des Add-In-Managers ist nun "FluidEXL Graphics" vorhanden.
 (Befindet sich ein Haken im Kontrollkästchen vor der Bezeichnung "FluidEXL Graphics", wird dieses Add-In bei jedem weiteren Start von Excel automatisch geladen. Das ist solange der Fall, bis der Haken wieder entfernt wird.)

- Um die Registrierung als Add-In vorzunehmen, ist in der Dialogbox "Add-Ins" die Taste "OK" anzuklicken.

Zur späteren Nutzung von FluidEXL^{Graphics} im folgenden Beispiel ist auf den im Bild gekennzeichneten Menüpunk "Add-Ins" zu klicken.

Im oberen Menübereich von Excel erscheint die im folgenden Bild rot gekennzeichnete neue Menüleiste von FluidEXL*Graphics*.

Damit ist die Installation von FluidEXL^{Graphics} in Excel ab Version 2007 beendet. Die Nutzung von FluidEXL^{Graphics} erfolgt analog der Beschreibung für Excel bis Version 2007.

Hinzufügen der Bibliothek LibR134a

Falls FluidEXL^{Graphics} als Version ab September 2002 bereits installiert ist, sind lediglich die auf der CD enthaltenen Dateien

FluidEXL_Graphics.xla

LibR134a.dll

LibR134a.hlp

Dforrt.dll

Msvcrt.dll

in das Verzeichnis, das zur Installation von FluidEXL^{Graphics} gewählt wurde (im Beispiel C:\Programme\FluidEXL_Graphics), mit einem geeigneten Programm, wie Explorer[®] oder Windows- bzw. Norton-Commander, zu kopieren. Die Stoffwertfunktionen der DLL-Bibliothek "LibR134a" für R134a sind nun aus Excel heraus aufrufbar (vgl. Abschnitt 2.2).

Online-Hilfesysteme in FluidEXL Graphics

FluidEXL^{Graphics} enthält ausführliche Online-Hilfen. Allgemeine Informationen können innerhalb von Excel[®] wie folgt erhalten werden:

- Anklicken von "Hilfe" in der Menüleiste von FluidEXL Graphics .

Informationen zu jeder Stoffwertfunktion sind erreichbar über:

- Anklicken von "Berechnungen" in der Menüleiste von FluidEXL^{Graphics}
- Im sich öffnenden Dialogfenster "Funktion einfügen" unter "Kategorie:" die Bibliothek "R134a LibR134a" suchen und anklicken
- Anklicken der Taste "?" in der linken unteren Ecke des Dialogfensters "Funktion einfügen"
- Im erscheinenden Menü "Office-Assistent" anklicken von "Hilfe zu diesem Feature"
- Im nächsten Menü anklicken von "Hilfe zur ausgewählten Funktion".

Wenn die Funktionshilfe LibR134a.hlp nicht gefunden wurde, dann bestätigen Sie die Frage, ob Sie selbst nach ihr suchen wollen, mit "Ja". Im sich öffnenden Menü wählen Sie im FluidEXL Graphics Installationsverzeichnis, im Beispiel C:\Programme\FluidEXL_Graphics, die Datei LibR134a.hlp aus und bestätigen Ihre Auswahl mit "Öffnen".

2.2 Beispiel: Berechnung von h = f(p,t,x)

Nach dem Starten von Excel[®] soll zunächst die spezifische Enthalpie h als Funktion von Druck p, Temperatur t und Dampfanteil x mit FluidEXLGraphics berechnet werden. Hierfür sind die folgenden Bearbeitungsschritte auszuführen:

Eintragen eines Wertes für p in bar in eine Zelle
 (Zustandsbereich: p = 0.0038956 bar ... 700 bar)

⇒ z. B.: Eintragen des Wertes 10 in Zelle A2

- Eintragen eines Wertes für *t* in °C in eine Zelle

(Zustandsbereich: $t = -103.30 \, ^{\circ}\text{C} \, ... \, 181.85 \, ^{\circ}\text{C}$)

⇒ z. B.: Eintragen des Wertes 25 in Zelle B2

- Eintragen eines Wertes für x in kg gesättigter Dampf/kg Nassdampf in eine Zelle Da das Nassdampfgebiet vom Programm automatisch behandelt wird, sind die folgenden Festlegungen bei der Wertevorgabe für den Dampfanteil x zu beachten:

Falls der zu berechnende Zustandspunkt im Einphasengebiet (Flüssigkeit oder überhitzter Dampf) liegt, das heißt p und t sind gegeben, ist in die Zelle von x formal der Wert x = -1 einzutragen.

Im Falle, dass Nassdampf vorliegt, ist für x der gegebene Wert zwischen 0 und 1 einzutragen (Wert = 0 bei siedender Flüssigkeit, Wert = 1 bei Sattdampf). In diesem Fall genügt es, entweder den gegebenen Wert für t und p = -1000 oder den gegebenen Wert für p und t = -1000 sowie den Wert für x = 0 ... 1 einzutragen. Wird bei Nassdampf dennoch p und t und x vorgegeben, prüft das Programm zunächst, ob p und t der Dampfdruckkurve genügen. Ist dies nicht der Fall, erhält die später berechnete Enthalpie das Ergebnis -1000.

(Dampfdruckkurve von R134a: $t_{\rm t}$ = -103.30 °C ... $t_{\rm c}$ = 101.06 °C $p_{\rm t}$ = 0.0038956 bar ... $p_{\rm c}$ = 40.59 bar)

⇒ z. B. Eintragen des Wertes -1 in die Zelle C2

- Anklicken der Zelle, in die die berechnete Enthalpie h in kJ/kg geschrieben werden soll
 ⇒ z. B. Anklicken der Zelle D2
- Anklicken von "Berechnung" in der Menüleiste von FluidEXL^{Graphics} Es erscheint das im Bild 2.3 dargestellte Menü "Funktion einfügen".

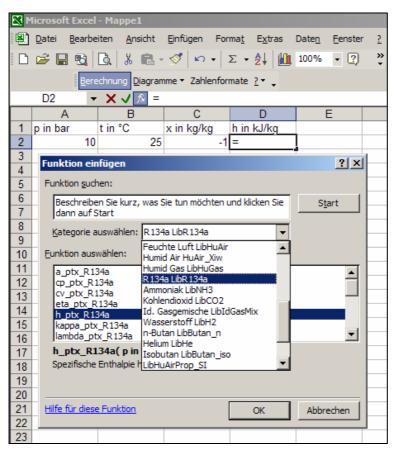


Bild 2.3: Auswahl der Bibliothek und der Funktion

- In der Listbox neben "Kategorie auswählen:" die Bibliothek "R134a LibR134a" suchen und anklicken
- In der Listbox unter "Funktion auswählen:" die Funktion h_ptx_R134a suchen und anklicken
 - An dieser Stelle ist es möglich, durch Anklicken von "<u>Hilfe für diese Funktion</u>" nähere Informationen über Gültigkeitsbereich, Maßeinheiten, Fehlerreaktionen etc. zu erhalten
- Anklicken von "OK"
 Es erscheint das in Bild 2.4 dargestellte Menü.

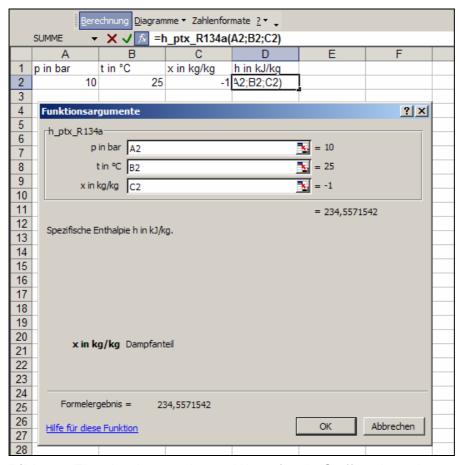


Bild 2.4: Eingabe der gegebenen Werte für die Stoffwertberechnung

- Der Cursor befindet sich im Fenster neben "p in bar". Die Eingabe des Wertes für *p* kann nun entweder durch Anklicken der Zelle, in der der Wert für *p* steht oder durch Eintragen der Zelle mit dem Wert für p oder durch direktes Eintragen des Wertes von *p* erfolgen.
- Mit dem Cursor in das Fenster neben "t in °C" gehen, anklicken und anschließend die Nummer der Zelle mit dem Wert für t eintragen bzw. auf die Zelle mit dem Wert für t klicken oder den Wert für t direkt eintragen
- Mit dem Cursor in das Fenster neben "x in kg/kg" gehen, anklicken und anschließend die Nummer der Zelle mit dem Wert für x eintragen bzw. auf die Zelle mit dem Wert für x klicken oder den Wert für x direkt eintragen
- Anklicken der Taste "OK"

Es erscheint das Ergebnis für *h* in kJ/kg in der gewünschten Zelle.

⇒ Das Ergebnis für das vorliegende Beispiel muss h = -234.5571542 kJ/kg betragen.

Damit ist die Berechnung von h = f(p,t,x) ausgeführt. Nun können die Werte für p, t oder x in den zugehörigen Zellen beliebig verändert werden. Die Enthalpie wird bei jeder Änderung neu berechnet und aktualisiert, das heißt, der Datenfluss von Excel bleibt erhalten.

Hinweis!

Erscheint als berechnetes Ergebnis der Wert -1000, deutet dies darauf hin, dass Eingabewerte außerhalb des Gültigkeitsbereiches von LibR134a gewählt wurden. Genauere Angaben zu jeder Funktion und zu deren Gültigkeitsbereich sind der Programmdokumentation zu entnehmen.

Welche weiteren Stoffwertfunktionen mit FluidEXL*Graphics* berechenbar sind, zeigt die Zusammenstellung im Abschnitt 1.

Zahlenformate

Für die Berechnungen mit FluidEXL^{Graphics} ist es möglich, die gewünschten Zahlenformate vorab zu wählen.

Die Einstellung wird, wie im Folgenden dargestellt, vorgenommen:

- Anklicken der betreffenden Zelle bzw. Markieren und Anklicken der betreffenden Zellen, der bzw. denen ein Format zugeordnet werden soll (Bei leeren Zellen wird das neue Format wirksam, wenn ihnen ein Wert zugewiesen wird.)
- Anklicken von "Zahlenformate" in der Menüleiste von FluidEXL Graphics.
- In der sich öffnenden Dialogbox Markieren des gewünschten Zahlenformates:

"STD - Standard" - Nichtsignifikante Nullen nach dem Komma werden unterdrückt

"FIX - feste Nachkomma-Stellenanzahl" - Alle eingestellten Dezimalstellen werden angezeigt, auch nichtsignifikante Nullen

"SCI - wissenschaftliche Schreibweise" - Die Zahlendarstellung erfolgt immer mit Zehnerpotenz und der eingestellten Anzahl Dezimalstellen

- Festlegen der "Anzahl der Nachkommastellen" durch Eintragung der Zahl in das zugehörige Fenster
- Bestätigen durch Anklicken der Taste "OK"

Die folgende Tabelle soll für die Zahl 1,230 die wählbaren Formate, das heißt die Zahlendarstellung in der zugehörigen Zelle, bei einer eingestellten "Anzahl der Nachkommastellen" von 3 veranschaulichen:

STD	1,23	
FIX	1,230	
SCI	1,230E+00	

Diese Formatierung kann auch auf bereits berechnete Zellen angewendet werden.

2.3 De-Installation von FluidEXLGraphics

Im Falle, dass nur die Bibliothek LibR134a entfernt werden soll, sind die Dateien

LibR134a.dll LibR134a.hlp

im Verzeichnis, das zur Installation von FluidEXLGraphics gewählt wurde (im Beispiel C:\Programme\FluidEXLGraphics), mit einem geeigneten Programm, wie Explorer $^{(i)}$ oder Norton-Commander, zu löschen.

Im Falle, dass FluidEXL^{Graphics} vollständig de-installiert werden soll, sind die folgenden Schritte auszuführen. Als erstes muss die Registrierung von FluidEXL_Graphics.xla in Excel[®] rückgängig gemacht werden.

Hierfür ist innerhalb von Excel in der oberen Menüzeile "Extras" und darin "Add-In-Manager..." anzuklicken. Im Fenster des nach gewisser Zeit erscheinenden Menüs ist links neben dem Eintrag "FluidEXL Graphics" der Haken durch Anklicken zu beseitigen und danach die Taste "OK" anzuklicken. Es verschwindet die zusätzliche Menüleiste von FluidEXL *Graphics* im oberen Teil des Fensters von Excel. Anschließend sollte Excel geschlossen werden.

Für den Fall, dass die Menüleiste von FluidEXL*Graphics* nicht verschwindet, sind folgende Schritte notwendig:

In der oberen Menüleiste von Excel ist "Ansicht", darin "Symbolleisten" und darin "Anpassen..." anzuklicken. In der erscheinenden Listbox befindet sich am Ende der Eintrag "FluidEXL Graphics", dieser ist durch Anklicken zu markieren. Die Löschung erfolgt nun durch Anklicken der Taste "Löschen". Die anschließende Frage, ob die Symbolleiste wirklich gelöscht werden soll, ist durch Anklicken der Taste "OK" zu beantworten.

Im nächsten Schritt sind die Dateien

FluidEXL Graphics.xla

FluidEXL_Graphics.hlp

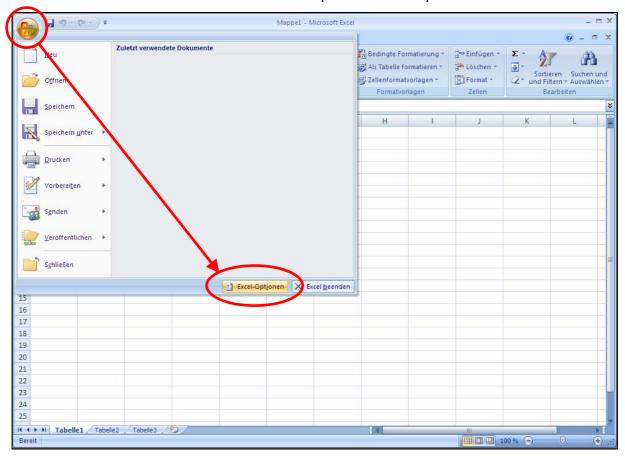
LibR134a.dll

LibR134a.hlp

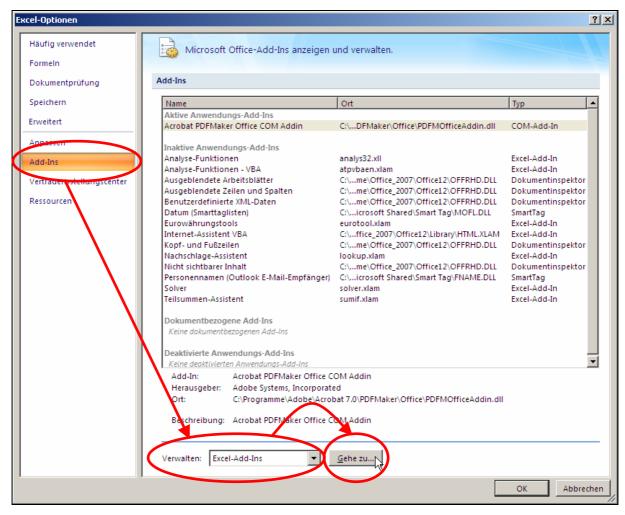
Dforrt.dll

Msvcrt.dll

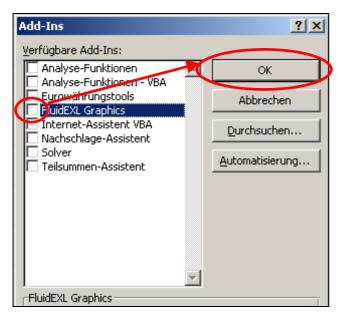
im Verzeichnis, das zur Installation von FluidEXL *Graphics* gewählt wurde (im Beispiel C:\Programme\FluidEXL_Graphics), mit einem geeigneten Programm, wie Explorer oder Norton-Commander, zu löschen.


Um FluidEXL Graphics aus Windows® und von der Festplatte zu entfernen, ist innerhalb von Windows® in der unteren Task-Leiste die Taste "Start", darin "Einstellungen" und darin "Systemsteuerung" anzuklicken. Anschließend muss "Software" doppelt angeklickt werden. In der Listbox des sich öffnenden Menüs "Eigenschaften von Software" ist "FluidEXL Graphics" durch Anklicken auszuwählen und danach auf die Taste "Hinzufügen/Entfernen..." zu klicken. Im folgenden Dialog ist "Automatisch" zu markieren und anschließend die Taste "Weiter >" anzuklicken. Das folgende Menü "Deinstallation durchführen" ist durch Anklicken der Taste "Ende" zu bestätigen. Die Frage, ob alle gemeinsamen Komponenten entfernt werden sollen, ist mit "Alles" zu beantworten. Schließlich müssen die Fenster "Eigenschaften von Software" und danach "Systemsteuerung" geschlossen werden.

Damit ist die De-Installation von FluidEXLGraphics beendet.


De-Registrierung von FluidEXL Graphics als Add-In in Excel® ab Version 2007

Um das Add-In FluidEXL^{Graphics} in Excel[®] ab Version 2007 zu de-registrieren ist Excel zu starten und folgende Kommandos sind auszuführen:


- Anklicken des Office[®] Logos in der linken oberen Ecke von Excel
- Im sich öffnenden Menü anklicken des Menüpunkts "Excel-Optionen"

- Im unteren Bereich neben "Verwalten" "Excel Add-Ins" auswählen, falls nicht angezeigt
- Anschließend im unteren Bereich auf "Gehe zu..." klicken
- Im folgenden Fenster ist das Häkchen vor "FluidEXL Graphics" zu entfernen. Durch klicken auf die Taste "OK" wird die Eingabe bestätigt.

Um FluidEXL^{Graphics} aus Windows[®] und von der Festplatte zu entfernen, ist innerhalb von Windows in der unteren Task-Leiste die Taste "Start", darin "Einstellungen" und darin "Systemsteuerung" anzuklicken. Anschließend muss "Software" doppelt angeklickt werden. In der Listbox des sich öffnenden Menüs "Eigenschaften von Software" ist "FluidEXL Graphics" durch Anklicken auszuwählen und danach auf die Taste "Hinzufügen/Entfernen..." zu klicken. Im folgenden Dialog ist "Automatisch" zu markieren und anschließend die Taste "Weiter >" anzuklicken. Das folgende Menü "Deinstallation durchführen" ist durch Anklicken der Taste "Ende" zu bestätigen. Die Frage, ob alle gemeinsamen Komponenten entfernt werden sollen, ist mit "Alles" zu beantworten. Schließlich müssen die Fenster "Eigenschaften von Software" und danach "Systemsteuerung" geschlossen werden.

Damit ist die De-Installation von FluidEXL Graphics beendet.

3. Programmdokumentation

Temperaturleitfähigkeit a = f(p, t, x)

Name in FluidEXL Graphics: a_ptx_R134a

Unterprogramm mit Funktionswert: REAL*8 FUNCTION A_PTX_R134A(P,T,X)

für Aufruf aus Fortran REAL*8 P,T,X

Unterprogramm mit Parameter: INTEGER*4 FUNCTION C_A_PTX_R134A(A,P,T,X)

für Aufruf aus DLL REAL*8 A,P,T,X

Eingabewerte

P - Druck p in bar

T - Temperatur t in °C

X - Dampfanteil *x* in (kg gesättigter Dampf)/(kg Nassdampf)

Rückgabewert

A_PTX_R134A, **A** bzw. **a_ptx_R134a** – Temperaturleitfähigkeit
$$a = \frac{\lambda^* V}{c_p}$$
 in m²/s

Gültigkeitsbereich

Temperaturbereich: von – 103.30 °C bis 181.85 °C Druckbereich: von 0.0038956 bar bis 700 bar

Dichtebereich: bis 1591,7 kg/m³

Erläuterung zum Dampfanteil x und zur Berechnung für siedende Flüssigkeit und gesättigten Dampf

Das Nassdampfgebiet wird automatisch behandelt. Hierfür sind die folgenden Festlegungen für den Dampfanteil *x* zu beachten:

Falls der zu berechnende Zustandspunkt im Einphasengebiet (Flüssigkeit oder überhitzter Dampf) liegt, ist für x formal x = -1 einzugeben.

Im Falle, dass der zu berechnende Zustandspunkt auf der Siedelinie liegt, ist für x der Wert x = 0 und im Fall gesättigten Dampfes (Taulinie) der Wert x = 1 einzugeben. Eine Berechnung für Werte von x zwischen 0 und 1 ist nicht möglich.

Bezüglich Druck und Temperatur genügt es bei siedender Flüssigkeit oder gesättigtem Dampf, entweder den gegebenen Wert für t und p = -1000 oder den gegebenen Wert für p und t = -1000 sowie den Wert für x (x = 0 oder x = 1) vorzugeben. Wird sowohl t als auch p und x eingegeben, geht das Programm davon aus, dass p und t die Dampfdruckkurve repräsentieren.

Siede- und Taulinie: Temperaturbereich von t = -103.30 °C bis $t_c = 101.06$ °C

Druckbereich von $p_t = 0.0038956$ bar bis $p_c = 40.5911$ bar

Reaktion bei fehlerhaften Eingabewerten

Ergebnis A_PTX_R134A, A = -1000 bzw. a_ptx_R134a = -1000 für Eingabewerte:

Einphasengebiet: p > 700 bar oder p < 0.0038956 bar oder

(x = -1) $t > 181.85 \,^{\circ}\text{C}$ oder $t < -103.30 \,^{\circ}\text{C}$ oder $\rho > 1591,7 \,^{\circ}\text{kg/m}^3$

Siede- oder Taulinie: bei p = -1000 und t > 101.06 °C oder t < -103.30°C

bei t = -1000 und p > 40.59 bar oder p < 0.0038956 bar oder

bei p > 40.59 bar oder p < 0.0038956 bar und

t > 101.06 °C oder *t* < -103.30 °C

Literatur: [16], [23]

Spezifische isobare Wärmekapazität $c_p = f(p,t,x)$

Name in FluidEXL Graphics: cp_ptx_R134a

Unterprogramm mit Funktionswert: REAL*8 FUNCTION CP_PTX_R134A(P,T,X)

für Aufruf aus Fortran REAL*8 P,T,X

Unterprogramm mit Parameter: INTEGER*4 FUNCTION C_CP_PTX_R134A(CP,P,T,X)

für Aufruf aus DLL REAL*8 CP,P,T,X

Eingabewerte

P - Druck p in bar

T - Temperatur t in °C

X - Dampfanteil *x* in (kg gesättigter Dampf)/(kg Nassdampf)

Rückgabewert

CP_PTX_R134A, CP bzw. cp_ptx_R134a - spezifische isobare Wärmekapazität c₀ in kJ/(kg K)

Gültigkeitsbereich

Temperaturbereich: von – 103.30 °C bis 181.85 °C Druckbereich: von 0.0038956 bar bis 700 bar

Dichtebereich: bis 1591,7 kg/m³

Erläuterung zum Dampfanteil x und zur Berechnung für siedende Flüssigkeit und gesättigten Dampf

Das Nassdampfgebiet wird automatisch behandelt. Hierfür sind die folgenden Festlegungen für den Dampfanteil *x* zu beachten:

Falls der zu berechnende Zustandspunkt im Einphasengebiet (Flüssigkeit oder überhitzter Dampf) liegt, ist für x formal x = -1 einzugeben.

Im Falle, dass der zu berechnende Zustandspunkt auf der Siedelinie liegt, ist für x der Wert x = 0 und im Fall gesättigten Dampfes (Taulinie) der Wert x = 1 einzugeben. Eine Berechnung für Werte von x zwischen 0 und 1 ist nicht möglich.

Bezüglich Druck und Temperatur genügt es bei siedender Flüssigkeit oder gesättigtem Dampf, entweder den gegebenen Wert für t und p = -1000 oder den gegebenen Wert für p und t = -1000 sowie den Wert für x (x = 0 oder x = 1) vorzugeben. Wird sowohl t als auch p und x eingegeben, geht das Programm davon aus, dass p und t die Dampfdruckkurve repräsentieren.

Siede- und Taulinie: Temperaturbereich von t = -103.30 °C bis $t_c = 101.06$ °C

Druckbereich von $p_t = 0.0038956$ bar bis $p_c = 40.5911$ bar

Reaktion bei fehlerhaften Eingabewerten

Ergebnis CP_PTX_R134A, CP = - 1000 bzw. cp_ptx_R134a = - 1000 für Eingabewerte:

Einphasengebiet: p > 700 bar oder p < 0.0038956 bar oder

(x = -1) $t > 181.85 \, ^{\circ}\text{C} \, \text{oder} \, t < -103.30 \, ^{\circ}\text{C} \, \text{oder} \, \rho > 1591,7 \, \text{kg/m}^3$

Siede- oder Taulinie: bei p = -1000 und t > 101.06 °C oder t < -103.30°C

bei t = -1000 und p > 40.59 bar oder p < 0.0038956 bar oder

bei p > 40.59 bar oder p < 0.0038956 bar und

t > 101.06 °C oder t < -103.30 °C

Spezifische isochore Wärmekapazität $c_v = f(p,t,x)$

Name in FluidEXL Graphics: cv_ptx_R134a

Unterprogramm mit Funktionswert: REAL*8 FUNCTION CV_PTX_R134A(P,T,X)

für Aufruf aus Fortran REAL*8 P,T,X

Unterprogramm mit Parameter: INTEGER*4 FUNCTION C_CV_PTX_R134A(CV,P,T,X)

für Aufruf aus DLL REAL*8 CV,P,T,X

Eingabewerte

P - Druck p in bar

T - Temperatur t in °C

X - Dampfanteil *x* in (kg gesättigter Dampf)/(kg Nassdampf)

Rückgabewert

CV_PTX_R134A, CV bzw. cv_ptx_R134a - spezifische isochore Wärmekapazität c_v in kJ/(kg K)

Gültigkeitsbereich

Temperaturbereich: von – 103.30 °C bis 181.85 °C Druckbereich: von 0.0038956 bar bis 700 bar

Dichtebereich: bis 1591,7 kg/m³

Erläuterung zum Dampfanteil x und zur Berechnung für siedende Flüssigkeit und gesättigten Dampf

Das Nassdampfgebiet wird automatisch behandelt. Hierfür sind die folgenden Festlegungen für den Dampfanteil *x* zu beachten:

Falls der zu berechnende Zustandspunkt im Einphasengebiet (Flüssigkeit oder überhitzter Dampf) liegt, ist für *x* formal x = - 1 einzugeben.

Im Falle, dass der zu berechnende Zustandspunkt auf der Siedelinie liegt, ist für x der Wert x = 0 und im Fall gesättigten Dampfes (Taulinie) der Wert x = 1 einzugeben. Eine Berechnung für Werte von x zwischen 0 und 1 ist nicht möglich.

Bezüglich Druck und Temperatur genügt es bei siedender Flüssigkeit oder gesättigtem Dampf, entweder den gegebenen Wert für t und p = -1000 oder den gegebenen Wert für p und t = -1000 sowie den Wert für x (x = 0 oder x = 1) vorzugeben. Wird sowohl t als auch p und x eingegeben, geht das Programm davon aus, dass p und t die Dampfdruckkurve repräsentieren.

Siede- und Taulinie: Temperaturbereich von t = -103.30 °C bis $t_c = 101.06$ °C

Druckbereich von $p_t = 0.0038956$ bar bis $p_c = 40.5911$ bar

Reaktion bei fehlerhaften Eingabewerten

Ergebnis CV_PTX_R134A, CV = - 1000 bzw. cv_ptx_R134a = - 1000 für Eingabewerte:

Einphasengebiet: p > 700 bar oder p < 0.0038956 bar oder

(x = -1) $t > 181.85 \, ^{\circ}\text{C} \, \text{oder} \, t < -103.30 \, ^{\circ}\text{C} \, \text{oder} \, \rho > 1591,7 \, \text{kg/m}^3$

Siede- oder Taulinie: bei p = -1000 und t > 101.06 °C oder t < -103.30°C

bei t = -1000 und p > 40.59 bar oder p < 0.0038956 bar oder

bei p > 40.59 bar oder p < 0.0038956 bar und

t > 101.06 °C oder t < -103.30 °C

Dynamische Zähigkeit $\eta = f(p,t,x)$

Name in FluidEXL eta_ptx_R134a

Unterprogramm mit Funktionswert: REAL*8 FUNCTION ETA_PTX_R134A(P,T,X)

für Aufruf aus Fortran REAL*8 P,T,X

Unterprogramm mit Parameter: INTEGER*4 FUNCTION C_ETA_PTX_R134A(ETA,P,T,X)

für Aufruf aus DLL REAL*8 ETA,P,T,X

Eingabewerte

P - Druck p in bar

T - Temperatur t in °C

X - Dampfanteil *x* in (kg gesättigter Dampf)/(kg Nassdampf)

Rückgabewert

ETA PTX R134A, ETA bzw. eta ptx R134a – dynamische Zähigkeit η in Pa s

Gültigkeitsbereich

Temperaturbereich: von – 103.30 °C bis 181.85 °C Druckbereich: von 0.0038956 bar bis 700 bar

Dichtebereich: bis 1591,7 kg/m³

Erläuterung zum Dampfanteil x und zur Berechnung für siedende Flüssigkeit und gesättigten Dampf

Das Nassdampfgebiet wird automatisch behandelt. Hierfür sind die folgenden Festlegungen für den Dampfanteil x zu beachten:

Falls der zu berechnende Zustandspunkt im Einphasengebiet (Flüssigkeit oder überhitzter Dampf) liegt, ist für x formal x = -1 einzugeben.

Im Falle, dass der zu berechnende Zustandspunkt auf der Siedelinie liegt, ist für x der Wert x = 0 und im Fall gesättigten Dampfes (Taulinie) der Wert x = 1 einzugeben. Eine Berechnung für Werte von x zwischen 0 und 1 ist nicht möglich.

Bezüglich Druck und Temperatur genügt es bei siedender Flüssigkeit oder gesättigtem Dampf, entweder den gegebenen Wert für t und p = -1000 oder den gegebenen Wert für p und t = -1000 sowie den Wert für x (x = 0 oder x = 1) vorzugeben. Wird sowohl t als auch p und x eingegeben, geht das Programm davon aus, dass p und t die Dampfdruckkurve repräsentieren.

Siede- und Taulinie: Temperaturbereich von t = -103.30 °C bis $t_c = 101.06$ °C

Druckbereich von $p_t = 0.0038956$ bar bis $p_c = 40.5911$ bar

Reaktion bei fehlerhaften Eingabewerten

Ergebnis ETA_PTX_R134A, ETA = - 1000 bzw. eta_ptx_R134a = - 1000 für Eingabewerte:

Einphasengebiet: p > 700 bar oder p < 0.0038956 bar oder

(x = -1) $t > 181.85 \, ^{\circ}\text{C} \, \text{oder} \, t < -103.30 \, ^{\circ}\text{C} \, \text{oder} \, \rho > 1591,7 \, \text{kg/m}^3$

Siede- oder Taulinie: bei p = -1000 und t > 101.06 °C oder t < -103.30°C

bei t = -1000 und p > 40.59 bar oder p < 0.0038956 bar oder

bei p > 40.59 bar oder p < 0.0038956 bar und

t > 101.06 °C oder t < -103.30 °C

Literatur: [16], [22]

Spezifische Enthalpie h = f(p,t,x)

Name in FluidEXL Graphics: h_ptx_R134a

Unterprogramm mit Funktionswert: REAL*8 FUNCTION H_PTX_R134A(P,T,X)

für Aufruf aus Fortran REAL*8 P,T,X

Unterprogramm mit Parameter: INTEGER*4 FUNCTION C_H_PTX_R134A(H,P,T,X)

für Aufruf aus DLL REAL*8 H,P,T,X

Eingabewerte

P - Druck *p* in bar

T - Temperatur t in °C

X - Dampfanteil x in (kg gesättigter Dampf)/(kg Nassdampf)

Rückgabewert

H_PTX_R134A, **H** bzw. **h_ptx_R134a** - spezifische Enthalpie *h* in kJ/kg

Gültigkeitsbereich

Temperaturbereich: von – 103.30 °C bis 181.85 °C Druckbereich: von 0.0038956 bar bis 700 bar

Dichtebereich: bis 1591,7 kg/m³

Erläuterung zum Dampfanteil x und zur Berechnung für siedende Flüssigkeit und gesättigten Dampf

Das Nassdampfgebiet wird automatisch behandelt. Hierfür sind die folgenden Festlegungen für den Dampfanteil *x* zu beachten:

Falls der zu berechnende Zustandspunkt im Einphasengebiet (Flüssigkeit oder überhitzter Dampf) liegt, ist für *x* formal x = - 1 einzugeben.

Im Falle, dass der zu berechnende Zustandspunkt im Nassdampfgebiet vorliegt, ist für x ein Wert zwischen 0 und 1 (der Wert x = 0 bei siedender Flüssigkeit, der Wert x = 1 bei Sattdampf) einzugeben.

Bezüglich Druck und Temperatur genügt es bei Nassdampf, entweder den gegebenen Wert für t und p = -1000 oder den gegebenen Wert für p und t = -1000 sowie den Wert für t (t und vorzugeben. Wird sowohl t als auch t und t eingegeben, geht das Programm davon aus, dass t und t die Dampfdruckkurve repräsentieren.

Siede- und Taulinie: Temperaturbereich von t = -103.30 °C bis $t_c = 101.06$ °C

Druckbereich von $p_t = 0.0038956$ bar bis $p_c = 40.5911$ bar

Reaktion bei fehlerhaften Eingabewerten

Ergebnis H_PTX_R134A, H = - 1000 bzw. h_ptx_R134a = - 1000 für Eingabewerte:

Einphasengebiet: p > 700 bar oder p < 0.0038956 bar oder

(x = -1) t > 181.85 °C oder t < -103.30 °C oder $\rho > 1591,7$ kg/m³

Siede- oder Taulinie: bei p = -1000 und t > 101.06 °C oder t < -103.30°C

bei t = -1000 und p > 40.59 bar oder p < 0.0038956 bar oder

bei p > 40.59 bar oder p < 0.0038956 bar und

t > 101.06 °C oder *t* < -103.30 °C

Isentropenexponent K = f(p,t,x)

Name in FluidEXL Graphics: kappa_ptx_R134a

Unterprogramm mit Funktionswert: REAL*8 FUNCTION KAP_PTX_R134A(P,T,X)

für Aufruf aus Fortran REAL*8 P,T,X

Unterprogramm mit Parameter: INTEGER*4 FUNCTION C_KAP_PTX_R134A(KAP,P,T,X)

für Aufruf aus DLL REAL*8 KAP,P,T,X

Eingabewerte

P - Druck *p* in bar

T - Temperatur t in °C

X - Dampfanteil x in (kg gesättigter Dampf)/(kg Nassdampf)

Rückgabewert

KAP_PTX_R134A, KAP bzw. kappa_ptx_R134a – Isentropenexponent $\kappa = \frac{w^2}{\rho^* v}$

Gültigkeitsbereich

Temperaturbereich: von – 103.30 °C bis 181.85 °C Druckbereich: von 0.0038956 bar bis 700 bar

Dichtebereich: bis 1591,7 kg/m³

Erläuterung zum Dampfanteil x und zur Berechnung für siedende Flüssigkeit und gesättigten Dampf

Das Nassdampfgebiet wird automatisch behandelt. Hierfür sind die folgenden Festlegungen für den Dampfanteil *x* zu beachten:

Falls der zu berechnende Zustandspunkt im Einphasengebiet (Flüssigkeit oder überhitzter Dampf) liegt, ist für x formal x = -1 einzugeben.

Im Falle, dass der zu berechnende Zustandspunkt auf der Siedelinie liegt, ist für x der Wert x = 0 und im Fall gesättigten Dampfes (Taulinie) der Wert x = 1 einzugeben. Eine Berechnung für Werte von x zwischen 0 und 1 ist nicht möglich.

Bezüglich Druck und Temperatur genügt es bei siedender Flüssigkeit oder gesättigtem Dampf, entweder den gegebenen Wert für t und p = -1000 oder den gegebenen Wert für p und t = -1000 sowie den Wert für t (t = 0 oder t = 1) vorzugeben. Wird sowohl t als auch t und t eingegeben, geht das Programm davon aus, dass t und t die Dampfdruckkurve repräsentieren.

Siede- und Taulinie: Temperaturbereich von t = -103.30 °C bis $t_c = 101.06$ °C

Druckbereich von $p_t = 0.0038956$ bar bis $p_c = 40.5911$ bar

Reaktion bei fehlerhaften Eingabewerten

Ergebnis KAP_PTX_R134A, KAP = - 1000 bzw. kappa_ptx_R134a = - 1000 für Eingabewerte:

Einphasengebiet: p > 700 bar oder p < 0.0038956 bar oder

(x = -1) $t > 181.85 \, ^{\circ}\text{C} \, \text{oder} \, t < -103.30 \, ^{\circ}\text{C} \, \text{oder} \, \rho > 1591,7 \, \text{kg/m}^3$

Siede- oder Taulinie: bei p = -1000 und t > 101.06 °C oder t < -103.30°C

bei t = -1000 und p > 40.59 bar oder p < 0.0038956 bar oder

bei p > 40.59 bar oder p < 0.0038956 bar und

t > 101.06 °C oder t < -103.30 °C

Wärmeleitfähigkeit $\lambda = f(p,t,x)$

Name in FluidEXL Graphics: lambda_ptx_R134a

Unterprogramm mit Funktionswert: REAL*8 FUNCTION LAM_PTX_R134A(P,T,X)

für Aufruf aus Fortran REAL*8 P,T,X

Unterprogramm mit Parameter: INTEGER*4 FUNCTION C_LAM_PTX_R134A(LAM,P,T,X)

für Aufruf aus DLL REAL*8 LAM,P,T,X

Eingabewerte

P - Druck p in bar

T - Temperatur t in °C

X - Dampfanteil x in (kg gesättigter Dampf)/(kg Nassdampf)

Rückgabewert

LAM_PTX_R134A, **LAM** bzw. **lambda_ptx_R134a** – Wärmeleitfähigkeit λ in W/m K

Gültigkeitsbereich

Temperaturbereich: von – 103.30 °C bis 181.85 °C Druckbereich: von 0.0038956 bar bis 700 bar

Dichtebereich: bis 1591,7 kg/m³

Erläuterung zum Dampfanteil x und zur Berechnung für siedende Flüssigkeit und gesättigten Dampf

Das Nassdampfgebiet wird automatisch behandelt. Hierfür sind die folgenden Festlegungen für den Dampfanteil *x* zu beachten:

Falls der zu berechnende Zustandspunkt im Einphasengebiet (Flüssigkeit oder überhitzter Dampf) liegt, ist für *x* formal x = - 1 einzugeben.

Im Falle, dass der zu berechnende Zustandspunkt auf der Siedelinie liegt, ist für x der Wert x = 0 und im Fall gesättigten Dampfes (Taulinie) der Wert x = 1 einzugeben. Eine Berechnung für Werte von x zwischen 0 und 1 ist nicht möglich.

Bezüglich Druck und Temperatur genügt es bei siedender Flüssigkeit oder gesättigtem Dampf, entweder den gegebenen Wert für t und p = -1000 oder den gegebenen Wert für p und t = -1000 sowie den Wert für x (x = 0 oder x = 1) vorzugeben. Wird sowohl t als auch p und x eingegeben, geht das Programm davon aus, dass p und t die Dampfdruckkurve repräsentieren.

Siede- und Taulinie: Temperaturbereich von t = -103.30 °C bis $t_c = 101.06$ °C

Druckbereich von $p_t = 0.0038956$ bar bis $p_c = 40.5911$ bar

Reaktion bei fehlerhaften Eingabewerten

Ergebnis LAM_PTX_R134A, LAM = - 1000 bzw. lambda_ptx_R134a = - 1000 für Eingabewerte:

Einphasengebiet: p > 700 bar oder p < 0.0038956 bar oder

(x = -1) t > 181.85 °C oder t < -103.30 °C oder $\rho > 1591,7$ kg/m³ Siede- oder Taulinie: bei p = -1000 und t > 101.06 °C oder t < -103.30°C

bei t = -1000 und p > 40.59 bar oder p < 0.0038956 bar oder

bei p > 40.59 bar oder p < 0.0038956 bar und

t > 101.06 °C oder t < -103.30 °C

Literatur: [16], [23]

Kinematische Viskosität v = f(p,t,x)

Name in FluidEXL Graphics: ny_ptx_R134a

Unterprogramm mit Funktionswert: REAL*8 FUNCTION NY_PTX_ R134A(P,T,X)

für Aufruf aus Fortran REAL*8 P,T,X

Unterprogramm mit Parameter: INTEGER*4 FUNCTION C_NY _PTX_ R134A(NY,P,T,X)

für Aufruf aus DLL REAL*8 NY,P,T,X

Eingabewerte

P - Druck *p* in bar **T** - Temperatur *t* in °C

X - Dampfanteil x in (kg gesättigter Dampf)/(kg Nassdampf)

Rückgabewert

NY_PTX_ R134A, **NY** bzw. **ny_ptx_** R134a – Kinematische Viskosität $v = \eta * v$ in m²/s

Gültigkeitsbereich

Temperaturbereich: von – 103.30 °C bis 181.85 °C Druckbereich: von 0.0038956 bar bis 700 bar

Dichtebereich: bis 1591,7 kg/m³

Erläuterung zum Dampfanteil x und zur Berechnung für siedende Flüssigkeit und gesättigten Dampf

Das Nassdampfgebiet wird automatisch behandelt. Hierfür sind die folgenden Festlegungen für den Dampfanteil *x* zu beachten:

Falls der zu berechnende Zustandspunkt im Einphasengebiet (Flüssigkeit oder überhitzter Dampf) liegt, ist für *x* formal x = - 1 einzugeben.

Im Falle, dass der zu berechnende Zustandspunkt auf der Siedelinie liegt, ist für x der Wert x = 0 und im Fall gesättigten Dampfes (Taulinie) der Wert x = 1 einzugeben. Eine Berechnung für Werte von x zwischen 0 und 1 ist nicht möglich.

Bezüglich Druck und Temperatur genügt es bei siedender Flüssigkeit oder gesättigtem Dampf, entweder den gegebenen Wert für t und p = -1000 oder den gegebenen Wert für p und t = -1000 sowie den Wert für x (x = 0 oder x = 1) vorzugeben. Wird sowohl t als auch p und x eingegeben, geht das Programm davon aus, dass p und t die Dampfdruckkurve repräsentieren.

Siede- und Taulinie: Temperaturbereich von t = -103.30 °C bis $t_c = 101.06$ °C

Druckbereich von $p_t = 0.0038956$ bar bis $p_c = 40.5911$ bar

Reaktion bei fehlerhaften Eingabewerten

Ergebnis NY_PTX_ R134A, NY= - 1000 bzw. ny_ptx_ R134a = - 1000 für Eingabewerte:

Einphasengebiet: p > 700 bar oder p < 0.0038956 bar oder

(x = -1) t > 181.85 °C oder t < -103.30 °C oder $\rho > 1591,7$ kg/m³ Siede- oder Taulinie: bei p = -1000 und t > 101.06 °C oder t < -103.30°C

bei t = -1000 und p > 40.59 bar oder p < 0.0038956 bar oder

bei p > 40.59 bar oder p < 0.0038956 bar und

t > 101.06 °C oder t < -103.30 °C

Literatur: [16], [22]

Prandtl-Zahl Pr = f(p,t,x)

Name in FluidEXL *Graphics*: Pr_ptx_R134a

Unterprogramm mit Funktionswert: REAL*8 FUNCTION PR_PTX_R134A(P,T,X)

für Aufruf aus Fortran REAL*8 P,T,X

Unterprogramm mit Parameter: INTEGER*4 FUNCTION C_PR _PTX_R134A(PR,P,T,X)

für Aufruf aus DLL REAL*8 PR,P,T,X

Eingabewerte

P - Druck *p* in bar

T - Temperatur t in °C

X - Dampfanteil x in (kg gesättigter Dampf)/(kg Nassdampf)

Rückgabewert

PR_PTX_R134A, PR bzw. Pr_ptx_R134a – Prandtl-Zahl
$$Pr = \frac{\eta * c_p}{\lambda}$$

Gültigkeitsbereich

Temperaturbereich: von – 103.30 °C bis 181.85 °C Druckbereich: von 0.0038956 bar bis 700 bar

Dichtebereich: bis 1591,7 kg/m³

Erläuterung zum Dampfanteil x und zur Berechnung für siedende Flüssigkeit und gesättigten Dampf

Das Nassdampfgebiet wird automatisch behandelt. Hierfür sind die folgenden Festlegungen für den Dampfanteil *x* zu beachten:

Falls der zu berechnende Zustandspunkt im Einphasengebiet (Flüssigkeit oder überhitzter Dampf) liegt, ist für x formal x = -1 einzugeben.

Im Falle, dass der zu berechnende Zustandspunkt auf der Siedelinie liegt, ist für x der Wert x = 0 und im Fall gesättigten Dampfes (Taulinie) der Wert x = 1 einzugeben. Eine Berechnung für Werte von x zwischen 0 und 1 ist nicht möglich.

Bezüglich Druck und Temperatur genügt es bei siedender Flüssigkeit oder gesättigtem Dampf, entweder den gegebenen Wert für t und p = -1000 oder den gegebenen Wert für p und t = -1000 sowie den Wert für x (x = 0 oder x = 1) vorzugeben. Wird sowohl t als auch p und x eingegeben, geht das Programm davon aus, dass p und t die Dampfdruckkurve repräsentieren.

Siede- und Taulinie: Temperaturbereich von t = -103.30 °C bis $t_c = 101.06$ °C

Druckbereich von $p_t = 0.0038956$ bar bis $p_c = 40.5911$ bar

Reaktion bei fehlerhaften Eingabewerten

Ergebnis PR_PTX_ R134A, PR= - 1000 bzw. Pr_ptx_ R134a = - 1000 für Eingabewerte:

Einphasengebiet: p > 700 bar oder p < 0.0038956 bar oder

(x = -1) t > 181.85 °C oder t < -103.30 °C oder $\rho > 1591.7$ kg/m³

Siede- oder Taulinie: bei p = -1000 und t > 101.06 °C oder t < -103.30°C

bei t = -1000 und p > 40.59 bar oder p < 0.0038956 bar oder

bei p > 40.59 bar oder p < 0.0038956 bar und

t > 101.06 °C oder *t* < -103.30 °C

Literatur: [16], [22], [23]

Dampfdruck $p_s = f(t)$

Name in FluidEXL Graphics: ps_t_R134a

Unterprogramm mit Funktionswert: REAL*8 FUNCTION PS_T_ R134A(T)

für Aufruf aus Fortran REAL*8 T

Unterprogramm mit Parameter: INTEGER*4 FUNCTION C_PS_T_ R134A(PS,T)

für Aufruf aus DLL REAL*8 PS,T

Eingabewerte

T - Temperatur t in °C

Rückgabewert

PS_T_ R134A, PS bzw. ps_t_ R134a – Dampfdruck p_s in bar

Gültigkeitsbereich

Temperaturbereich: von -103.30 °C bis 101.06 °C

Reaktion bei fehlerhaften Eingabewerten

Ergebnis **PS_T_ R134A**, **PS = - 1000** bzw. **ps_t_ R134a = - 1000** für Eingabewerte:

t < -103.30 °C oder *t* > 101.06 °C

Dichte $\rho = f(p,t,x)$

Name in FluidEXL Graphics: rho_ptx_ R134a

Unterprogramm mit Funktionswert: REAL*8 FUNCTION RHO_PTX_ R134A(P,T,X)

für Aufruf aus Fortran REAL*8 P,T,X

Unterprogramm mit Parameter: INTEGER*4 FUNCTION C_RHO_PTX_ R134A(RHO,P,T,X)

für Aufruf aus DLL REAL*8 RHO,P,T,X

Eingabewerte

P - Druck p in bar

T - Temperatur t in °C

X - Dampfanteil x in (kg gesättigter Dampf)/(kg Nassdampf)

Rückgabewert

RHO_PTX_ R134A, RHO bzw. rho_ptx_ R134a - Dichte ρ in kg/m³

Gültigkeitsbereich

Temperaturbereich: von – 103.30 °C bis 181.85 °C Druckbereich: von 0.0038956 bar bis 700 bar

Dichtebereich: bis 1591,7 kg/m³

Erläuterung zum Dampfanteil x und zur Berechnung für siedende Flüssigkeit und gesättigten Dampf

Das Nassdampfgebiet wird automatisch behandelt. Hierfür sind die folgenden Festlegungen für den Dampfanteil *x* zu beachten:

Falls der zu berechnende Zustandspunkt im Einphasengebiet (Flüssigkeit oder überhitzter Dampf) liegt, ist für *x* formal x = - 1 einzugeben.

Im Falle, dass der zu berechnende Zustandspunkt im Nassdampfgebiet vorliegt, ist für x ein Wert zwischen 0 und 1 (der Wert x = 0 bei siedender Flüssigkeit, der Wert x = 1 bei Sattdampf) einzugeben.

Bezüglich Druck und Temperatur genügt es bei Nassdampf, entweder den gegebenen Wert für t und p = -1000 oder den gegebenen Wert für p und t = -1000 sowie den Wert für x (x = 0 oder x = 1) vorzugeben. Wird sowohl t als auch p und x eingegeben, geht das Programm davon aus, dass p und t die Dampfdruckkurve repräsentieren.

Siede- und Taulinie: Temperaturbereich von t = -103.30 °C bis $t_c = 101.06$ °C

Druckbereich von $p_t = 0.0038956$ bar bis $p_c = 40.5911$ bar

Reaktion bei fehlerhaften Eingabewerten

Ergebnis RHO_PTX_R134a, RHO= - 1000 bzw. rho_ptx_R134a = - 1000 für Eingabewerte:

Einphasengebiet: p > 700 bar oder p < 0.0038956 bar oder

(x = -1) $t > 181.85 °C oder <math>t < -103.30 °C oder \rho > 1591,7 kg/m³$

Siede- oder Taulinie: bei p = -1000 und t > 101.06 °C oder t < -103.30°C

bei t = -1000 und p > 40.59 bar oder p < 0.0038956 bar oder

bei p > 40.59 bar oder p < 0.0038956 bar und

t > 101.06 °C oder t < -103.30 °C

Spezifische Entropie s = f(p,t,x)

Name in FluidEXL Graphics: s_ptx_R134a

Unterprogramm mit Funktionswert: REAL*8 FUNCTION S PTX R134A(P,T,X)

für Aufruf aus Fortran REAL*8 P,T,X

Unterprogramm mit Parameter: INTEGER*4 FUNCTION C_S_PTX_R134A(S,P,T,X)

für Aufruf aus DLL REAL*8 S,P,T,X

Eingabewerte

P - Druck p in bar

T - Temperatur t in °C

X - Dampfanteil *x* in (kg gesättigter Dampf)/(kg Nassdampf)

Rückgabewert

S_PTX_R134A, S bzw. s_ptx_R134a - Spezifische Entropie s in kJ/kg K

Gültigkeitsbereich

Temperaturbereich: von – 103.30 °C bis 181.85 °C Druckbereich: von 0.0038956 bar bis 700 bar

Dichtebereich: bis 1591,7 kg/m³

Erläuterung zum Dampfanteil x und zur Berechnung für siedende Flüssigkeit und gesättigten Dampf

Das Nassdampfgebiet wird automatisch behandelt. Hierfür sind die folgenden Festlegungen für den Dampfanteil *x* zu beachten:

Falls der zu berechnende Zustandspunkt im Einphasengebiet (Flüssigkeit oder überhitzter Dampf) liegt, ist für x formal x = -1 einzugeben.

Im Falle, dass der zu berechnende Zustandspunkt im Nassdampfgebiet vorliegt, ist für x ein Wert zwischen 0 und 1 (der Wert x=0 bei siedender Flüssigkeit, der Wert x=1 bei Sattdampf) einzugeben.

Bezüglich Druck und Temperatur genügt es bei Nassdampf, entweder den gegebenen Wert für t und p = -1000 oder den gegebenen Wert für p und t = -1000 sowie den Wert für x (x = 0 oder x = 1) vorzugeben. Wird sowohl t als auch p und x eingegeben, geht das Programm davon aus, dass p und t die Dampfdruckkurve repräsentieren.

Siede- und Taulinie: Temperaturbereich von t = -103.30 °C bis $t_c = 101.06$ °C

Druckbereich von $p_t = 0.0038956$ bar bis $p_c = 40.5911$ bar

Reaktion bei fehlerhaften Eingabewerten

Ergebnis S_PTX_R134A, S = - 1000 bzw. s_ptx_R134a = - 1000 für Eingabewerte:

Einphasengebiet: p > 700 bar oder p < 0.0038956 bar oder

(x = -1) $t > 181.85 °C oder <math>t < -103.30 °C oder \rho > 1591,7 kg/m³$

Siede- oder Taulinie: bei p = -1000 und t > 101.06 °C oder t < -103.30°C

bei t = -1000 und p > 40.59 bar oder p < 0.0038956 bar oder

bei p > 40.59 bar oder p < 0.0038956 bar und

t > 101.06 °C oder t < -103.30 °C

Umkehrfunktion: Temperatur t = f(p,h)

Name in FluidEXL Graphics: t_ph_R134a

Unterprogramm mit Funktionswert: REAL*8 FUNCTION T_PH_R134A(P,H)

für Aufruf aus Fortran REAL*8 P,H

Unterprogramm mit Parameter: INTEGER*4 FUNCTION C_T _PH_R134A(T,P,H)

für Aufruf aus DLL REAL*8 T,P,H

Eingabewerte

P - Druck p in bar

H - Spezifische Enthalpie h in kJ/kg

Rückgabewert

T_PH_R134A, T bzw. t_ph_R134a - Temperatur t in °C

Gültigkeitsbereich

Temperaturbereich: von – 103.30 °C bis 181.85 °C Druckbereich: von 0.0038956 bar bis 700 bar

Dichtebereich: bis 1591,7 kg/m³

Erläuterung zur Berechnung von Nassdampf

Das Nassdampfgebiet wird automatisch behandelt. Das heißt, ausgehend von den gegebenen Werten für *p* und *h* wird innerhalb des Unterprogramms ermittelt, ob der zu berechnende Zustandspunkt im Einphasengebiet (Flüssigkeit oder Dampf) oder im Nassdampfgebiet liegt. Anschließend erfolgt die Berechnung für das betreffende Zustandsgebiet.

Nassdampfgebiet: Druckbereich von $p_t = 0.0038596$ bar bis $p_c = 40.59$ bar

Reaktion bei fehlerhaften Eingabewerten

Ergebnis **T_PH_R134A**, **T = - 1000** bzw. **t_ph_R134a = - 1000** für Eingabewerte:

Einphasengebiet: p > 700 bar oder p < 0.0038596 bar oder

(x = -1) bei Berechnungsergebnis t > 181.85 °C oder t < -103.30 °C

oder ρ > 1591,7 kg/m³

Siede- oder Taulinie: bei p > 40.59 bar oder p < 0.0038596 bar oder

bei Berechnungsergebnis t > 101.06 °C oder t < -103,30 °C

Umkehrfunktion: Temperatur t = f(p,s)

Name in FluidEXL Graphics: t_ps_R134a

Unterprogramm mit Funktionswert: REAL*8 FUNCTION T_PS_R134A(P,S)

für Aufruf aus Fortran REAL*8 P,S

Unterprogramm mit Parameter: INTEGER*4 FUNCTION C_T_PS_R134A(T,P,S)

für Aufruf aus DLL REAL*8 T,P,S

Eingabewerte

P - Druck p in bar

S - Spezifische Entropie s in kJ/kg K

Rückgabewert

T_PS_R134A, T bzw. t_ps_R134a - Temperatur t in °C

Gültigkeitsbereich

Temperaturbereich: von – 103.30 °C bis 181.85 °C Druckbereich: von 0.0038956 bar bis 700 bar

Dichtebereich: bis 1591,7 kg/m³

Erläuterung zur Berechnung von Nassdampf

Das Nassdampfgebiet wird automatisch behandelt. Das heißt, ausgehend von den gegebenen Werten für p und s wird innerhalb des Unterprogramms ermittelt, ob der zu berechnende Zustandspunkt im Einphasengebiet (Flüssigkeit oder Dampf) oder im Nassdampfgebiet liegt. Anschließend erfolgt die Berechnung für das betreffende Zustandsgebiet.

Nassdampfgebiet: Druckbereich von $p_t = 0.0038596$ bar bis $p_c = 40.59$ bar

Reaktion bei fehlerhaften Eingabewerten

Ergebnis T_PS_R134A, T = -1000 bzw. t_ps_R134a = -1000 für Eingabewerte:

Einphasengebiet: p > 700 bar oder p < 0.0038596 bar oder

(x = -1) bei Berechnungsergebnis t > 181.85 °C oder t < -103.30 °C

oder ρ > 1591,7 kg/m³

Siede- oder Taulinie: bei p > 40.59 bar oder p < 0.0038596 bar oder

bei Berechnungsergebnis t > 101.06 °C oder t < -103,30 °C

Siedetemperatur $t_s = f(p)$

Name in FluidEXL Graphics: ts_p_R134a

Unterprogramm mit Funktionswert: REAL*8 FUNCTION TS_P_R134A(P)

für Aufruf aus Fortran REAL*8 P

Unterprogramm mit Parameter: INTEGER*4 FUNCTION C_TS_P_R134A(TS,P)

für Aufruf aus DLL REAL*8 TS,P

Eingabewerte

P - Druck p in bar

Rückgabewert

TS_P_R134A, TS bzw. ts_p_R134a – Dampfdruck p_s in bar

Gültigkeitsbereich

Druckbereich: von 0.0038956 bar bis 40.59 bar

Reaktion bei fehlerhaften Eingabewerten

Ergebnis **TS_P_R134A**, **TS = -1000** bzw. **ts_p_R134a = -1000** für Eingabewerte:

p < 0.0038956 bar oder p > 40.59 bar

Spezifische innere Energie u = f(p,t,x)

Name in FluidEXL Graphics: u_ptx_R134a

Unterprogramm mit Funktionswert: REAL*8 FUNCTION U_PTX_R134A(P,T,X)

für Aufruf aus Fortran REAL*8 P,T,X

Unterprogramm mit Parameter: INTEGER*4 FUNCTION C_U_PTX_R134A(U,P,T,X)

für Aufruf aus DLL REAL*8 U,P,T,X

Eingabewerte

P - Druck p in bar

T - Temperatur t in °C

X - Dampfanteil x in (kg gesättigter Dampf)/(kg Nassdampf)

Rückgabewert

U_PTX_R134A, U bzw. u_ptx_R134a - Spezifische innere Energie u in kJ/kg

Gültigkeitsbereich

Temperaturbereich: von – 103.30 °C bis 181.85 °C Druckbereich: von 0.0038956 bar bis 700 bar

Dichtebereich: bis 1591,7 kg/m³

Erläuterung zum Dampfanteil x und zur Berechnung für siedende Flüssigkeit und gesättigten Dampf

Das Nassdampfgebiet wird automatisch behandelt. Hierfür sind die folgenden Festlegungen für den Dampfanteil *x* zu beachten:

Falls der zu berechnende Zustandspunkt im Einphasengebiet (Flüssigkeit oder überhitzter Dampf) liegt, ist für x formal x = -1 einzugeben.

Im Falle, dass der zu berechnende Zustandspunkt im Nassdampfgebiet vorliegt, ist für x ein Wert zwischen 0 und 1 (der Wert x = 0 bei siedender Flüssigkeit, der Wert x = 1 bei Sattdampf) einzugeben.

Bezüglich Druck und Temperatur genügt es bei Nassdampf, entweder den gegebenen Wert für t und p = -1000 oder den gegebenen Wert für p und t = -1000 sowie den Wert für t (t und vorzugeben. Wird sowohl t als auch t und t eingegeben, geht das Programm davon aus, dass t und t die Dampfdruckkurve repräsentieren.

Siede- und Taulinie: Temperaturbereich von t = -103.30 °C bis $t_c = 101.06$ °C

Druckbereich von $p_t = 0.0038956$ bar bis $p_c = 40.5911$ bar

Reaktion bei fehlerhaften Eingabewerten

Ergebnis U_PTX_R134A , U = -1000 bzw. $u_ptx_R134a = -1000$ für Eingabewerte:

Einphasengebiet: p > 700 bar oder p < 0.0038956 bar oder

(x = -1) t > 181.85 °C oder t < -103.30 °C oder $\rho > 1591,7$ kg/m³

Siede- oder Taulinie: bei p = -1000 und t > 101.06 °C oder t < -103.30°C

bei t = -1000 und p > 40.59 bar oder p < 0.0038956 bar oder

bei p > 40.59 bar oder p < 0.0038956 bar und

t > 101.06 °C oder t < -103.30 °C

Spezifisches Volumen v = f(p,t,x)

Name in FluidEXL Graphics: v_ptx_R134a

Unterprogramm mit Funktionswert: REAL*8 FUNCTION V PTX R134A(P,T,X)

für Aufruf aus Fortran REAL*8 P,T,X

Unterprogramm mit Parameter: INTEGER*4 FUNCTION C_V_PTX_R134A(V,P,T,X)

für Aufruf aus DLL REAL*8 V,P,T,X

Eingabewerte

P - Druck p in bar

T - Temperatur t in °C

X - Dampfanteil x in (kg gesättigter Dampf)/(kg Nassdampf)

Rückgabewert

V_PTX_R134A, V bzw. v_ptx_R134a - Spezifisches Volumen v in m3/kg

Gültigkeitsbereich

Temperaturbereich: von - 103.30 °C bis 181.85 °C Druckbereich: von 0.0038956 bar bis 700 bar

Dichtebereich: bis 1591,7 kg/m³

Erläuterung zum Dampfanteil x und zur Berechnung für siedende Flüssigkeit und gesättigten Dampf

Das Nassdampfgebiet wird automatisch behandelt. Hierfür sind die folgenden Festlegungen für den Dampfanteil *x* zu beachten:

Falls der zu berechnende Zustandspunkt im Einphasengebiet (Flüssigkeit oder überhitzter Dampf) liegt, ist für x formal x = -1 einzugeben.

Im Falle, dass der zu berechnende Zustandspunkt im Nassdampfgebiet vorliegt, ist für x ein Wert zwischen 0 und 1 (der Wert x=0 bei siedender Flüssigkeit, der Wert x=1 bei Sattdampf) einzugeben.

Bezüglich Druck und Temperatur genügt es bei Nassdampf, entweder den gegebenen Wert für t und p = -1000 oder den gegebenen Wert für p und t = -1000 sowie den Wert für t (t und vorzugeben. Wird sowohl t als auch t und t eingegeben, geht das Programm davon aus, dass t und t die Dampfdruckkurve repräsentieren.

Siede- und Taulinie: Temperaturbereich von t = -103.30 °C bis $t_c = 101.06$ °C

Druckbereich von $p_t = 0.0038956$ bar bis $p_c = 40.5911$ bar

Reaktion bei fehlerhaften Eingabewerten

Ergebnis V_PTX_R134A, V = - 1000 bzw. v_ptx_R134a = - 1000 für Eingabewerte:

Einphasengebiet: p > 700 bar oder p < 0.0038956 bar oder

(x = -1) $t > 181.85 \, ^{\circ}\text{C} \, \text{oder} \, t < -103.30 \, ^{\circ}\text{C} \, \text{oder} \, \rho > 1591,7 \, \text{kg/m}^3$

Siede- oder Taulinie: bei p = -1000 und t > 101.06 °C oder t < -103.30 °C

bei t = -1000 und p > 40.59 bar oder p < 0.0038956 bar oder

bei p > 40.59 bar oder p < 0.0038956 bar und

t > 101.06 °C oder t < -103.30 °C

Schallgeschwindigkeit w = f(p,t,x)

Name in FluidEXL Graphics: w_ptx_R134a

Unterprogramm mit Funktionswert: REAL*8 FUNCTION W_PTX_R134A(P,T,X)

für Aufruf aus Fortran REAL*8 P,T,X

Unterprogramm mit Parameter: INTEGER*4 FUNCTION C_W_PTX_R134A(W,P,T,X)

für Aufruf aus DLL REAL*8 W,P,T,X

Eingabewerte

P - Druck p in bar

T - Temperatur t in °C

X - Dampfanteil *x* in (kg gesättigter Dampf)/(kg Nassdampf)

Rückgabewert

W_PTX_R134A, W bzw. w_ptx_R134a - Schallgeschwindigkeit w in m/s

Gültigkeitsbereich

Temperaturbereich: von – 103.30 °C bis 181.85 °C Druckbereich: von 0.0038956 bar bis 700 bar

Dichtebereich: bis 1591,7 kg/m³

Erläuterung zum Dampfanteil x und zur Berechnung für siedende Flüssigkeit und gesättigten Dampf

Das Nassdampfgebiet wird automatisch behandelt. Hierfür sind die folgenden Festlegungen für den Dampfanteil *x* zu beachten:

Falls der zu berechnende Zustandspunkt im Einphasengebiet (Flüssigkeit oder überhitzter Dampf) liegt, ist für x formal x = -1 einzugeben.

Im Falle, dass der zu berechnende Zustandspunkt auf der Siedelinie liegt, ist für x der Wert x = 0 und im Fall gesättigten Dampfes (Taulinie) der Wert x = 1 einzugeben. Eine Berechnung für Werte von x zwischen 0 und 1 ist nicht möglich.

Bezüglich Druck und Temperatur genügt es bei siedender Flüssigkeit oder gesättigtem Dampf, entweder den gegebenen Wert für t und p = -1000 oder den gegebenen Wert für p und t = -1000 sowie den Wert für x (x = 0 oder x = 1) vorzugeben. Wird sowohl t als auch p und x eingegeben, geht das Programm davon aus, dass p und t die Dampfdruckkurve repräsentieren.

Siede- und Taulinie: Temperaturbereich von t = -103.30 °C bis $t_c = 101.06$ °C

Druckbereich von $p_t = 0.0038956$ bar bis $p_c = 40.5911$ bar

Reaktion bei fehlerhaften Eingabewerten

Ergebnis W_PTX_R134A, W = - 1000 bzw. w_ptx_R134a = - 1000 für Eingabewerte:

Einphasengebiet: p > 700 bar oder p < 0.0038956 bar oder

(x = -1) t > 181.85 °C oder t < -103.30 °C oder $\rho > 1591,7$ kg/m³

Siede- oder Taulinie: bei p = -1000 und t > 101.06 °C oder t < -103.30°C

bei t = -1000 und p > 40.59 bar oder p < 0.0038956 bar oder

bei p > 40.59 bar oder p < 0.0038956 bar und

t > 101.06 °C oder *t* < -103.30 °C

Umkehrfunktion: Dampfanteil x = f(p,h)

Name in FluidEXL Graphics: x_ph_R134a

Unterprogramm mit Funktionswert: REAL*8 FUNCTION X_PH_R134A(P,H)

für Aufruf aus Fortran REAL*8 P,H

Unterprogramm mit Parameter: INTEGER*4 FUNCTION C_X_PH_R134A(T,P,H)

für Aufruf aus DLL REAL*8 X,P,H

Eingabewerte

P - Druck p in bar

H - Spezifische Enthalpie h in kJ/kg

Rückgabewert

X_PH_R134A, X bzw. x_ph_R134a - Dampfanteil x in (kg gesättigter Dampf/kg Nassdampf)

Gültigkeitsbereich

Temperaturbereich: von –103.30 °C bis 181.85 °C Druckbereich: von 0.0038956 bar bis 700 bar

Erläuterung zur Berechnung von Nassdampf

Das Nassdampfgebiet wird automatisch behandelt. Das heißt, ausgehend von den gegebenen Werten für p und h wird innerhalb des Unterprogramms ermittelt, ob der zu berechnende Zustandspunkt im Einphasengebiet (Flüssigkeit oder Dampf) oder im Nassdampfgebiet liegt. Liegt Nassdampf vor, erfolgt die Berechnung des Wertes für x. Liegt der zu berechnende Zustandspunkt im Einphasengebiet, wird für x das Ergebnis x = -1 gesetzt.

Nassdampfgebiet: Druckbereich von $p_t = 0.0038956$ bar bis $p_c = 40.59$ bar

Reaktion bei fehlerhaften Eingabewerten

Ergebnis X_PH_R134A, X = -1 bzw. x_ph_R134a = -1 für Eingabewerte:

Falls der zu berechnende Zustandspunkt im Einphasengebiet liegt

p > 40.59 bar oder p < 0.0038956 bar

Umkehrfunktion: Dampfanteil x = f(p,s)

Name in FluidEXL Graphics: x_ps_R134a

Unterprogramm mit Funktionswert: REAL*8 FUNCTION X_PS_R134A(P,S)

für Aufruf aus Fortran REAL*8 P,S

Unterprogramm mit Parameter: INTEGER*4 FUNCTION C_X_PS_R134A(X,P,S)

für Aufruf aus DLL REAL*8 X,P,S

Eingabewerte

P - Druck p in bar

S - Spezifische Entropie s in kJ/kg K

Rückgabewert

X PS R134A, X bzw. x ps R134a – Dampfanteil x in (kg gesättigter Dampf/kg Nassdampf)

Gültigkeitsbereich

Temperaturbereich: von –103.30 °C bis 101.06 °C Druckbereich: von 0.0038956 bar bis 700 bar

Erläuterung zur Berechnung von Nassdampf

Das Nassdampfgebiet wird automatisch behandelt. Das heißt, ausgehend von den gegebenen Werten für p und s wird innerhalb des Unterprogramms ermittelt, ob der zu berechnende Zustandspunkt im Einphasengebiet (Flüssigkeit oder Dampf) oder im Nassdampfgebiet liegt. Liegt Nassdampf vor, erfolgt die Berechnung des Wertes für x. Liegt der zu berechnende Zustandspunkt im Einphasengebiet, wird für x das Ergebnis x = -1 gesetzt.

Nassdampfgebiet: Druckbereich von $p_t = 0.0038956$ bar bis $p_c = 40.59$ bar

Reaktion bei fehlerhaften Eingabewerten

Ergebnis X_PS_R134A, X = -1 bzw. x_ps_R134a = -1 für Eingabewerte:

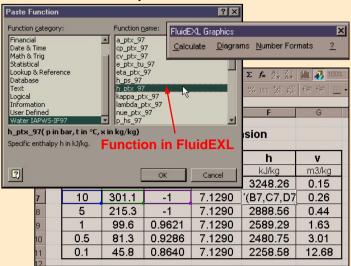
Falls der zu berechnende Zustandspunkt im Einphasengebiet liegt

p > 40.59 bar oder p < 0.0038956 bar

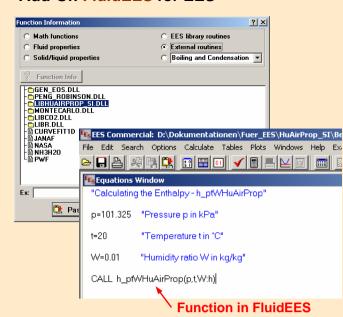
ZITTAU/GOERLITZ UNIVERSITY OF APPLIED SCIENCES

Department of Technical Thermodynamics www.thermodynamic-property-libraries.com

4. Property Libraries for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators

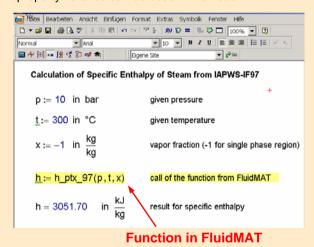

Water and Steam	Humid Combustion Gas Mixtures	Humid Air
Library LibIF97	Library LibHuGas	Library LibHuAir
- Industrial Formulation	Ideal mixture of the real fluids:	Ideal mixture of the real fluids:
IAPWS-IF97 (Revision 2007)	CO_2 - Span and Wagner O_2 - Schmidt and Wagner O_2 - IAPWS-95 O_2 - Tegeler et al. O_2 - Span et al.	- Dry air from Lemmon et al. - Steam and water from IAPWS-95
- Supplementary Standards - IAPWS-IF97-S01	and of the ideal gases:	Consideration of
- IAFWS-IF97-301 - IAPWS-IF97-S03rev - IAPWS-IF97-S04	SO ₂ , CO, Ne (scientific equations of Bücker et al.) Consideration of	- Dissociation from VDI-Guideline 4670 - Poynting effect
- IAPWS-IF97-S05	Dissociation from VDI 4670 and Poynting effect	
 IAPWS Revised Advisory Note No. 3 on 	Library LibIDGAS	Library LibldAir
Thermodynamic Derivatives (2008)	Ideal gas mixture calculated from VDI- Guideline 4670	Ideal gas mixture (VDI-Guideline 4670)

Carbon Dioxide		Ideal Gas I	Mixture	Seawater
Library LibCO2 Formulation of Span and Wagner (1994)		ibrary Liblo cture of the SO ₂	dGasMix ideal gases: Methane	Library LibSeaWa IAPWS Formulation (2008) of Feistel and IAPWS-IF97
Hydrogen Library LibH2	Ne N ₂	H ₂ H ₂ S	Ethane Ethylene	
Formulation of Leachman et al. (2007)	O ₂ CO CO ₂	OH He F ₂	Propylene Propane Iso-Butane	Refrigerant R134a Library LibR134a
Helium Library LibHe Formulation of McCarty	Air NO H ₂ O	NH ₃	n-Butane Benzene Methanol	Formulation of Tillner-Roth and Baehr (1994)
and Arp (1990)	1	Consideration of - Dissociation from VDI-Guideline 4		Refrigerant NH ₃
Methanol Library LibCH3OH Formulation of de Reuck and Craven (1993)	- Dissociation nom v Di-Guideline 4070		uideilile 4070	Library LibNH3 Formulation of Tillner-Roth (1995)

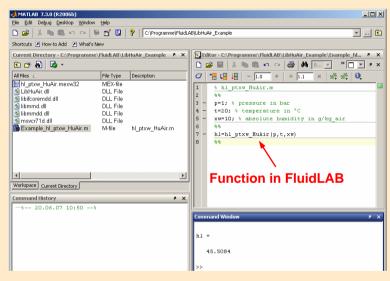

ORC Working Fluids	Mixtures for Absorption Processes	Refrigerants
Library LibMM	Library LibAmWa	Library LibPropan
Siloxane C ₆ H ₁₈ OSi ₂ (MM)	Ammonia/Water Mixtures	Refrigerant Propane
Formulation of Colonna et al. (2006)	IAPWS Guideline 2005 of Tillner-Roth	Formulation of Lemmon
Library LibD4	and Friend (1998)	et al. (2008)
Siloxane C ₈ H ₂₄ O ₄ Si ₄ (D4)	Helmholtz energy formulation for the	Library LibButan_Iso
Formulation of Colonna et al. (2006)	mixing term	Refrigerant Iso-Butane
Library LibD5	Library LibWaLi	Formulation of Bücker
Siloxane C ₁₀ H ₃₀ O ₅ Si ₅ (D5)	· ·	et al. (2003)
Formulation of Colonna et al. (2006)	Water/Lithium Bromide Mixtures	Library LibButan_n
Library LibMD4M	Formulation of Kim and Infante Ferrera	Refrigerant n-Butane
Siloxane C ₁₄ H ₄₂ O ₅ Si ₆ (MD4M)	(2004)	Formulation of Bücker
= •	Gibbs energy equation for the mixing	et al. (2003)
Formulation of Colonna et al. (2006)	term	

Add-In FluidEXL^{Graphics} for Excel®

Using the Add-In FluidEXL Graphics a direct call of the property functions is possible in Excel[®]. The calculated property values can be shown in thermodynamic charts.



Add-On FluidEES for EES®



Add-On FluidMAT for Mathcad®

Using the Add-on FluidMAT, the functions of property libraries can be used in Mathcad®.

Add-On FluidLAB for MATLAB®

The following thermodynamic and transport properties can be calculated:

Thermodynamic Properties

- Saturation pressure p_s
- Saturation temperature T_s
- Density ρ
- Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c_p

- Isochoric heat capacity c_v
- Isentropic exponent κ
- Speed of sound w
- Surface tension σ

Thermodynamic Derivatives

· All partial derivatives can be calculated

Transport Properties

- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl-number Pr

Backward Functions

- T, v, s (p,h) p, T (v,h)
- T, v, h (p,s) • p, T (v,u)
- p, T, v (h,s)

For information please contact:

Zittau/Goerlitz University of Applied Sciences Department of Technical Thermodynamics

Prof. Hans-Joachim Kretzschmar

Dr. Ines Stoecker

Theodor-Koerner-Allee 16 02763 Zittau, Germany

E-mail: hj.kretzschmar@hs-zigr.de

Internet: www.thermodynamics-zittau.de

Phone: +49-3583-61-1846 Fax.: +49-3583-61-1846

5. Literaturverzeichnis

- [1] Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam IAPWS-IF97.
 IAPWS Sekretariat, Dooley, B, EPRI, Palo Alto CA (1997)
- [2] Wagner, W.; Kruse, A.: Zustandsgrößen von Wasser und Wasserdampf. Springer-Verlag, Berlin (1998)
- [3] Wagner, W.; Cooper, J.R.; Dittmann, A.; Kijima, J.; Kretzschmar, H.-J.; Kruse, A.; Mareš, R.; Oguchi, K.; Sato, H.; Stöcker, I.; Šifner, O.; Takaishi, Y.; Tanishita, I.; Trübenbach, J.; Willkommen, Th.: The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam.
 ASME Journal of Eng. for Gas Turbines and Power 122 (2000) Nr. 1, S. 150-182
- [4] Kretzschmar, H.-J.; Stöcker, I.; Klinger, J.; Dittmann, A.: Calculation of Thermodynamic Derivatives for Water and Steam Using the New Industrial Formulation IAPWS-IF97. in: Steam, Water and Hydrothermal Systems: Physics and Chemistry Meeting the Needs of Industry, Proceedings of the 13th International Conference on the Properties of Water and Steam, Eds. P.G. Hill et al., NRC Press, Ottawa, 2000
- [5] Kretzschmar, H.-J.:Mollier h,s-Diagramm.Springer-Verlag, Berlin (1998)
- [6] Revised Release on the IAPS Formulation 1985 for the Thermal Conductivity of Ordinary Water Substance. IAPWS Sekretariat, Dooley, B., EPRI, Palo Alto CA, (1997)
- [7] Revised Release on the IAPS Formulation 1985 for the Viscosity of Ordinary Water Substance.
 IAPWS Secretariat, Dooley, B., EPRI, Palo Alto CA, (1997)
- [8] IAPWS Release on Surface Tension of Ordinary Water Substance 1994. IAPWS Sekretariat, Dooley, B., EPRI, Palo Alto CA, (1994)
- [9] Kretzschmar, H.-J.; Stöcker, I.; Willkommen, Th.; Trübenbach, J.; Dittmann, A.: Supplementary Equations v(p, T) for the Critical Region to the New Industrial Formulation IAPWS-IF97 for Water and Steam. in: Steam, Water and Hydrothermal Systems: Physics and Chemistry Meeting the Needs of Industry, Proceedings of the 13th International Conference on the Properties of Water and Steam, Eds. P.G. Hill et al., NRC Press, Ottawa, 2000
- [10] Kretzschmar, H.-J.; Cooper, J.R.; Dittmann, A.; Friend, D.G.; Gallagher, J.; Knobloch, K.; Mareš, R.; Miyagawa, K.; Stöcker, I.; Trübenbach, J.; Willkommen, Th.: Supplementary Backward Equations for Pressure as a Function of Enthalpy and Entropy p(h,s) to the Industrial Formulation IAPWS-IF97 for Water and Steam. ASME Journal of Engineering for Gas Turbines and Power in Vorbereitung
- [11] Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use.IAPWS Sekretariat, Dooley, B., EPRI, Palo Alto CA, (1995)

[12] Grigull, U.:

Properties of Water and Steam in SI Units. Springer-Verlag, Berlin (1989)

[13] Kretzschmar, H.-J.:

Zur Aufbereitung und Darbietung thermophysikalischer Stoffdaten für die Energietechnik.

Habilitation, TU Dresden, Fakultät Maschinenwesen (1990)

[14] VDI Richtlinie 4670

Thermodynamische Stoffwerte von feuchter Luft und Verbrennungsgasen. VDI-Handbuch Energietechnik (2000)

[15] Lemmon, E. W.; Jacobsen, R. T; Penoncello, S. G.; Friend, D. G.: Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon and Oxygen from 60 to 2000 K at Pressures to 2000 MPa. Journal of Physical Chemical Reference Data 29 (2000) Nr. 3, S. 331-385

[16] Baehr, H.D.; Tillner- Roth, R.:

Thermodynamische Eigenschaften umweltverträglicher Kältemittel, Zustandsgleichungen und Tafeln für Ammoniak, R22, R134a, R152a und R 123. Springer-Verlag, Berlin Heidelberg (1995)

- [17] Fenghour, A.; Wakeham, W. A.; Vesovic, V.; Watson, J. T. R.; Millat, J.; Vogel, E.: The Viskosity of Ammonia.
 - J. Phys. Chem. Ref. Data, 24, (1995) Nr. 5, S. 1649-1667
- [18] Tufeu, R.; Ivanov, D. Y.; Garrabos, Y.; Le Neindre, B.: Thermal Conductivity of Ammonia in a Large Temperature and Pressure Range Including the Critical Region. Ber. Bunsenges. Phys. Chem. 88 (1984) S. 422-427
- [19] Span, R.; Wagner W.:

A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa.

J. Phys. Chem. Ref. Data, 25, (1996) Nr. 6, S. 1506-1596

[20] Vesovic, V.; Wakeham, W. A.; Olchowy, G. A.; Sengers, J. V.; Watson, J. T. R.; Millat, J.:

The Transport Properties of Carbon Dioxide.

J. Phys. Chem. Ref. Data, 19, (1990) Nr. 3, S. 763-808

[21] Bläser, A.:

Diplomarbeit: Berechnung der thermodynamischen Stoffeigenschaften von Ammoniak in energietechnischen Prozessmodellierungen Hochschule Zittau/Görlitz, 2003

[22] Laesecke, A.:

Unpublished 1998 correlation R134aFitSelDV

[23] Perkins, R.A., Laesecke, A., Howley, J., Ramires, M.L.V., Gurova, A.N., Cusco, L.: Experimental thermal conductivity values for the IUPAC round-robin sample of 1,1,1,2-tetrafluoroethane (R134a)", NISTIR, 2000.

6. Referenzliste

Stand: 12/2008

Folgende Unternehmen und Institutionen nutzen die Stoffwert-Bibliotheken FluidEXL für Excel[®], FluidLAB für MATLAB[®] und/oder FluidMAT für Mathcad[®]:

1	q	q	7

Gerb Dresden	06/1997
Siemens Power Generation Görlitz	07/1997
1998	
TU Cottbus, Lehrstuhl für Kraftwerkstechnik	05/1998
CADIS Informationssysteme Stuttgart (Generallizenz für Programm KPRO)	05/1998
M&M Turbinentechnik Bielefeld	06/1998
B+H Ingenieursoftware Stuttgart	08/1998
Alfa Ingenieurbüro, Schweiz	09/1998
VEAG Berlin (Konzern-Lizenzen)	09/1998
NUTEC Engineering Bisikon, Schweiz	10/1998
SCA Hygiene Products München	10/1998
RWE Energie Neurath	10/1998
FH Wilhelmshaven	10/1998
BASF Ludwigshafen (Konzern-Lizenz)	11/1998
Energieversorgung Offenbach	11/1998
1999	
Bayernwerk München	01/1999
DREWAG Dresden (Unternehmenslizenz)	02/1999
KEMA IEV Dresden	03/1999
FH Regensburg	04/1999
Fichtner Consulting & IT Stuttgart (Unternehmenslizenzen und Vertrieb)	07/1999
TU Cottbus, Lehrstuhl für Kraftwerkstechnik	07/1999
TU Graz, Institut für Wärmetechnik, Österreich	11/1999
Ingenieurbüro Ostendorf Gummersbach	12/1999
2000	
SOFBID Zwingenberg (Generallizenz für Programm EBSILON)	01/2000
AG KKK - PGW Turbo Leipzig	01/2000

	PREUSSAG NOELL Würzburg	01/2000
	M&M Turbinentechnik Bielefeld	01/2000
	IBR Ingenieurbüro Reis Nittendorf-Undorf	02/2000
	GK Hannover	03/2000
	KRUPP-UHDE Dortmund (Unternehmenslizenz)	03/2000
	UMAG W. UDE Husum	03/2000
	VEAG Berlin (Konzern-Lizenzen)	03/2000
	Ingenieurbüro Thinius Erkrath	04/2000
	SaarEnergie Saarbrücken	05/2000, 08/2001
	DVO Datenverarbeitungs-Service Oberhausen	05/2000
	FH Aachen	06/2000
	VAUP Prozessautomation Landau	08/2000
	Knürr-Lommatec Lommatzsch	09/2000
	AVACON Helmstedt	10/2000
	Compania Electrica Bogota, Columbien	10/2000
	G.U.N.T. Gerätebau Barsbüttel (Generallizenz Lehrversuchstände)	11/2000
	Steinhaus Informationssysteme Datteln (Generallizenz für Prozessdatensoftware)	12/2000
2	001	
	ALSTOM Power Baden, Schweiz	01/2001, 06/2001, 12/2001
	KW2 B. V. Amersfoot, Niederlande	01/2001, 11/2001
	Eco Design Saitamaken, Japan	01/2001
	M&M Turbinentechnik Bielefeld	01/2001, 09/2001
	MVV Energie Mannheim	02/2001
	TU Dresden, Institut für Energiemaschinen und Maschinenlabor	02/2001
	PREUSSAG NOELL Würzburg	03/2001
	Fichtner Consulting & IT Stuttgart (Unternehmenslizenzen und Vertrieb)	04/2001
	Münstermann GmbH Telgte-Westbevern	05/2001
	SaarEnergie Saarbrücken	05/2001
	Siemens Karlsruhe (Generallizenz für Informationssystem WinIS)	08/2001
	Neusiedler AG Ulmerfeld, Österreich	09/2001
	h s energieanlagen Freising	09/2001

	Electrowatt-EKONO Zürich, Schweiz	09/2001
	IPM Zittau (Generallizenz)	10/2001
	eta Energieberatung Pfaffenhofen	11/2001
	ALSTOM Power Baden, Schweiz	12/2001
	VEAG Berlin (Konzern-Lizenzen)	12/2001,
20	002	
	Hamilton Medical AG Rhäzüns, Schweiz	01/2002
	Fachhochschule Bochum, Institut für Thermo- und Fluiddynamik	01/2002
	SAAS Possendorf/Dresden	02/2002
	Siemens Karlsruhe (Generallizenz für Informationssystem WinIS)	02/2002
	FZR Forschungszentrum Rossendorf/Dresden	03/2002
	CompAir Simmern	03/2002
	GKS Gemeinschaftskraftwerk Schweinfurt	04/2002
	ALSTOM Power Baden, Schweiz (Konzernlizenzen)	05/2002
	InfraServ Gendorf	05/2002
	SoftSolutions Mühlhausen (Unternehmenslizenz)	05/2002
	DREWAG Dresden (Unternehmenslizenz)	05/2002
	SOFBID Zwingenberg (Generallizenz für Programm EBSILON)	06/2002
	Ingenieurbüro Kleemann Dresden	06/2002
	Caliqua Basel, Schweiz (Unternehmenslizenz)	07/2002
	PCK Raffinerie Schwedt (Konzernlizenz)	07/2002
	Ingenieurbüro Fischer-Uhrig Berlin	08/2002
	Fichtner Consulting & IT Stuttgart (Unternehmenslizenzen und Vertrieb)	08/2002
	Stadtwerke Duisburg	08/2002
	Stadtwerke Hannover	09/2002
	Siemens Power Generation Görlitz	10/2002
	Energieversorgung Halle (Unternehmenslizenz)	10/2002
	Bayer Leverkusen	11/2002
	Dillinger Hütte Dillingen	11/2002
	G.U.N.T. Gerätebau Barsbüttel (Generallizenz Lehrversuchstände)	12/2002
	VEAG Berlin (Konzern-Lizenzen)	12/2002

Papierfabrik Utzenstorf, Schweiz	01/2003
MAB Anlagenbau Wien, Österreich	01/2003
Wulff Energiesysteme Husum	01/2003
Technip Benelux BV Zoetermeer, Niederlande	01/2003
ALSTOM Power Baden, Schweiz	01/2003, 07/2003
VER Dresden	02/2003
Rietschle Energieplaner Winterthur, Schweiz	02/2003
DLR Leupholdhausen	04/2003
FH Emden, Fachbereich Technik	05/2003
Petterssson+Ahrends Ober-Mörlen	05/2003
SOFBID Zwingenberg (Generallizenz für Programm EBSILON)	05/2003
Ingenieurbüro Ostendorf Gummersbach	05/2003
TÜV Nord Hamburg	06/2003
Münstermann GmbH Telgte-Westbevern	06/2003
Universität Cali, Kolumbien	07/2003
Atlas-Stord Rodovre, Dänemark	08/2003
ENERKO Aldenhoven	08/2003
STEAG RKB Leuna	08/2003
eta Energieberatung Pfaffenhofen	08/2003
exergie Dresden	09/2003
AWTEC Zürich, Schweiz	09/2003
Energie Timelkam, Österreich	09/2003
Electrowatt-EKONO Zürich, Schweiz	09/2003
LG Annaberg-Buchholz	10/2003
FZR Forschungszentrum Rossendorf/Dresden	10/2003
EnviCon & Plant Engineering Nürnberg	11/2003
Visteon Kerpen	11/2003
VEO Vulkan Energiewirtschaft Oderbrücke Eisenhüttenstadt	11/2003
Stadtwerke Hannover	11/2003
SaarEnergie Saarbrücken	11/2003
Fraunhofer Gesellschaft München	12/2003
FH Erfurt, FB Versorgungstechnik	12/2003
SorTech Freiburg	12/2003
Mainova Frankfurt	12/2003

	Energieversorgung Halle (Unternehmenslizenz)	12/2003
20	004	
	Vattenfall Europe (Konzernlizenz)	01/2004
	TÜV Nord Hamburg	01/2004
	Universität Stuttgart, Institut für Thermodynamik und Wärmetechnik	02/2004
	MAN B&W Diesel A/S Kopenhagen, Dänemark	02/2004
	Siemens AG Power Generation Erlangen	02/2004
	Fachhochschule Ulm	03/2004
	Visteon Kerpen	03/2004, 10/2004
	TU Dresden, Professur für Thermische Energiemaschinen und -anlagen	04/2004
	Rerum Cognitio Zwickau	04/2004
	Universität Saarbrücken	04/2004
	Grenzebach BSH Bad Hersfeld	04/2004
	SOFBID Zwingenberg (Generallizenz für Programm EBSILON)	04/2004
	EnBW Energy Solutions Stuttgart	05/2004
	HEW-Kraftwerk Tiefstack	06/2004
	h s energieanlagen Freising	07/2004
	FCIT Stuttgart	08/2004
	Physikalisch Technische Bundesanstalt Braunschweig	08/2004
	Mainova Frankfurt	08/2004
	Rietschle Energieplaner Winterthur, Schweiz	08/2004
	MAN Turbomaschinen Oberhausen	09/2004
	TÜV Süd Dresden	10/2004
	STEAG Kraftwerk Herne	10/2004, 12/2004
	Universität Weimar	10/2004
	energeticals (e-concept) München	11/2004
	SorTech Halle	11/2004
	Enertech EUT Radebeul (Unternehmenslizenz)	11/2004
	Fachhochschule München	12/2004
	STORA ENSO Sachsen Eilenburg	12/2004
	TU Cottbus, Lehrstuhl für Kraftwerkstechnik	12/2004
	Freudenberg Service Weinheim	12/2004

	TÜV NORD Hannover	01/2005
	J.H.K Anlagenbau und Service Bremerhaven	01/2005
	Electrowatt-EKONO Zürich, Schweiz	01/2005
	FCIT Stuttgart	01/2005
	Energietechnik Leipzig (Unternehmenslizenz)	02/2005, 04/2005, 07/2005
	eta Energieberatung Pfaffenhofen	02/2005
	FZR Forschungszentrum Rossendorf/Dresden	04/2005
	Universität Saarbrücken	04/2005
	TU Dresden, Professur für Thermische Energiemaschinen und -anlagen	04/2005
	Grenzebach BSH Bad Hersfeld	04/2005
	TÜV Nord Hamburg	04/2005
	Technische Universität Dresden, Abfallwirtschaft	05/2005
	Siemens Power Generation Görlitz	05/2005
	FH Düsseldorf Fachbereich Maschinenbau u. Verfahrenstechnik	05/2005
	Redacom Nidau Schweiz	06/2005
	Dumas Verfahrenstechnik Hofheim	06/2005
	Alensys Engineering Erkner	07/2005
	Stadtwerke Leipzig	07/2005
	SaarEnergie Saarbrücken	07/2005
	ALSTOM ITC Rugby, Großbritannien	08/2005
	BTU Cottbus, Lehrstuhl für Kraftwerkstechnik	08/2005
	Vattenfall Europe Berlin (Konzernlizenz)	08/2005
	BTC Berlin	10/2005
	FH Basel, Abteilung für Maschinenbau, Schweiz	10/2005
	Midiplan Bietigheim-Bissingen	11/2005
	TU Freiberg, Lehrstuhl für Hydrogeologie	11/2005
	STORA ENSO Sachsen Eilenburg	12/2005
	Energieversorgung Halle (Unternehmenslizenz)	12/2005
	KEMA IEV Dresden	12/2005
2	006	
	STORA ENSO Sachsen Eilenburg	01/2006
	TU München, Lehrstuhl für Energiesysteme	01/2006

NUTEC Engineering Bisikon, Schweiz	01/2006, 04/2006
Conwel eco Bochov, Tschechische Republik	01/2006
FH Offenburg	01/2006
KOCH Transporttechnik Wadgassen	01/2006
BEG Bremerhavener Entsorgungsgesellschaft	02/2006
FH Deggendorf, Fachbereich Maschinenbau und Mechatronik	02/2006
Universität Stuttgart, Fachbereich Thermische Strömungsmaschinen	02/2006
TU München, Lehrstuhl für Apparate- und Anlagenbau	02/2006
Energietechnik Leipzig (Unternehmenslizenz)	02/2006
Siemens Power Generation Erlangen	02/2006, 03/2006
RWE Power Essen	03/2006
WÄTAS Pobershau	04/2006
Siemens Power Generation Görlitz	04/2006
TU Braunschweig, Institut für Thermodynamik	04/2006
EnviCon & Plant Engineering Nürnberg	04/2006
Ingenieurbüro Brassel Dresden	05/2006
Universität Halle-Merseburg, Institut USET Merseburg e.V.	05/2006
TU Dresden, Professur für Thermische Energiemaschinen und -anlagen	05/2006
Fichtner Consulting & IT Stuttgart (Unternehmenslizenzen und Vertrieb)	05/2006
Südzucker Ochsenfurt	06/2006
M&M Turbinentechnik Bielefeld	06/2006
Ingenieurbüro Feistel Volkach	07/2006
ThyssenKrupp Marine Systems Kiel	07/2006
Caliqua Basel, Schweiz (Unternehmenslizenz)	09/2006
Atlas-Stord Rodovre, Dänemark	09/2006
FH Konstanz, Studiengang Konstruktion und Entwicklung	10/2006
Siemens Power Generation Duisburg	10/2006
FH Hannover, Fachbereich Maschinenwesen	10/2006
Siemens Power Generation Berlin	11/2006
Zikesch Armaturentechnik Essen	11/2006
FH Wismar, Fachbereich Seefahrt	11/2006
BASF Schwarzheide	12/2006
Enertech Energie und Technik Radebeul	12/2006

Audi Ingolstadt	02/2007
ANO Abfallbehandlung Nord Bremen	02/2007
TÜV NORD SysTec Hamburg	02/2007
VER Dresden	02/2007
TU Dresden, Lehrstuhl für Strahlantriebe	02/2007
Redacom Nidau, Schweiz	02/2007
Universität der Bundeswehr München	02/2007
Maxxtec Sinsheim	03/2007
Universität Rostock, Lehrstuhl für TechnischeThermodynamik	03/2007
AGO Kulmbach	03/2007
Universität Stuttgart, Lehrstuhl für Luftfahrtantriebe	03/2007
Siemens Power Generation Duisburg	03/2007
ENTHAL Haustechnik Rees	05/2007
AWECO Neukirch	05/2007
ALSTOM Rugby, Großbritannien	06/2007
SAAS Possendorf	06/2007
Grenzebach BSH Bad Hersfeld	06/2007
Ingenieurbüro Reichel Haan	06/2007
TU Cottbus, Lehrstuhl für Kraftwerkstechnik	06/2007
Voith Paper Air Systems Bayreuth	06/2007
Egger Holzwerkstoffe Wismar	06/2007
Tissue Europe Technologie Mannheim	06/2007
Dometic Siegen	07/2007
RWTH Aachen, Institut für Elektro-Physik e.V.	09/2007
National Energy Technology Laboratory Pittsburg, USA	10/2007
Energieversorgung Halle	10/2007
AL-KO Jettingen	10/2007
Grenzebach BSH Bad Hersfeld	10/2007
FH Wiesbaden, Fachbereich Ingenieurwissenschaften	10/2007
Endress+Hauser Messtechnik Hannover	11/2007
FH München, Fakultät Maschinenbau	11/2007
Rerum Cognitio Zwickau	12/2007
Siemens Power Generation Erlangen	11/2007
Universität Rostock, Lehrstuhl für Technische Thermodynamik	11/2007, 12/2007

Pink Langenwang	01/2008
Fischer-Uhrig Berlin	01/2008
Universität Karlsruhe	01/2008
MAAG Küsnacht, Schweiz	02/2008
M&M Turbinentechnik Bielefeld	02/2008
Lentjes Ratingen	03/2008
Siemens Power Generation Görlitz	04/2008
Evonik Zwingenberg (Generallizenz für EBSILON)	04/2008
WEBASTO Neubrandenburg	04/2008
CFC Solutions München	04/2008
RWE IT Essen	04/2008
Rerum Cognitio Zwickau	04/2008, 05/2008
ARUP Berlin	05/2008
Forschungszentrum Karlsruhe	07/2008
AWECO Neukirch	07/2008
TU Dresden, Professur für Technische Gebäudeausrüstung	07/2008
BTU Cottbus, Lehrstuhl für Kraftwerkstechnik	07/2008, 10/2008
Ingersoll-Rand Unicov, Tschechische Republik	08/2008
Technip Benelux BV Zoetermeer, Niederlande	08/2008
Fennovoima Oy Helsinki, Finnland	08/2008
Fichtner Stuttgart	09/2008
PEU Espenhain	09/2008
Poyry Dresden	09/2008
WINGAS Kassel	09/2008
TÜV Süd Dresden	10/2008
TU Dresden, Professur für Thermische Energiemaschinen und -anlagen	10/2008, 11/2008
AWTEC Zürich, Schweiz	11/2008
Siemens Power Generation Erlangen	12/2008