

Faculty of MECHANICAL ENGINEERING

Department of TECHNICAL THERMODYNAMICS

# Property Library for the Industrial Formulation IAPWS-IF97 for Water and Steam

FluidVIEW
with LibIF97
for LabVIEW™

Prof. Hans-Joachim Kretzschmar

Dr. Ines Stoecker

Matthias Kunick

# Property Library for the Industrial Formulation IAPWS-IF97 of Water and Steam

# Including DLL and Add-on for LabVIEW™

# FluidVIEW LibIF97

# **Contents**

- 0. Package Contents
  - 0.1 Zip-files for 32-bit LabVIEW<sup>TM</sup>
  - 0.2 Zip-files for 64-bit LabVIEW<sup>TM</sup>
- 1. Property Functions
  - 1.1 Range of Validity
  - 1.2 Functions
- 2. Application of FluidVIEW in LabVIEW<sup>TM</sup>
  - 2.1 Installing FluidVIEW
  - 2.2 The FluidVIEW Help System
  - 2.3 Licensing the LibIF97 Property Library
  - 2.4 Example: Calculation of h = f(p,t,x) and s = f(p,t,x)
  - 2.5 Removing FluidVIEW
- 3. Program Documentation
- 4. Property Libraries for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators
- 5. References
- 6. Satisfied Customers

\_\_\_\_\_

© Zittau/Goerlitz University of Applied Sciences, Germany

Faculty of Mechanical Engineering

Department of Technical Thermodynamics

Prof. Hans-Joachim Kretzschmar

Dr. Ines Stoecker

Phone: +49-3583-61-1846 or -1881

Fax: +49-3583-61-1846

E-mail: hj.kretzschmar@hs-zigr.de Internet: www.thermodynamics-zittau.de

# 0. Package Contents

# 0.1 Zip files for 32-bit Windows®

In order to install FluidVIEW on a computer running a 32-bit version of Windows<sup>®</sup> the zip file **CD\_FluidVIEW\_LibIF97.zip** is delivered. The directory structure of the archive is corresponding to the default directory of LabVIEW<sup>TM</sup>. All contained files, their paths and the structure of the archive are shown in the screenshot of the 7-zip file archiver and compression tool illustrated in Figure 0.1.

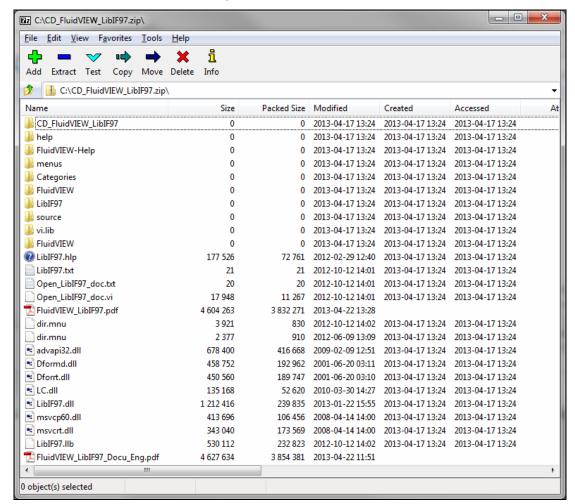



Figure 0.1 Screenshot of WinRAR showing the CD\_FluidVIEW\_LibIF97.zip archive.

The effects of the fifteen files, which are stored in the different directories of the zip archive, are shown in the Tables 0.1, 0.2, 0.3 and 0.4.

Table 0.1 Effects of the files located in the archive directory CD\_FluidVIEW\_LibIF97\vi.lib \FluidVIEW\LibIF97

| Filename    | Effects                                                                                                              |
|-------------|----------------------------------------------------------------------------------------------------------------------|
| LibIF97.llb | LabVIEW™ library file, containing every function of the LibIF97 property library in the form of subprograms (SubVIs) |

**Table 0.2** Effects of the files located in the archive directory CD\_FluidVIEW\_LibIF97\menus \Categories\FluidVIEW

| Filename | Effects                                                                                                                                                                                                                                |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dir.mnu  | The palette view of LabVIEW™ is based on the palette files (*.mnu). They include the palette data (e. g. the display name, the palette icon, the palette description, the help information, the synchronize information and the items) |

Table 0.3 Effects of the files located in the archive directory CD\_FluidVIEW\_LibIF97\source

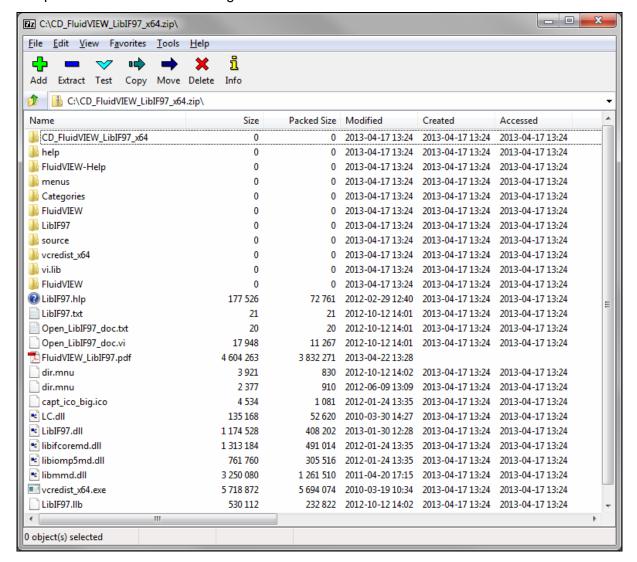

| Filename     | Effects                                                                                                         |  |  |
|--------------|-----------------------------------------------------------------------------------------------------------------|--|--|
| LibIF97.dll  | Dynamic-link library containing the algorithms for the calculation of the property functions of water and steam |  |  |
| advapi32.dll | Runtime library                                                                                                 |  |  |
| Dformd.dll   | Runtime library for the Fortran DLL                                                                             |  |  |
| Dforrt.dll   | Runtime library for the Fortran DLL                                                                             |  |  |
| LC.dll       | Auxiliary library                                                                                               |  |  |
| msvcp60.dll  | Runtime library                                                                                                 |  |  |
| msvcrt.dll   | Runtime library                                                                                                 |  |  |

Table 0.4 Effects of the files located in the archive directory CD\_FluidVIEW\_LibIF97\help \FluidVIEW-help

| Filename              | Effects                                                                           |
|-----------------------|-----------------------------------------------------------------------------------|
| FluidVIEW_LibIF97.pdf | User's guide of the property library LibIF97 for the LabVIEW™<br>Add-On FluidVIEW |
| LibIF97.hlp           | Help file with descriptions for each function                                     |
| OpenLibIF97_doc.vi    | LabVIEW™ instrument to open the user's guide via the help menu                    |
| LibIF97.txt           | Text file to change the name of the menu item of the help file                    |
| OpenLibIF97_doc.txt   | Text file to change the name of the menu item of the file OpenLibIF97_doc.vi      |

# 0.2 Zip files for 64-bit Windows®

In order to install FluidVIEW on a computer running a 64-bit version of Windows® the zip file **CD\_FluidVIEW\_LibIF97\_x64.zip** is delivered. The directory structure of the archive is corresponding to the default directory of LabVIEW<sup>TM</sup>. All contained files, their paths and the structure of the archive are shown in the screenshot of the 7-zip file archiver and compression tool illustrated in Figure 0.2.



**Figure 0.2** Screenshot of WinRAR showing the **CD\_FluidVIEW\_LibIF97\_x64.zip** archive.

The effects of the fifteen files, which are stored in the different directories of the zip archive, are shown in the Tables 0.5, 0.6, 0.7 and 0.8.

Table 0.5 Effects of the files located in the archive directory CD\_FluidVIEW\_LibIF97\_x64\vi.lib \FluidVIEW\LibIF97

| Filename    | Effects                                                                                                              |
|-------------|----------------------------------------------------------------------------------------------------------------------|
| LibIF97.llb | LabVIEW™ library file, containing every function of the LibIF97 property library in the form of subprograms (SubVIs) |

**Table 0.6** Effects of the files located in the archive directory CD\_FluidVIEW\_LibIF97\_x64\menus \Categories\FluidVIEW

| Filename | Effects                                                                                                                                                                                                                                |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dir.mnu  | The palette view of LabVIEW™ is based on the palette files (*.mnu). They include the palette data (e. g. the display name, the palette icon, the palette description, the help information, the synchronize information and the items) |

Table 0.7 Effects of the files located in the archive directory CD\_FluidVIEW\_LibIF97\_x64\source

| Filename         | Effects                                                                                                         |  |
|------------------|-----------------------------------------------------------------------------------------------------------------|--|
| LibIF97.dll      | Dynamic-link library containing the algorithms for the calculation of the property functions of water and steam |  |
| Capt_ico_big.ico | Icon file                                                                                                       |  |
| Libmmd.dll       | Runtime library                                                                                                 |  |
| Libifcoremd.dll  | Runtime library                                                                                                 |  |
| LC.dll           | Auxiliary library                                                                                               |  |
| Libiomp5md.dll   | Runtime library                                                                                                 |  |

Table 0.8 Effects of the files located in the archive directory CD\_FluidVIEW\_LibIF97\_x64\help \FluidVIEW-help

| Filename              | Effects                                                                        |
|-----------------------|--------------------------------------------------------------------------------|
| FluidVIEW_LibIF97.pdf | User's guide of the LibIF97 property library for the LabVIEW™ Add-On FluidVIEW |
| LibIF97.hlp           | Help file with descriptions for each function                                  |
| OpenLibIF97_doc.vi    | LabVIEW™ instrument to open the user's guide via the help menu                 |
| LibIF97.txt           | Text file to change the name of the menu item of the help file                 |
| OpenLibIF97_doc.txt   | Text file to change the name of the menu item of the file OpenLibIF97_doc.vi   |

Table 0.9 Effects of the files located in the archive directory CD\_FluidVIEW\_LibIF97\_x64 \vcredist\_x64

| Filename         | Effects                                                                                                                                                                                                                                                             |  |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| vcredist_x64.exe | Executable file to install the Microsoft Visual C++ 2008 Redistributable Package (x64). Within runtime components of Visual C++ Libraries required to run 64-bit applications developed with Visual C++ on a computer that does not have Visual C++ 2010 installed. |  |  |  |

# 1. Program Functions

# 1.1 Range of Validity

The International Association for the Properties of Water and Steam IAPWS issued the "Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam IAPWS-IF97"

in September 1997 [1], [2], [3]. It will be abbreviated as IAPWS-IF97. This new industrial standard must be applied worldwide in acceptance and guarantees calculations of facilities and plants working with water or steam. The IAPWS-IF97 Formulation replaces the former Industrial Formulation IFC-67 [12].

Figure 1.1 shows the entire range of validity for the equation set of the new Industrial Formulation IAPWS-IF97. It includes temperatures from 0 °C to 800 °C at pressures from 0.00611 bar to 1000 bar and temperatures to 2000 °C for pressures to 500 bar.

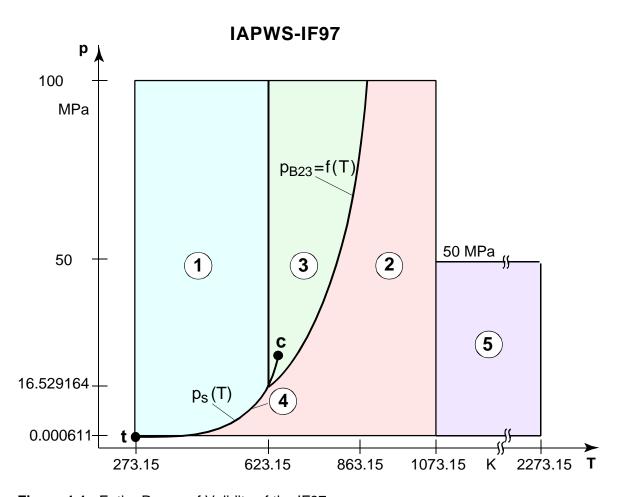



Figure 1.1 Entire Range of Validity of the IF97

The range of validity is divided into five calculation regions. Each of the calculation regions contains its own equations of state. They are described in detail in the official Release of the IAPWS [1] and in the publications by *Wagner et al.* [2] and [3].

The sub-programs of the LibIF97 DLL and the functions of the Add-In FluidEXL<sup>Graphics</sup> for Excel are listed in the following section.

All sub-programs and functions can be applied in the entire range of validity of the IF97. The call of the necessary equation of state for each calculation region will be realized within the program.

# **1.2 Functions**

| Functional Dependence                                                                                                   | Function Name  | Call as Function from DLL LibIF97 | Call from DLL LibIF97,<br>Result as Parameter | Property or Function                                                                 | Unit of the Result         |
|-------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------|----------------------------|
| a = f(p,t,x)                                                                                                            | a_ptx_97       | = APTX97(P,T,X)                   | = C_APTX97(A,P,T,X)                           | Thermal diffusivity                                                                  | m <sup>2</sup> /s          |
| $\alpha_p = f(p,t,x)$                                                                                                   | alphap_ptx_97  | = ALPHAPPTX97(P,T,X)              | =C_ALPHAPPTX97<br>(ALPHAP,P,T,X)              | Relative pressure coefficient                                                        | K <sup>-1</sup>            |
| $\alpha_V = f(p,t,x)$                                                                                                   | alphav_ptx_97  | = ALPHAVPTX97(P,T,X)              | =C_ALPHAVPTX97<br>(ALPHAV,P,T,X)              | Isobaric cubic expansion coefficient                                                 | K <sup>-1</sup>            |
| b = f(p)                                                                                                                | b_p_97         | = BP97(P)                         | =C_BP97 (B,P)                                 | Laplace coefficient                                                                  | m                          |
| b = f(t)                                                                                                                | b_t_97         | = BT97(T)                         | =C_BT97 (B,T)                                 | Laplace coefficient                                                                  | m                          |
| $\beta_p = f(p,t,x)$                                                                                                    | betap_ptx_97   | = BETAPPTX97(P,T,X)               | = C_BETAPPTX97<br>(BETAP,P,T,X)               | Isothermal stress coefficient                                                        | kg/m³                      |
| $c_p = f(p,t,x)$                                                                                                        | cp_ptx_97      | = CPPTX97(P,T,X)                  | = C_CPPTX97(CP,P,T,X)                         | Specific isobaric heat capacity                                                      | kJ/(kg · K)                |
| $c_V = f(p,t,x)$                                                                                                        | cv_ptx_97      | = CVPTX97(P,T,X)                  | = C_CVPTX97(CV,P,T,X)                         | Specific isochoric heat capacity                                                     | kJ/(kg · K)                |
| $\delta_T = f(p,t,x)$                                                                                                   | deltat_ptx_97  | = DELTATPTX97 (P,T,X)             | = C_DELTATPTX97<br>(DELTAT,P,T,X)             | Isothermal throttling coefficient                                                    | kJ/(kg · kPa-1)            |
| $ \left(\frac{\partial \mathbf{v}}{\partial \mathbf{p}}\right)_{T} = \mathbf{f}\left(\mathbf{p}, t, \mathbf{x}\right) $ | dv_dp_T_ptx_97 | = DVDPT97(P,T,X)                  | = C_DVDPT97(DVP,P,T,X)                        | Differential quotient $\left(\frac{\partial V}{\partial \rho}\right)_T (\rho, t, x)$ | m <sup>3</sup> /(kg · kPa) |
| $ \left(\frac{\partial \mathbf{v}}{\partial T}\right)_{\mathbf{p}} = \mathbf{f}\left(\mathbf{p}, t, \mathbf{x}\right) $ | dv_dT_p_ptx_97 | = DVDTP97(P,T,X)                  | = C_DVDTP97(DVT,P,T,X)                        | Differential quotient $\left(\frac{\partial V}{\partial T}\right)_{D}(p,t,x)$        | m <sup>3</sup> /(kg · K)   |
| $e = f(p,t,x,t_{U})$                                                                                                    | e_ptx_tu_97    | = EPTXTU97(P,T,X,TU)              | = C_EPTXTU97(E;P,T,X,TU)                      | Specific exergy                                                                      | kJ/kg                      |
| $\mathcal{E} = f(p,t,x)$                                                                                                | epsilon_ptx_97 | = EPSPTX97 (P,T,X)                | = C_EPSPTX97(EPS,P,T,X)                       | Dielectric constant                                                                  | -                          |
| $\eta = f(p,t,x)$                                                                                                       | eta_ptx_97     | = ETAPTX97(P,T,X)                 | = C_ETAPTX97(ETA,P,T,X)                       | Dynamic viscosity                                                                    | Pa $s = kg/(m s)$          |
| f = f(p,t,x)                                                                                                            | f_ptx_97       | = FPTX97 (P,T,X)                  | = C_FPTX97(F,P,T,X)                           | Specific Helmholtz energy                                                            | kJ/kg                      |
| $f^* = f(p,t,x)$                                                                                                        | fug_ptx_97     | = FUGPTX97 (P,T,X)                | = C_FUGPTX97(FUG,P,T,X)                       | Fugacity                                                                             | bar                        |
| g = f(p,t,x)                                                                                                            | g_ptx_97       | = GPTX97 (P,T,X)                  | = C_GPTX97(G,P,T,X)                           | Specific Gibbs energy                                                                | kJ/kg                      |
| h = f(p,s)                                                                                                              | h_ps_97        | = HPS97(P,S)                      | = C_HPS97(HPS,P,S)                            | Backward function: Specific enthalpy from pressure and entropy                       | kJ/kg                      |
| h = f(p,t,x)                                                                                                            | h_ptx_97       | = HPTX97(P,T,X)                   | = C_HPTX97(H,P,T,X)                           | Specific enthalpy                                                                    | kJ/kg                      |

| Functional<br>Dependence | Function Name | Call as Function from DLL LibIF97 | Call from DLL LibIF97,<br>Result as Parameter | Property or Function                                           | Unit of the<br>Result |
|--------------------------|---------------|-----------------------------------|-----------------------------------------------|----------------------------------------------------------------|-----------------------|
| $\kappa = f(\rho, t, x)$ | kappa_ptx_97  | = KAPPTX97(P,T,X)                 | = C_KAPPTX97(KAP,P,T,X)                       | Isentropic exponent                                            | -                     |
| $\kappa_T = f(p,t,x)$    | kappat_ptx_97 | = KAPPATPTX97(P,T,X)              | = C_KAPPATPTX97<br>(KAPPAT,P,T,X)             | Isothermal compressibility                                     | kPa <sup>-1</sup>     |
| $\lambda = f(p,t,x)$     | lambda_ptx_97 | = LAMPTX97(P,T,X)                 | = C_LAMPTX97(LAM,P,T,X)                       | Heat conductivity                                              | W/(m · K)             |
| $\mu = f(p,t,x)$         | my_ptx_97     | = MYPTX97(P,T,X)                  | = C_ MYPTX97(MY,P,T,X)                        | Joule-Thomson coefficient                                      | K kPa <sup>-1</sup>   |
| n = f(p,t,x,wl)          | n_ptxwl_97    | = NPTXWL97(P,T,X,WL)              | = C_NPTXWL97(N,P,T,X,WL)                      | Refractive index                                               | -                     |
| V = f(p,t,x)             | ny_ptx_97     | = NYPTX97(P,T,X)                  | = C_NYPTX97(NUE,P,T,X)                        | Kinematic viscosity                                            | m <sup>2</sup> /s     |
| p = f(h,s)               | p_hs_97       | = PHS97(H,S)                      | = C_PHS97(PHS,H,S)                            | Backward function: Pressure from enthalpy and entropy          | bar                   |
| p = f(v,h)               | p_vh_97       | = PVH97(H,S)                      | = C_PVH97(PHS,H,S)                            | Backward function: Pressure from volume and enthalpy           | bar                   |
| p = f(v,u)               | p_vu_97       | = PVU97(H,S)                      | = C_PVU97(PHS,H,S)                            | Backward function: Pressure from volume and internal energy    | bar                   |
| Pr = f(p,t,x)            | Pr_ptx_97     | = PRPTX97(P,T,X)                  | = C_PRPTX97(PR,P,T,X)                         | Prandtl-number                                                 | -                     |
| $p_{s} = f(t)$           | ps_t_97       | = PST97(T)                        | = C_PST97(PS,T)                               | Vapor pressure                                                 | bar                   |
| $\rho = f(p,t,x)$        | rho_ptx_97    | = RHOPTX97(P,T,X)                 | = C_RHOPTX97(RHO,P,T,X)                       | Density                                                        | kg/m³                 |
| s = f(p,h)               | s_ph_97       | = SPH97(P,H)                      | = C_SPH97(SPH,P,H)                            | Backward function: Specific entropy from pressure and enthalpy | kJ/(kg · K)           |
| s = f(p,t,x)             | s_ptx_97      | = SPTX97(P,T,X)                   | = C_SPTX97(S,P,T,X)                           | Specific entropy                                               | kJ/(kg · K)           |
| $\sigma = f(p)$          | sigma_p_97    | = SIGMAP97(P)                     | = C_SIGMAP97(SIG,P)                           | Surface tension from pressure                                  | mN/m = mPa · m        |
| $\sigma = f(t)$          | sigma_t_97    | = SIGMAT97(T)                     | = C_SIGMAT97(SIG,T)                           | Surface tension from temperature                               | mN/m = mPa · m        |
| t = f(h,s)               | t_hs_97       | = THS97(H,S)                      | = C_THS97(THS,H,S)                            | Backward function: Temperature from enthalpy and entropy       | °C                    |
| t = f(p,h)               | t_ph_97       | = TPH97(P,H)                      | = C_TPH97(TPH,P,H)                            | Backward function: Temperature from pressure and enthalpy      | °C                    |
| t = f(p,s)               | t_ps_97       | = TPS97(P,S)                      | = C_TPS97(TPS,P,S)                            | Backward function: Temperature from pressure and entropy       | °C                    |

| Functional Dependence | Function Name | Call as Function from DLL LibIF97 | Call from DLL LibIF97,<br>Result as Parameter | Property or Function                                              | Unit of the Result |
|-----------------------|---------------|-----------------------------------|-----------------------------------------------|-------------------------------------------------------------------|--------------------|
| t = f(v,h)            | t_vh_97       | = TVH97(P,H)                      | = C_TVH97(TPH,P,H)                            | Backward function: Temperature from volume and enthalpy           | °C                 |
| t = f(v,u)            | t_vu_97       | = TVU97(P,H)                      | = C_TVU97(TPH,P,H)                            | Backward function: Temperature from volume and internal energy    | °C                 |
| $t_{\rm S} = f(p)$    | ts_p_97       | = TSP97(P)                        | = C_TSP97(TS,P)                               | Saturation temperature                                            | °C                 |
| $u = f(\rho,t,x)$     | u_ptx_97      | = UPTX97(P,T,X)                   | = C_UPTX97(U,P,T,X)                           | Specific internal energy                                          | kJ/kg              |
| V = f(p,h)            | v_ph_97       | = VPH97(P,S)                      | = C_VPH97(VPS,P,S)                            | Backward function: Specific volume from pressure and enthalpy     | m <sup>3</sup> /kg |
| V = f(p,s)            | v_ps_97       | = VPS97(P,S)                      | = C_VPS97(VPS,P,S)                            | Backward function: Specific volume from pressure and entropy      | m <sup>3</sup> /kg |
| V = f(p,t,x)          | v_ptx_97      | = VPTX97(P,T,X)                   | = C_VPTX97(V,P,T,X)                           | Specific volume                                                   | m <sup>3</sup> /kg |
| w = f(p,t,x)          | w_ptx_97      | = WPTX97(P,T,X)                   | = C_WPTX97(W,P,T,X)                           | Isentropic speed of sound                                         | m/s                |
| x = f(h,s)            | x_hs_97       | = XHS97(H,S)                      | = C_XHS97(XHS,H,S)                            | Backward function: Vapor fraction from enthalpy and entropy       | kg/kg              |
| x = f(p,h)            | x_ph_97       | = XPH97(P,H)                      | = C_XPH97(XPH,P,H)                            | Backward function: Vapor fraction from pressure and enthalpy      | kg/kg              |
| x = f(p,s)            | x_ps_97       | = XPS97(P,S)                      | = C_XPS97(XPS,P,S)                            | Backward function: Vapor fraction from pressure and entropy       | kg/kg              |
| x = f(v,h)            | x_vh_97       | = XVH97(P,H)                      | = C_XVH97(XPH,P,H)                            | Backward function: Vapor fraction from volume and enthalpy        | kg/kg              |
| x = f(v,u)            | x_vu_97       | = XVU97(P,H)                      | = C_XVU97(XPH,P,H)                            | Backward function: Vapor fraction from volume and internal energy | kg/kg              |
| z = f(p,t,x)          | z_ptx_97      | = ZPTX97(P,T,X)                   | = C_ZPTX97(Z,P,T,X)                           | Compression factor                                                | -                  |

**Units:**  $t \text{ in } {}^{\circ}\text{C}$ 

*p* in bar

x in kg saturated steam/kg wet steam

# Range of validity of IAPWS-IF97

Temperature: from 0 °C to 800 °C

Pressure: from 0.00611 bar to 1000 bar

High temperature region: to 2000 °C for pressures less than 500 bar

Exception to 900°C for the functions for a,  $\eta$ ,  $\lambda$ ,  $\nu$ , Pr

# Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

### Single-phase region

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

#### Wet-steam region

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered. In this case, the backward functions result in the appropriate value between 0 and 1 for x. When calculating wet steam either the given value for t = -1 and in both cases the value for t = -1 and 1 must be entered.

If *p* and *t* and *x* are entered as given values, the program considers *p* and *t* to be appropriate to represent the vapor pressure curve. If this is not the case the calculation for the property of the chosen function results in –1.

(Wet steam region of the IAPWS-IF97:  $t_t = 0 \, ^{\circ}\text{C} \, \dots \, t_C = 373.946 \, ^{\circ}\text{C}$ 

 $p_t = 0.00611 \text{ bar } \dots p_C = 220.64 \text{ bar } (c - \text{critical point})$ 

#### Note.

If the calculation results in -1, the values entered represent a state point beyond the range of validity of IAPWS-IF97. For further information on each function and its range of validity see Chapter 4. The same information may also be accessed via the online help pages.

# 2 Application of FluidVIEW in LabVIEW™

The FluidVIEW Add-on has been developed to calculate thermodynamic properties in LabVIEW™ (version 10.0 or higher) more conveniently. Within LabVIEW™, it enables the direct call of functions relating to water and steam from the LibIF97 property library.

# 2.1 Installing FluidVIEW

If a FluidVIEW property library has not yet been installed, please complete the initial installation procedure described below.

If a FluidVIEW property library has already been installed, you only need to copy several files which belong to the LibIF97 library. In this case, follow the subsection "Adding the LibIF97 Library" on page 2/3.

In both cases folders and files from the zip archive

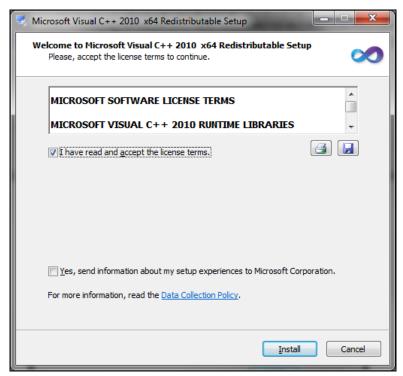
```
CD_FluidVIEW_LibIF97.zip (for 32-bit version of Windows®)
CD_FluidVIEW_LibIF97_x64.zip (for 64-bit version of Windows®)
```

have to be copied into the default directory of the LabVIEW $^{\text{TM}}$  development environment. In the following text these zipped directories for the 32-bit or 64-bit operating system will be symbolised with the term **<CD>**.

You can see the current default directory of LabVIEW $^{\text{TM}}$  in the paths page (options dialog box). To display this page please select *Tools* and click on *Options* to open the options dialog box and then select *Paths* from the category list.

By choosing *Default Directory* from the drop-down list the absolute pathname to the default directory, where LabVIEW $^{\text{TM}}$  automatically stores information, is displayed. In the following sections the pathname of the default directory will be symbolised by the term **<LV>**.

# Additional Requirement When Using the 64-bit Operating System


If you want to use FluidVIEW on a 64-bit computer that does not have Visual C++ installed, please make sure the Microsoft Visual C++ 2010 x64 Redistributable Package is installed.

If it is not the case, please install it by double clicking the file

```
vcredist_x64.exe
```

which you find in the folder **\vcredist\_x64** in the **64-bit** CD folder "CD\_FluidVIEW\_LibIF97\_x64."

In the following window you are required to accept the Microsoft<sup>®</sup> license terms to install the Microsoft Visual C++ 2010 runtime libraries by ticking the box next to "I have read and accept the license terms" (see Figure 2.1).



**Figure 2.1** Accepting the license terms to install the Microsoft Visual C++ 2010 x64 Redistributable Package

Now click on "Install" to continue installation.

After the "Microsoft Visual C++ 2010 x64 Redistributable Pack" has been installed, you will see the sentence "Microsoft Visual C++ 2010 x64 Redistributable has been installed." Confirm this by clicking "Finish."

Now you can use the FluidVIEW Add-On on your 64-bit operating system. Please follow the instructions below to install FluidVIEW.

## Initial Installation of FluidVIEW

The initial installation of FluidVIEW is carried out by copying three directories with its contents from the zip archive to the standard directory of LabVIEW™.

The directories that have to be copied, their paths in the zip archive and their target paths are listed in Table 2.1.

The installation is complete after copying the files and restarting LabVIEW™.

Due to the fact, that the functions of the DLL are called with a variable pathname, the source files you will find in the directory **<CD>\source** can be stored in a random directory on the hard disk. The pathname of LibIF97.dll, which is located in this directory, has to be indicated in order to calculate the property functions (see example calculation in section 2.4 on page 2/9).

All source files have to be stored in the same directory to make the property functions of the LibIF97 library work. These files are for the

 32-bit system: LibIF97.dll, advapi32.dll, Dformd.dll, Dforrt.dll, LC.dll, msvcp60.dll, and msvcrt.dll

### and for the

64-bit system: LibIF97.dll, capt\_ico\_big.ico, LC.dll, libifcoremd.dll, libiomp5md.dll, and libmmd.dll.

**Table 2.1** Directories which have to be copied from the zip archive in the default directory of LabVIEW™ (<LV>) for the initial installation of FluidVIEW

| Name of the directory | Parent directory in the zip archive | Target path in the default directory of LabVIEW ( <lv>)</lv> |  |
|-----------------------|-------------------------------------|--------------------------------------------------------------|--|
| FluidVIEW             | <cd>\vi.lib</cd>                    | <lv>\vi.lib</lv>                                             |  |
| FluidVIEW             | <cd>\menus\Categories</cd>          | <lv>\menus\Categories</lv>                                   |  |
| FluidVIEW-Help        | <cd>\help</cd>                      | <lv>\help</lv>                                               |  |

# Adding the LibIF97 Library

In order to add the LibIF97 property library to an existing FluidVIEW installation, one folder with its contents and five files have to be copied from the zip archive to the standard directory of LabVIEW $^{\text{TM}}$ . This directory, the files plus their pathnames in the zip archive and their target paths are listed in Table 2.2.

The installation is complete after copying the files and restarting LabVIEW™.

Due to the fact, that the functions of the DLL are called with a variable pathname, the source files you will find in the directory **<CD>\source** can stored in a random directory on the hard disk. The pathname of LibHuAir.dll, which is located in this directory, has to be indicated in order to calculate the property functions (see example calculation in section 2.4 on page 2/9). All source files have to be stored in the same directory to make the property functions of the LibIF97 library work. These files are for the

 32-bit system: LibIF97.dll, advapi32.dll, Dformd.dll, Dforrt.dll, LC.dll, msvcp60.dll, and msvcrt.dll

and for the

64-bit system: LibIF97.dll, capt\_ico\_big.ico, LC.dll, libifcoremd.dll, libiomp5md.dll, and libmmd.dll

**Table 2.2** Data which have to be copied from the zip archive in the default directory of LabVIEW™ (<LV>) for adding the LibIF97 property library to an existing installation of FluidVIEW

| File name with file extension or name of the directory | Parent directory in the zip archive       | Target path in the default directory of LabVIEW ( <lv>)</lv> |
|--------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------|
| LibIF97.llb                                            | <cd>\vi.lib\FluidVIEW</cd>                | <lv>\vi.lib\FluidVIEW</lv>                                   |
| LibIF97                                                | <cd>\menus\Categories<br/>\FluidVIEW</cd> | <lv>\menus\Categories<br/>\FluidVIEW</lv>                    |
| LibIF97.hlp                                            | <cd>\\help\FluidVIEW-Help</cd>            | <lv>\help\FluidVIEW-Help</lv>                                |
| LibIF97.txt                                            | <cd>\\help\FluidVIEW-Help</cd>            | <lv>\help\FluidVIEW-Help</lv>                                |
| FluidVIEW_LibIF97.pdf                                  | <cd>\\help\FluidVIEW-Help</cd>            | <lv>\help\FluidVIEW-Help</lv>                                |
| Open_LibIF97_doc.vi                                    | <cd>\\help\FluidVIEW-Help</cd>            | <lv>\help\FluidVIEW-Help</lv>                                |
| Open_LibIF97_doc.txt                                   | <cd>\\help\FluidVIEW-Help</cd>            | <lv>\help\FluidVIEW-Help</lv>                                |

After you have restarted LabVIEW<sup>TM</sup> you will find the functions of the LibIF97 property library in the functions palette under the sub palette FluidVIEW. An example calculation of the specific enthalpy h and the specific entropy s is shown in section 2.4.

# 2.2 The FluidVIEW Help System

FluidVIEW provides detailed online help functions. If you are running Windows Vista or Windows 7, please note the paragraph

"Using the FluidVIEW Online-Help in Windows Vista or Windows 7."

## **General Information**

The FluidVIEW Help System consists of the Microsoft WinHelp file **LibIF97.hlp** and this user's guide as PDF document **FluidVIEW\_LibIF97\_Docu\_Eng.pdf**. Both files can be opened via the help menu. To do this please click *Help* in the menu bar. In the submenu *FluidVIEW-Help* you will find the commands *LibIF97 Help File* and *LibIF97 User's Guide* to open an appropriate file.

# **Context-Sensitive Help**

If you have activated the context help function in LabVIEW™ (Ctrl-H) and move the cursor over a FluidVIEW object basic information is displayed in the context help window. The inand output parameters plus a short information text are displayed for a property function. By clicking the **Detailed help** button in the **Context help** window the online help will be opened. The context help window of the function v\_ptx\_97.vi is shown in Figure 2.2.

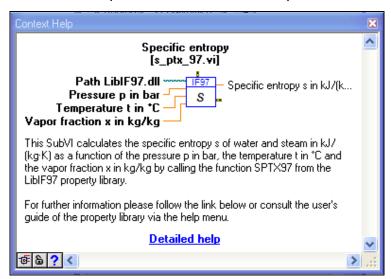



Figure 2.2 Context help window of the function v\_ptx\_97.vi

## Using the FluidVIEW Online-Help in Windows Vista or Windows 7

If you are running Windows Vista or Windows 7 on your computer, you might not be able to open Help files. To view these files you have to install the Microsoft<sup>®</sup> Windows Help program which is provided by Microsoft<sup>®</sup>. Please carry out the following steps in order to download and install the Windows Help program. The description relates to Windows<sup>®</sup> 7.

The procedure is analogous for Windows® Vista.

Open Microsoft Internet Explorer® and go to <a href="http://support.microsoft.com/kb/917607">http://support.microsoft.com/kb/917607</a>. Scroll down until you see the headline "Resolution". Under the first Point you'll find the links to download the Windows Help program. Click on the link "Windows Help program (WinHp32.exe) for Windows 7" (see Figure 2.3)

#### **□** RESOLUTION

To resolve this issue, obtain the Windows Help program (WinHlp32.exe) for the versions of Windows that support it. To obtain the correct version for your operating system, you must know whether you have a Windows 32-bit or Windows 64-bit system. If you are not sure which version of Windows you are running, follow the steps under "If you are not sure which Windows version is installed."

**Note** To determine which version of Windows you are running, you must be logged on as an administrator. To verify that you are logged on as an administrator, follow the steps under "To verify that you are logged on as an administrator."

♠ Back to the top

#### If you are not sure which Windows version is installed

If you are not sure which version of Windows is installed on your computer, follow the steps in the following wizard.

Click here to view or hide step-by-step instructions with pictures

♠ Back to the top

## To verify that you are logged on as an administrator

To verify that you are logged on as an administrator, follow the steps in the following wizard.

Click here to view or hide step-by-step instructions with pictures **How to obtain the correct version of the Windows Help program (WinHlp32.exe)** 

- Click one of the following "Windows Help program" links, depending on the operating system that you are running:
  - Windows Help program (WinHlp32.exe) for Windows Vista
  - Windows Help program (WinHlp32.exe) for Windows 7
  - Windows Help program (WinHlp32.exe) for Windows Server 2008
  - Windows Help program (WinHlp32.exe) for Windows Server 2008 R2

Note The Windows Help program is not supported for Windows 8 Server Beta, and no download will be provided for this Windows version. The Windows Help program is supported for the x64 and x86 editions of the Windows 8 client, and a download package for these editions will be made available in this article at a later date.

- Click Continue to run Genuine Windows Validation. For more information about how to install
  Genuine Windows Validation Component, visit the following Microsoft website:
   http://www.microsoft.com/download/en/genuine-validation.aspx?id=5143
- Download and install Windows6.\*-KB917607-x64.msu or Windows6.\*-KB917607-x86.msu, depending on the edition of the operating system that you are running.

Figure 2.3 Selecting your Windows® Version

You will be forwarded to the Microsoft Download Center where you can download the Microsoft Windows Help program. First, a validation of your Windows License is required. To do this click on the "Continue" button (see Figure 2.4).

| Validation Required For more information about the validation process, click here. |                                           |                               |                    |  |
|------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------|--------------------|--|
| Quick detai                                                                        | ls                                        |                               |                    |  |
| Version:<br>Change language:                                                       | 1.0 English                               | Date published:               | 10/14/2009         |  |
| KB articles:                                                                       | KB917607                                  |                               |                    |  |
| Files in this dowr                                                                 |                                           |                               |                    |  |
| The links in this section c                                                        | orrespond to files available for this dov | vnload. Download the files ap | propriate for you. |  |
| File name                                                                          |                                           | Size                          |                    |  |
| Windows6.1-KB917607-                                                               | x64.msu                                   | 702 KB                        | CONTINUE           |  |
| Windows6.1-KB917607-                                                               | x86.msu                                   | 688 KB                        |                    |  |
|                                                                                    |                                           |                               |                    |  |
|                                                                                    |                                           |                               |                    |  |

Figure 2.4 Microsoft® Download Center

Afterwards a web page with instructions on how to install the Genuine Windows Validation Component opens. At the top of your Windows Internet Explorer you will see a yellow information bar. It reads

"This website wants to install the following add-on: 'Windows Genuine Advantage' from 'Microsoft Corporation'. If you trust this website and the add-on and want to install it, click here."

Right-click this bar and select "Install ActiveX Control" in the context menu. A dialog window appears in which you are asked if you want to install the software. Click the "Install" button to continue. After the validation has been carried out you will be able to download the appropriate version of Windows Help program (see Figure 2.5).

To download and install the correct file you need to know which Windows version (32-bit or 64-bit) you are running on your computer.

If you are running a 64-bit operating system, please download the file

Windows6.1-KB917607-x64.msu.

If you are running a 32-bit operating system, please download the file Windows6.1-KB917607-x86.msu.

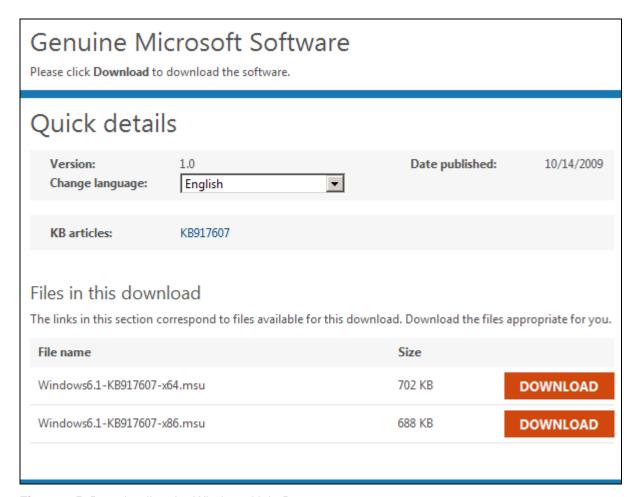



Figure 2.5 Downloading the Windows Help Program

In order to run the installation of the Windows Help program double-click the file you have just downloaded on your computer.

Installation starts with a window searching for updates on your computer.

After the program has finished searching you may be asked, if you want to install the "Update for Windows (KB917607)."

(If you have already installed this update, you will see the message "Update for Windows (KB917607) is already installed on this computer.")

The installation can be continued by clicking the "Yes" button.

In the next window you have to accept the Microsoft license terms before installing the update by clicking on "I Accept".

After the Windows Help program has been installed, the notification "Installation complete" will appear. Confirm this by clicking the "Close" button.

The installation of the Windows Help program has been completed and you will now be able to open the Help files.

# 2.3 Licensing the LibIF97 Property Library

The licensing procedure has to be carried out when calculating a LibIF97 function and a FluidVIEW prompt message appears. In this case, you will see the "License Information" window (see figure below).



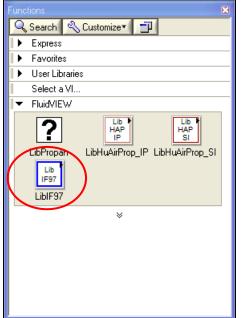
Figure 2.6 "License Information" window

Here you will have to type in the license key which you have obtained from the Zittau/Goerlitz University of Applied Sciences. You can find contact information on the "Content" page of this User's Guide or by clicking the yellow question mark in the "License Information" window. Then the following window will appear:




Figure 2.7 "Help" window

If you do not enter a valid license it is still possible to run your VI by clicking "Cancel". In this case, the LibIF97 property library will display the result "-1.11111E+7" for every calculation.


The "License Information" window will appear every time you reopen your Virtual Instrument (VI) or reload the path of the LibIF97.dll. Should you not wish to license the LibIF97 property library, you have to uninstall FluidVIEW according to the description in section 2.5 of this User's Guide.

#### 2.4 Example: Calculation of h = f(p,t,x) and s = f(p,t,x)

After the delivered files have been copied in the appropriate folders of the default directory LabVIEW™ (described in section 2.1), the LibIF97 property library is ready to use. The function nodes of the LibIF97 property library can be used by dragging them from the functions palette into the block diagram and connecting them with the wires representing the required input parameters.

Now we will calculate, step by step, the specific enthalpy h as a function of pressure p, temperature t, and vapor fraction x, using FluidVIEW.

- Start LabVIEW™ and wait for the Getting Started window to be displayed. Then select Blank VI. The Blank VI will be displayed in two windows, the front panel and the block diagram.
- Open the functions palette in the block diagram via view / Functions Palette (or by clicking the right mouse button anywhere in the free area of the block diagram) if not yet displayed.
- In addition to the default LabVIEW™ palettes the functions palette contains the sub palette FluidVIEW (see Figure 2.8) with the sub palette LibIF97 (see Figure 2.9).



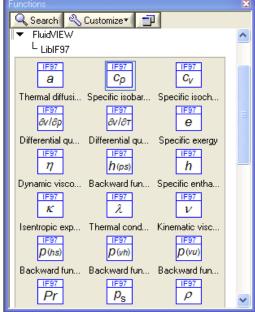
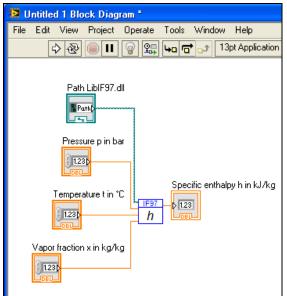



Figure 2.8 FluidVIEW and LibIF97

Figure 2.9 Functions palette with the sub palettes Functions palette with the property functions of the LibIF97 library

In order to calculate the specific enthalpy h, drag the function (SubVI) whose symbol shows the *h* from the functions palette into the block diagram.


While the short names of the SubVIs behind the symbols will be shown in the control tip, the full names and brief descriptions of the property functions are displayed in the Context Help window (see Figure 2.2). To use the context help press <Ctrl>+<H> on your keyboard.

After placing the node of the SubVI h ptx 97.vi on your block diagram the required input parameters have to be defined.

The input parameters which are set as required appear in bold type in the Context Help

window. In this case these input parameters are **Path LibIF97.dll** (LabVIEW<sup>™</sup> data type: Path), **Pressure p in bar** (LabVIEW<sup>™</sup> data type: Double precision, floating-point), **Temperature t in °C** (LabVIEW<sup>™</sup> data type: Double precision, floating-point) and **Vapor fraction x in kg/kg** (LabVIEW<sup>™</sup> data type: Double precision, floating-point).

To define these variables wire their input terminals with input elements on the front panel. You can accomplish this in one step by choosing **Create / Control** in the context menu of all required input terminals. In order to wire the output terminal of the function node with an output element on the front panel, choose **Create / Indicator** in the context menu of the output terminal **Specific enthalpy h in kJ/kg** (LabVIEW™ data type: Double precision, floating-point). After cleaning up the block diagram by pressing <Ctrl>+<U> it has the appearance illustrated in Figure 2.10. The same input and output elements are available on the appropriate front panel (see Figure 2.11).



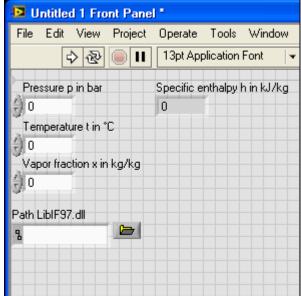



Figure 2.10
Block diagram of the example calculation

**Figure 2.11**Front panel of the example calculation

Enter a value in the input element pressure p in bar on the front panel
 (Range of validity of IAPWS-IF97: p = 0.00611 ... 1000 bar

 $p = 0.00611 \dots 500$  bar for high temperature region)

 $\Rightarrow$  e. g.: Enter the value 100.

Enter a value in the input element temperature t in °C on the front panel
 (Range of validity of IAPWS-IF97: t = 0 ... 800 °C high temperature region to 2000 °C)
 ⇒ e. g.: Enter the value 400.

Enter a value in the input element *vapor fraction* x *in* kg/kg on the front panel. Since the wet steam region is calculated automatically by the subprograms, the following fixed details on the vapor fraction x are to be considered when the value for x is entered: Single-phase region

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

# Wet-steam region

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1 or the given value for p and t = -1 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve. If it is not the case the calculation for the property of the chosen function to be calculated results in -1.

Wet steam region of the IAPWS-IF97:

```
t_t = 0 \, ^{\circ}\text{C} \, \dots \, t_c = 373.946 \, ^{\circ}\text{C}

p_t = 0.00611 \, \text{bar} \, \dots \, p_c = 220.64 \, \text{bar} \, (c - \text{critical point})
```

- ⇒ e. g.: Enter the value -1.
- Enter the path of the LibIF97.dll in the input element Path LibIF97.dll on the front panel (as explained in section 2.1 the LibIF97.dll and the other library files from the directory <CD>\source have to be stored in the same directory which is arbitrary). To do this you can use the File Open Dialog which appears by clicking the yellow folder symbol on the right of the input element.
- To run the calculation of the specific enthalpy click on the *Run* button or press <Ctrl>+<R>. The result for *h* in kJ/kg appears in the output element (see Figure 2.12).
  - $\Rightarrow$  The result for *h* in our sample calculation is h = 3097.37527 kJ/kg.

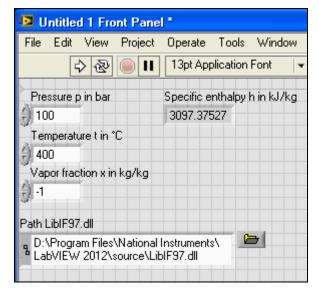



Figure 2.12 Result of the example calculation of h

The calculation of h = f(p,t,x) has thus been completed.

Correspondingly, the specific entropy s = f(p,t,x) can be calculated with the same values for p, t, and x. The following changes need to be implemented.

- Open the context menu of the function node *specific enthalpy* on the block diagram. Under **Replace / Palette LibIF97** you will find the function **Specific entropy** symbolized with s. The node on the block diagram changes to **Specific entropy** by clicking on this symbol. Since the input parameters are the same as before their labels need not be changed. Only the label of the output parameter can be changed from *specific enthalpy h in kJ/kg* to *specific entropy s in kJ/(kg·K)* by double clicking on it and typing the new name.
- On the front panel you can see that the new label for the output element *specific entropy* s in kJ/(kg·K) was taken automatically. Since the values in the input elements are still present the calculation can be started now by pressing <Ctrl>+<R> or clicking the Run button. The result for s in kJ/(kg·K) appears in the output element.
  - $\Rightarrow$  The result for s in our sample calculation is 6.21392889 in kJ/(kg·K).

The calculation of s = f(p,t,x) has been carried out. You can now arbitrarily change the values for p, t, or x in the appropriate input elements.

#### Note:

If the calculation results in -1000, this indicates that the values entered are located outside the range of validity. More detailed information on each function and its range of validity is available in chapter 3. For further property functions calculable with FluidVIEW, see the function table in chapter 1.

# Removing FluidVIEW

Should you wish to remove the LibIF97 library or the complete FluidVIEW Add-on you have to delete the files that have been copied in the default directory of the LabVIEW $^{\text{TM}}$  development environment **<LV>**.

# Removing the FluidVIEW Add-on

To remove the FluidVIEW Add-on please delete the folders listed in Table 2.3 from the default directory of LabVIEW™.

**Table 2.3** Directories that have to be deleted from the default directory of LabVIEW™ to remove the FluidVIEW Add-on

| Name of the directory | Parent directory in the default directory of LabVIEW™ ( <lv>)</lv> |  |
|-----------------------|--------------------------------------------------------------------|--|
| FluidVIEW             | <lv>\vi.lib</lv>                                                   |  |
| FluidVIEW             | <lv>\menus\Categories</lv>                                         |  |
| FluidVIEW-Help        | <lv>\help</lv>                                                     |  |

# Removing only the LibIF97 library

To remove only the LibIF97 library please delete the folders or files listed in Table 2.4 from the default directory of LabVIEW™.

**Table 2.4** Data that have to be deleted from the default directory of LabVIEW™ (<LV>) to remove only the LibIF97 library.

| File name with file extension or name of the directory | Parent directory in the default directory of LabVIEW ( <lv>)</lv> |
|--------------------------------------------------------|-------------------------------------------------------------------|
| LibIF97.llb                                            | <lv>\vi.lib\FluidVIEW</lv>                                        |
| LibIF97                                                | <lv>\menus\Categories\FluidVIEW</lv>                              |
| LibIF97.hlp                                            | <lv>\help\FluidVIEW-Help</lv>                                     |
| LibIF97.txt                                            | <lv>\help\FluidVIEW-Help</lv>                                     |
| FluidVIEW_LibIF97.pdf                                  | <lv>\help\FluidVIEW-Help</lv>                                     |
| Open_LibIF97_doc.vi                                    | <lv>\help\FluidVIEW-Help</lv>                                     |
| Open_LibIF97_doc.txt                                   | <lv>\help\FluidVIEW-Help</lv>                                     |

The changes will take effect after restarting LabVIEW™.

# 3. Program Documentation

# Thermal Diffusivity a = f(p,t,x)

Function Name: a\_ptx\_97

Sub-program with function value: REAL\*8 FUNCTION APTX97(P,T,X)

for call from Fortran REAL\*8 P,T,X

Sub-program with parameter: INTEGER\*4 FUNCTION C\_APTX97(A,P,T,X)

for call from DLL REAL\*8 A,P,T,X

# Input values

**P** - Pressure *p* in bar

T - Temperature t in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

# Result

**APTX97**, **A** or **a\_ptx\_97** - Thermal diffusivity 
$$a = \frac{\lambda}{\rho \cdot c_p} = \frac{\lambda \cdot v}{c_p}$$
 in m<sup>2</sup>/s

# Range of validity

Temperature range: from 0 °C to 900 °C

Pressure range: from 0.00611 bar to 1000 bar

# Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from  $t_t = 0$  °C to  $t_c = 373.946$  °C

Pressure ranges from  $p_t = 0.00611$  bar to  $p_c = 220.64$  bar)

## Results for wrong input values

Result APTX97, A = -1 or  $a_ptx_97 = -1$  for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1)  $t > 900 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$ 

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

(x = 0 or x = 1) at t = -1 and p > 220.64 bar

or p < 0.00611 bar or at p > 220.64 bar or p < 0.00611 bar

and  $t > 373.946 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$ 

or  $|t-t_{\rm S}(p)| > 0.1 \text{ K}$ 

## References:

Internal calculation from  $\rho$  or v and  $c_p$  [1], [2], [3] and  $\lambda$  [6]

# Relative Pressure Coefficient $\alpha_p = f(p,t,x)$

Function Name: alphap\_ptx\_97

Sub-program with function value: REAL\*8 FUNCTION ALPHAPPTX97(P,T,X)

for call from Fortran REAL\*8 P,T,X

Sub-program with parameter: INTEGER\*4 FUNCTION C\_ALPHAPPTX97 (ALPHAP,P,T,X)

for call from DLL REAL\*8 ALPHAP,P,T,X

# Input values

**P** - Pressure *p* in bar

T - Temperature t in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Result

**ALPHAPPTX97**, **ALPHAP** or **alphap\_ptx\_97** - Relative pressure coefficient  $\alpha_p$  in K<sup>-1</sup>

# Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar

# Details on the vapor fraction $\boldsymbol{x}$ and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from  $t_t = 0 \,^{\circ}\text{C}$  to  $t_c = 373.946 \,^{\circ}\text{C}$ 

Pressure ranges from  $p_t = 0.00611$  bar to  $p_c = 220.64$  bar)

#### Results for wrong input values

Result ALPHAPPTX97, ALPHAP = -1 or alphap\_ptx\_97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1)  $t > 800 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$ 

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

(x = 0 or x = 1) at t = -1 and p > 220.64 bar

or p < 0.00611 bar or at p > 220.64 bar or p < 0.00611 bar

and  $t > 373.946 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$ 

or  $|t-t_s(p)| > 0.1 \text{ K}$ 

#### References:

Internal calculation from  $\rho$  or v and  $c_p$  [1], [2], [3] and  $\lambda$  [6]

# Isobaric Cubic Expansion Coefficient $\alpha_v = f(p,t,x)$

Function Name: alphav\_ptx\_97

Sub-program with function value: REAL\*8 FUNCTION ALPHAVPTX97(P,T,X)

for call from Fortran REAL\*8 P,T,X

Sub-program with parameter: INTEGER\*4 FUNCTION C\_ ALPHAVPTX97 (ALPHAV,P,T,X)

for call from DLL REAL\*8 ALPHAV,P,T,X

# Input values

**P** - Pressure *p* in bar **T** - Temperature *t* in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Result

**ALPHAVPTX97**, **ALPHAV** or **alphav\_ptx\_97** - Isobaric cubic expansioncoefficient  $\alpha_v$  in K<sup>-1</sup>

# Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar High temperature region: to 2000 °C at pressures to 500 bar

# Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from  $t_t = 0$  °C to  $t_c = 373.946$  °C

Pressure ranges from  $p_t = 0.00611$  bar to  $p_c = 220.64$  bar)

# Results for wrong input values

Result ALPHAVPTX97, ALPHAV = -1 or alphav\_ptx\_97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1)  $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or

 $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

(x = 0 or x = 1) at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at  $|t-t_s(p)| > 0.1 \text{ K}$ 

# Laplace Coefficient b = f(p)

Function Name: b\_p\_97

Sub-program with function value: REAL\*8 FUNCTION BP97(P)

for call from Fortran REAL\*8 P

Sub-program with parameter: INTEGER\*4 FUNCTION C\_ BP97 (B,P)

for call from DLL REAL\*8 B,P

# Input values

**P** - Pressure *p* in bar

## Result

BPTX97, B or b\_pt\_97 - Laplace coefficient b in m

# Range of validity

Pressure ranges from  $p_{\rm t} = 0.00611$  bar to  $p_{\rm c} = 220.64$  bar

# Results for wrong input values

Result **BP97**, B = -1 or  $b_p_97 = -1$  for input values:

Saturation lines: at p > 220.64 bar or p < 0.00611 bar

# Laplace Coefficient b = f(t)

Function Name: **b\_t\_97** 

Sub-program with function value: REAL\*8 FUNCTION BT97(T)

for call from Fortran REAL\*8 T

Sub-program with parameter: INTEGER\*4 FUNCTION C\_ BT97 (B,T)

for call from DLL REAL\*8 B,T

# Input values

T - Temperature t in °C

#### Result

BPTX97, B or b\_pt\_97 - Laplace coefficient b in m

# Range of validity

Temperature ranges from  $t_t = 0$  °C to  $t_c = 373.946$  °C

# Results for wrong input values

Result BT97, B = -1 or  $b_t_97 = -1$  for input values:

Saturation lines: t > 373.946 °C or t < 0 °C

# Isothermal Stress Coefficient $\beta_p = f(p,t,x)$

**Function Name:** betap ptx 97

**REAL\*8 FUNCTION BETAPPTX97(P,T,X)** Sub-program with function value:

for call from Fortran REAL\*8 P,T,X

INTEGER\*4 FUNCTION C\_ BETAPPTX97 (BETAP,P,T,X) Sub-program with parameter:

for call from DLL REAL\*8 BETAP,P,T,X

# Input values

P - Pressure p in bar

T - Temperature t in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Result

**BETAPPTX97**, **BETAP** or **betap\_ptx\_97** - Isothermal stress coefficient  $\beta_{\rho}$  in kg/m<sup>3</sup>

# Range of validity

Temperature range: from 0 °C to 800 °C

from 0.00611 bar to 1000 bar Pressure range: High temperature region: to 2000 °C at pressures to 500 bar

# Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t <u>and</u> p = -1, or the given value for p <u>and</u> t = -1, plus the value for x (x = 0 or x = 1). If p <u>and</u> t <u>and</u> x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

 $t_{\rm t} = 0 \, ^{\circ}{\rm C}$  to  $t_{\rm c} = 373.946 \, ^{\circ}{\rm C}$ Temperature ranges from

Pressure ranges from  $p_{\rm t} = 0.00611$  bar to  $p_{\rm c} = 220.64$  bar)

### Results for wrong input values

Result **BETAPPTX97**, **BETAP = -1** or **betap\_ptx\_97 = -1** for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or  $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

(x = 0 or x = 1)at t = -1 and p > 220.64 bar or p < 0.00611 bar or

> at p > 220.64 bar or p < 0.00611 bar and  $t > 373.946 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$

at  $|t-t_s(p)| > 0.1 \text{ K}$ 

# Specific Isobaric Heat Capacity $c_p = f(p,t,x)$

**Function Name:** cp\_ptx\_97

Sub-program with function value: **REAL\*8 FUNCTION CPPTX97(P,T,X)** 

for call from Fortran REAL\*8 P,T,X

Sub-program with parameter: INTEGER\*4 FUNCTION C\_CPPTX97(CP,P,T,X)

for call from DLL REAL\*8 CP,P,T,X

# Input values

**P** - Pressure *p* in bar **T** - Temperature t in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

# Result

**CPPTX97**, **CP** or **cp\_ptx\_97** - Specific isobaric heat capacity  $c_p$  in kJ/kg K

# Range of validity

Temperature range: from 0 °C to 800 °C

from 0.00611 bar to 1000 bar Pressure range: to 2000 °C at pressures to 500 bar High temperature region:

# Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from  $t_{\rm t} = 0 \, ^{\circ}{\rm C}$  to  $t_{\rm c} = 373.946 \, ^{\circ}{\rm C}$ 

Pressure ranges from  $p_{\rm t} = 0.00611$  bar to  $p_{\rm c} = 220.64$  bar)

#### Results for wrong input values

Result CPPTX97, CP = -1 or  $cp_ptx_97 = -1$  for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

 $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or (x = -1)

 $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or at t = -1 and p > 220.64 bar or p < 0.00611 bar or (x = 0 or x = 1)

> at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at  $|t-t_s(p)| > 0.1 \text{ K}$ 

# Specific Isochoric Heat Capacity $c_v = f(p,t,x)$

Function Name: cv ptx 97

Sub-program with function value: REAL\*8 FUNCTION CVPTX97(P,T,X)

for call from Fortran REAL\*8 P,T,X

Sub-program with parameter: INTEGER\*4 FUNCTION C\_CVPTX97(CV,P,T,X)

for call from DLL REAL\*8 CV,P,T,X

# Input values

**P** - Pressure *p* in bar **T** - Temperature *t* in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Result

CVPTX97, CV or cv ptx 97 - Specific isochoric heat capacity c, in kJ/kg K

# Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar High temperature region: to 2000 °C at pressures to 500 bar

# Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from  $t_t = 0$  °C to  $t_c = 373.946$  °C

Pressure ranges from  $p_t = 0.00611$  bar to  $p_c = 220.64$  bar)

# Results for wrong input values

Result CVPTX97, CV = -1 or cv\_ptx\_97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1)  $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or

 $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

(x = 0 or x = 1) at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at  $|t-t_s(p)| > 0.1 \text{ K}$ 

# Isothermal Throttling Coefficient $\delta_T = f(p,t,x)$

Function Name: deltat\_ptx\_97

Sub-program with function value: REAL\*8 FUNCTION DELTATPTX97(P,T,X)

for call from Fortran REAL\*8 P,T,X

Sub-program with parameter: INTEGER\*4 FUNCTION C\_DELTATPTX97 (DELTAT,P,T,X)

for call from DLL REAL\*8 DELTAT,P,T,X

# Input values

**P** - Pressure *p* in bar **T** - Temperature *t* in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Result

**DELTATPTX97**, **DELTAT** or **deltat\_ptx\_97** - Isothermal throttling coefficient  $\delta_{\mathcal{T}}$  in kJ kg<sup>-1</sup> kPa<sup>-1</sup>

# Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar

High temperature region: to 2000 °C at pressures to 500 bar

# Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from  $t_t = 0 \, ^{\circ}\text{C}$  to  $t_c = 373.946 \, ^{\circ}\text{C}$ 

Pressure ranges from  $p_t = 0.00611$  bar to  $p_c = 220.64$  bar)

#### Results for wrong input values

Result **DELTATPTX97**, **DELTAT = -1** or **deltat\_ptx\_97 = -1** for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1)  $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or  $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

1 2 000 C at p 2 000 bai

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or (x = 0 or x = 1) at t = -1 and t > 220.64 bar or t < 0 °C or at t = -1 and t > 220.64 bar or t < 0 °C or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at  $|t-t_s(p)| > 0.1 \text{ K}$ 

# Differential Quotient $\left(\frac{\partial \mathbf{v}}{\partial \boldsymbol{\rho}}\right)_{\mathbf{T}} = \mathbf{f}\left(\boldsymbol{\rho}, \mathbf{t}, \mathbf{x}\right)$

**Function Name:** dv\_dp\_T\_ptx\_97

Sub-program with function value: **REAL\*8 FUNCTION DVDPT97(P,T,X)** 

for call from Fortran REAL\*8 P,T,X

Sub-program with parameter: INTEGER\*4 FUNCTION C\_DVDPT97(DVDPT,P,T,X)

for call from DLL REAL\*8 DVDPT,P,T,X

# Input values

P - Pressure p in bar

T - Temperature t in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

### Result

**DVDPT97** - Differential quotient  $\left(\frac{\partial \mathbf{v}}{\partial \mathbf{p}}\right)_{T}$  in m<sup>3</sup> · kg<sup>-1</sup> · kPa<sup>-1</sup>

# Range of validity

Temperature range: from 0 °C to 800 °C

from 0.00611 bar to 1000 bar Pressure range: High temperature region: to 2000 °C at pressures to 500 bar

# Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t <u>and</u> p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from  $t_{\rm t} = 0 \, ^{\circ}{\rm C}$  to  $t_{\rm c} = 373.946 \, ^{\circ}{\rm C}$ 

 $p_{\rm t} = 0.00611$  bar to  $p_{\rm c} = 220.64$  bar) Pressure ranges from

# Results for wrong input values

Result  $dv_dp_T_ptx_97$  or DVDPT97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or  $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

at p = -1 and t > 373.946 °C or t < 0 °C or Saturation lines:

(x = 0 or x = 1)at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and  $t > 373.946 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$ 

at  $|t-t_{s}(p)| > 0.1 \text{ K}$ 

# Differential Quotient $\left(\frac{\partial \mathbf{v}}{\partial \mathbf{T}}\right)_{\mathbf{p}} = f\left(\mathbf{p}, \mathbf{t}, \mathbf{x}\right)$

Function Name: dv\_dT\_p\_ptx\_97

Sub-program with function value: REAL\*8 FUNCTION DVDTP97(P,T,X)

for call from Fortran REAL\*8 P,T,X

Sub-program with parameter: INTEGER\*4 FUNCTION C\_DVDTP97(DVDTP,P,T,X)

for call from DLL REAL\*8 DVDTP,P,T,X

# Input values

 ${\bf P}$  - Pressure p in bar

T - Temperature t in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Result

**DVDTP97** - Differential quotient 
$$\left(\frac{\partial v}{\partial T}\right)_{D}$$
 in m<sup>3</sup> · kg<sup>-1</sup> · K<sup>-1</sup>

# Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar High temperature region: to 2000 °C at pressures to 500 bar

# Details on the vapor fraction *x* and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from  $t_t = 0$  °C to  $t_c = 373.946$  °C

Pressure ranges from  $p_t = 0.00611$  bar to  $p_c = 220.64$  bar)

#### Results for wrong input values

Result  $dv_dT_p_tx_97$  or DVDTP97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1)  $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or  $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

(x = 0 or x = 1) at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at  $|t-t_s(p)| > 0.1 \text{ K}$ 

# Specific Exergy $e = f(p, t, x, t_{ij})$

Function Name: e\_ptx\_tu\_97

Sub-program with function value: REAL\*8 FUNCTION EPTXTU97(P,T,X,TU)

for call from Fortran REAL\*8 P,T,X,TU

Sub-program with parameter: INTEGER\*4 FUNCTION C\_EPTXTU97(E,P,T,X,TU)

for call from DLL REAL\*8 E,P,T,X,TU

#### Input values

**P** - Pressure *p* in bar **T** - Temperature *t* in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

TU - Environment temperature t<sub>U</sub> in °C

#### Result

EPTXTU97, E or e\_ptx\_tu\_97 - Specific exergy (of the enthalpy) e in kJ/kg

#### Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar High temperature region: to 2000 °C at pressures to 500 bar

#### Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1 or the given value for p and t = -1 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve.

(Wet steam region of the IAPWS-IF97:  $t_{\rm t} = 0~{\rm ^{\circ}C}~...~t_{\rm c} = 373.946~{\rm ^{\circ}C}$  $p_{\rm t} = 0.00611~{\rm bar}~...~p_{\rm c} = 220.64~{\rm bar})$ 

#### Results for wrong input values

Result **EPTXTU97**, E = -1 or  $e_{ptx_tu_97} = -1$  for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1)  $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or  $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

Wet steam region: at p = -1 and t > 373.946 °C or t < 0 °C or  $(0 \le x \le 1)$  at t = -1 and t > 220.64 bar or t < 0 °C or at t = -1 and t > 220.64 bar or t < 0 °C or

at t = -1 and p > 220.64 bar or p < 0.00611 bar or at p > 220.64 bar or p < 0.00611 bar

and t > 373.946 °C or t < 0 °C

at  $|t-t_{s}(p)| > 0.1 \text{ K}$ 

### Dielectric Constant $\varepsilon = f(p,t,x)$

**Function Name:** epsilon ptx 97

**REAL\*8 FUNCTION EPSPTX97(P,T,X)** Sub-program with function value:

for call from Fortran REAL\*8 P,T,X

INTEGER\*4 FUNCTION C\_ EPSPTX97 (BETAP,P,T,X) Sub-program with parameter:

for call from DLL REAL\*8 EPS,P,T,X

#### Input values

**P** - Pressure *p* in bar T - Temperature t in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Result

EPSPTX97, EPS or epsilon ptx 97 - Dielectric constant ε

#### Range of validity

Temperature range: from 0 °C to 800 °C

from 0.00611 bar to 1000 bar Pressure range: High temperature region: to 2000 °C at pressures to 500 bar

#### Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t <u>and</u> p = -1, or the given value for p <u>and</u> t = -1, plus the value for x (x = 0 or x = 1). If p <u>and</u> t <u>and</u> x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

 $t_{\rm t} = 0 \, ^{\circ}{\rm C}$  to  $t_{\rm c} = 373.946 \, ^{\circ}{\rm C}$ Temperature ranges from

Pressure ranges from  $p_{\rm t} = 0.00611$  bar to  $p_{\rm c} = 220.64$  bar)

### Results for wrong input values

Result **EPSPTX97**, **EPS = -1** or **epsilon\_ptx\_97 = -1** for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or

 $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

(x = 0 or x = 1)at t = -1 and p > 220.64 bar or p < 0.00611 bar or

> at p > 220.64 bar or p < 0.00611 bar and  $t > 373.946 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$

at  $|t-t_s(p)| > 0.1 \text{ K}$ 

# Specific Helmholtz Energy f = f(p,t,x)

Function Name: f ptx 97

Sub-program with function value: REAL\*8 FUNCTION FPTX97(P,T,X)

for call from Fortran REAL\*8 P,T,X

Sub-program with parameter: INTEGER\*4 FUNCTION C\_ FPTX97 (F,P,T,X)

for call from DLL REAL\*8 F,P,T,X

#### Input values

**P** - Pressure *p* in bar **T** - Temperature *t* in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Result

FPTX97, F or f\_ptx\_97 - Specific Helmholtz energy f in kJ/kg

#### Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar High temperature region: to 2000 °C at pressures to 500 bar

# Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from  $t_t = 0$  °C to  $t_c = 373.946$  °C

Pressure ranges from  $p_t = 0.00611$  bar to  $p_c = 220.64$  bar)

### Results for wrong input values

Result **FPTX97**, F = -1 or  $f_ptx_97 = -1$  for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1)  $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or

 $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

 $(0 \le x \le 1)$  at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at  $|t-t_s(p)| > 0.1 \text{ K}$ 

at  $|\iota - \iota_{s}(p)| > 0.1$ 

# Fugacity $f^* = f(p,t,x)$

**Function Name:** fug\_ptx\_97

Sub-program with function value: **REAL\*8 FUNCTION FUGPTX97(P,T,X)** 

for call from Fortran REAL\*8 P,T,X

Sub-program with parameter: INTEGER\*4 FUNCTION C\_ FUGPTX97 (FUG,P,T,X)

for call from DLL REAL\*8 DELTAT,P,T,X

#### Input values

**P** - Pressure *p* in bar T - Temperature t in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Result

**FUGPTX97**, **FUG** or **fug\_ptx\_97** - Fugacity  $f^*$  in bar

#### Range of validity

Temperature range: from 0 °C to 800 °C

from 0.00611 bar to 1000 bar Pressure range: High temperature region: to 2000 °C at pressures to 500 bar

#### Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t <u>and</u> p = -1, or the given value for p <u>and</u> t = -1, plus the value for x (x = 0 or x = 1). If p <u>and</u> t <u>and</u> x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

 $t_{\rm t} = 0 \, ^{\circ}{\rm C}$  to  $t_{\rm c} = 373.946 \, ^{\circ}{\rm C}$ Temperature ranges from

Pressure ranges from  $p_{\rm t} = 0.00611$  bar to  $p_{\rm c} = 220.64$  bar)

#### Results for wrong input values

Result FUGPTX97, FUG = -1 or fug\_ptx\_97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or  $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

 $(0 \le x \le 1)$ at t = -1 and p > 220.64 bar or p < 0.00611 bar or

> at p > 220.64 bar or p < 0.00611 bar and  $t > 373.946 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$

at  $|t-t_{\rm S}(p)| > 0.1 \text{ K}$ 

# Specific Gibbs Energy g = f(p,t,x)

Function Name: g\_ptx\_97

Sub-program with function value: REAL\*8 FUNCTION GPTX97(P,T,X)

for call from Fortran REAL\*8 P,T,X

Sub-program with parameter: INTEGER\*4 FUNCTION C\_ GPTX97 (G,P,T,X)

for call from DLL REAL\*8 G,P,T,X

#### Input values

**P** - Pressure *p* in bar **T** - Temperature *t* in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Result

**GPTX97**, **G** or  $g_ptx_97$  - Specific Gibbs energy g in kJ/kg

#### Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar High temperature region: to 2000 °C at pressures to 500 bar

# Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from  $t_t = 0$  °C to  $t_c = 373.946$  °C

Pressure ranges from  $p_t = 0.00611$  bar to  $p_c = 220.64$  bar)

### Results for wrong input values

Result **GPTX97**, G = -1 or  $g_ptx_97 = -1$  for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1)  $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or

 $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

 $(0 \le x \le 1)$  at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at  $|t-t_s(p)| > 0.1 \text{ K}$ 

# Dynamic Viscosity $\eta = f(p,t,x)$

Function Name: Eta\_ptx\_97

Sub-program with function value: REAL\*8 FUNCTION ETAPTX97(P,T,X)

for call from Fortran REAL\*8 P,T,X

Sub-program with parameter: INTEGER\*4 FUNCTION C\_ETAPTX97(ETA,P,T,X)

for call from DLL REAL\*8 ETA,P,T,X

#### Input values

**P** - Pressure *p* in bar **T** - Temperature *t* in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Result

**ETAPTX97**, **ETA** or **eta\_ptx\_97** - Dynamic viscosity  $\eta$  in Pa s

#### Range of validity

Temperature range: from 0 °C to 900 °C

Pressure range: from 0.00611 bar to 1000 bar

# Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from  $t_{\rm f} = 0 \, ^{\circ}\text{C}$  to  $t_{\rm c} = 373.946 \, ^{\circ}\text{C}$ 

Pressure ranges from  $p_{\rm t} = 0.00611$  bar to  $p_{\rm c} = 220.64$  bar)

### Results for wrong input values

Result ETAPTX97, ETA = -1 or eta\_ptx\_97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1)  $t > 900 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$ 

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

(x = 0 or x = 1) at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at  $|t-t_s(p)| > 0.1 \text{ K}$ 

#### References:

[7], internal calculation from  $\rho$  or  $\nu$  [1], [2], [3]

# Backward Function: Specific Enthalpy h = f(p,s)

Function Name: h\_ps\_97

Sub-program with function value: REAL\*8 FUNCTION HPS97(P,S)

for call from Fortran REAL\*8 P,S

Sub-program with parameter: INTEGER\*4 FUNCTION C\_HPS97(H,P,S)

for call from DLL REAL\*8 H,P,S

#### Input values

**P** - Pressure p in bar

S - Specific entropy s in kJ/kg K

#### Result

**HPS97**, **H** or **h\_ps\_97** - Specific enthalpy *h* in kJ/kg

#### Range of validity

Pressure range: from 0.00611 bar to 1000 bar

Entropy range: according to temperatures from 0 °C to 800 °C

High temperature region: to 500 bar and to entropy regarding 2000 °C

#### Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of h in the appropriate region will be carried out.

Wet steam region: Pressure ranges from  $p_t = 0.00611$  bar to  $p_c = 220.64$  bar

#### Results for wrong input values

Result **HPS97**, H = -1 or  $h_ps_97 = -1$  for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

at internal calculation result  $t > 2000 \, ^{\circ}\text{C}$  or  $t < 0 \, ^{\circ}\text{C}$  or

 $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

Wet steam region: p > 220.64 bar or p < 0.00611 bar or

at internal calculation result t > 373.946 °C or t < 0 °C

# Specific Enthalpy h = f(p,t,x)

Function Name: h\_ptx\_97

Sub-program with function value: REAL\*8 FUNCTION HPTX97(P,T,X)

for call from Fortran REAL\*8 P,T,X

Sub-program with parameter: INTEGER\*4 FUNCTION C\_HPTX97(H,P,T,X)

for call from DLL REAL\*8 H,P,T,X

#### Input values

**P** - Pressure *p* in bar

T - Temperature t in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Result

**HPTX97**, **H** or **h\_ptx\_97** - Specific enthalpy *h* in kJ/kg

#### Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar

High temperature region: to 2000 °C at pressures to 500 bar

#### Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1 or the given value for p and t = -1 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve.

(Wet steam region of the IAPWS-IF97:  $t_{\rm t} = 0~{\rm ^{\circ}C}~...~t_{\rm c} = 373.946~{\rm ^{\circ}C}$  $p_{\rm t} = 0.00611~{\rm bar}~...~p_{\rm c} = 220.64~{\rm bar})$ 

#### Results for wrong input values

Result **HPTX97**, H = -1 or  $h_ptx_97 = -1$  for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1)  $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or  $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

Wet steam region: at p = -1 and t > 373.946 °C or t < 0 °C or

 $(0 \le x \le 1)$  at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at  $|t-t_s(p)| > 0.1 \text{ K}$ 

# Isentropic Exponent $\kappa = f(p,t,x)$

**Function Name:** Kappa\_ptx\_97

**REAL\*8 FUNCTION KAPPTX97(P,T,X)** Sub-program with function value:

for call from Fortran REAL\*8 P,T,X

Sub-program with parameter: INTEGER\*4 FUNCTION C\_KAPPTX97(KAPPA,P,T,X)

for call from DLL REAL\*8 KAPPA,P,T,X

Input values

**P** - Pressure *p* in bar T - Temperature t in °C

**X** - Vapor fraction x in (kg saturated steam)/(kg wet steam)

Result

**KAPPTX97**, **KAPPA** or **kappa\_ptx\_97** - Isentropic exponent  $\kappa = -\frac{v}{p} \left( \frac{\partial p}{\partial v} \right)_{s} = \frac{w^2}{p \cdot v}$ 

Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar High temperature region: to 2000 °C at pressures to 500 bar

#### Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t <u>and</u> p = -1, or the given value for p <u>and</u> t = -1, plus the value for x (x = 0 or x = 1). If p <u>and</u> t <u>and</u> x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from  $t_{\rm t} = 0 \, ^{\circ}{\rm C}$  to  $t_{\rm c} = 373.946 \, ^{\circ}{\rm C}$ 

Pressure ranges from  $p_{\rm t} = 0.00611$  bar to  $p_{\rm c} = 220.64$  bar)

Results for wrong input values

Result KAPPTX97, KAPPA = -1 or kappa\_ptx\_97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

 $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or (x = -1)

 $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

at p = -1 and t > 373.946 °C or t < 0 °C or Saturation lines:

(x = 0 or x = 1)at t = -1 and p > 220.64 bar or p < 0.00611 bar or

> at p > 220.64 bar or p < 0.00611 bar and  $t > 373.946 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$

at  $|t-t_{\rm S}(p)| > 0.1 \text{ K}$ 

# Isothermal Compressibility $\kappa_T = f(p,t,x)$

**Function Name:** kappat ptx 97

Sub-program with function value: **REAL\*8 FUNCTION KAPPATPTX97(P,T,X)** 

REAL\*8 P,T,X for call from Fortran

INTEGER\*4 FUNCTION C\_ KAPPATPTX97 (KAPPAT,P,T,X) Sub-program with parameter:

for call from DLL REAL\*8 KAPPAT,P,T,X

#### Input values

**P** - Pressure *p* in bar T - Temperature t in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Result

**KAPPATPTX97**, **KAPPAT** or **kappat\_ptx\_97** - Isothermal compressibility  $\kappa_T$  in kPa<sup>-1</sup>

#### Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar

to 2000 °C at pressures to 500 bar High temperature region:

#### Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and p = -1, or the given value for p and t = -1, plus the value for x (x = 0 or x = 1). If p and t and x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from  $t_{\rm t} = 0 \, ^{\circ}{\rm C}$  to  $t_{\rm c} = 373.946 \, ^{\circ}{\rm C}$ 

Pressure ranges from  $p_{\rm t} = 0.00611$  bar to  $p_{\rm c} = 220.64$  bar)

#### Results for wrong input values

Result KAPPATPTX97, KAPPAT = -1 or kappat\_ptx\_97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or

 $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

at p = -1 and t > 373.946 °C or t < 0 °C or Saturation lines: (x = 0 or x = 1)at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar

and  $t > 373.946 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$ 

at  $|t-t_s(p)| > 0.1 \text{ K}$ 

# Thermal Conductivity $\lambda = f(p,t,x)$

Function Name: Lambda\_ptx\_97

Sub-program with function value: **REAL\*8 FUNCTION LAMPTX97(P,T,X)** 

for call from Fortran REAL\*8 P,T,X

Sub-program with parameter: INTEGER\*4 FUNCTION C\_LAMPTX97(LAM,P,T,X)

for call from DLL REAL\*8 LAM,P,T,X

#### Input values

**P** - Pressure *p* in bar **T** - Temperature *t* in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Result

**LAMPTX97**, **LAM** or **lambda\_ptx\_97** - Thermal conductivity  $\lambda$  in W/m·K

#### Range of validity

Temperature range: from 0 °C to 900 °C

Pressure range: from 0.00611 bar to 1000 bar

# Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from  $t_{\rm f} = 0 \, ^{\circ}\text{C}$  to  $t_{\rm c} = 373.946 \, ^{\circ}\text{C}$ 

Pressure ranges from  $p_t = 0.00611$  bar to  $p_c = 220.64$  bar)

#### Results for wrong input values

Result LAMPTX97, LAM = -1 or lambda\_ptx\_97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1)  $t > 900 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$ 

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

(x = 0 or x = 1) at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at  $|t-t_s(p)| > 0.1 \text{ K}$ 

#### References:

[6], Internal calculation from  $\rho$  or v [1], [2], [3]

# Joule-Thomson Coefficient $\mu = f(p,t,x)$

Function Name: my\_ptx\_97

Sub-program with function value: REAL\*8 FUNCTION MYPTX97(P,T,X)

for call from Fortran REAL\*8 P,T,X

Sub-program with parameter: INTEGER\*4 FUNCTION C\_MYPTX97 (MY,P,T,X)

for call from DLL REAL\*8 MY,P,T,X

#### Input values

**P** - Pressure *p* in bar **T** - Temperature *t* in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Result

MYPTX97, MY or my\_ptx\_97 - Joule-Thomson coefficient  $\mu$  in K kPa<sup>-1</sup>

#### Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar

High temperature region: to 2000 °C at pressures to 500 bar

# Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from  $t_t = 0$  °C to  $t_c = 373.946$  °C

Pressure ranges from  $p_t = 0.00611$  bar to  $p_c = 220.64$  bar)

### Results for wrong input values

Result MYPTX97, MY = -1 or my\_ptx\_97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1)  $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or  $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or (x = 0 or x = 1) at t = -1 and t > 220.64 bar or t < 0 °C or at t = -1 and t > 220.64 bar or t < 0 °C or

at t = -1 and p > 220.64 bar or p < 0.00611 bar or at p > 220.64 bar or p < 0.00611 bar

and t > 373.946 °C or t < 0 °C

at  $|t-t_{\rm S}(p)| > 0.1 \text{ K}$ 

### Refractive Index n = f(p,t,x,wl)

Function Name: n ptxwl 97

Sub-program with function value: REAL\*8 FUNCTION NPTXWL97(P,T,X,WL)

for call from Fortran REAL\*8 P,T,X,WL

Sub-program with parameter: INTEGER\*4 FUNCTION C\_ NPTXWL97 (N,P,T,X,WL)

for call from DLL REAL\*8 N,P,T,X,WL

#### Input values

**P** - Pressure *p* in bar **T** - Temperature *t* in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Result

**NPTXWL97**, **N** or  $n_ptxwl_97$  - Refractive index n

#### Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar

High temperature region: to 2000 °C at pressures to 500 bar

Wavelength region: from 0.2 µm to 1.1 µm

# Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from  $t_t = 0$  °C to  $t_c = 373.946$  °C

Pressure ranges from  $p_t = 0.00611$  bar to  $p_c = 220.64$  bar)

#### Results for wrong input values

Result NPTXWL97, N = -1 or  $n_ptxwl_97 = -1$  for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1)  $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or

 $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

(x = 0 or x = 1) at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at  $|t-t_s(p)| > 0.1 \text{ K}$ 

# Kinematic Viscosity v = f(p,t,x)

Function Name: Ny\_ptx\_97

Sub-program with function value: REAL\*8 FUNCTION NYPTX97(P,T,X)

for call from Fortran REAL\*8 P,T,X

Sub-program with parameter: INTEGER\*4 FUNCTION C\_NYPTX97(NY,P,T,X)

for call from DLL REAL\*8 NY,P,T,X

#### Input values

**P** - Pressure *p* in bar **T** - Temperature *t* in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Result

**NYPTX97**, **NY** or **ny\_ptx\_97** - Kinematic viscosity 
$$v = \frac{\eta}{\rho} = \eta \cdot v$$
 in m<sup>2</sup> / s

#### Range of validity

Temperature range: from 0 °C to 900 °C

Pressure range: from 0.00611 bar to 1000 bar

# Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from  $t_{\rm f} = 0 \, ^{\circ}\text{C}$  to  $t_{\rm c} = 373.946 \, ^{\circ}\text{C}$ 

Pressure ranges from  $p_t = 0.00611$  bar to  $p_c = 220.64$  bar)

#### Results for wrong input values

Result NYPTX97, NY = -1 or ny\_ptx\_97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1)  $t > 900 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$ 

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or (x = 0 or x = 1) at t = -1 and t > 220.64 bar or t < 0 °C or at t = -1 and t > 220.64 bar or t < 0 °C or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at  $|t-t_s(p)| > 0.1 \text{ K}$ 

#### References:

Internal calculation from  $\eta$  [7] and  $\rho$  or v [1], [2], [3]

## Backward Function: Pressure p = f(h,s)

Function Name: p\_hs\_97

Sub-program with function value: REAL\*8 FUNCTION PHS97(H,S)

for call from Fortran REAL\*8 H,S

Sub-program with parameter: INTEGER\*4 FUNCTION C\_PHS97(P,H,S)

for call from DLL REAL\*8 P,H,S

#### Input values

H - Specific enthalpy h in kJ/kgS - Specific entropy s in kJ/kg K

#### Result

**PHS97**, p or  $p_hs_97$  - Pressure p in bar

#### Range of validity

Enthalpy range and entropy range according to pressures from 0.00611 bar to 1000 bar and Temperatures from 0  $^{\circ}$ C to 800  $^{\circ}$ C

High temperature region: according to pressures to 500 bar and temperatures to 2000 °C

#### Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of h and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of p in the appropriate region will be carried out.

#### Results for wrong input values

Result PHS97, P = -1 or  $p_hs_97 = -1$  for input values:

s < -0.009 kJ/kg K

h < h(0.00611 bar, x) at h'(0.00611 bar) < h < h''(0.00611 bar)

## Backward Function: Pressure p = f(v,h)

Function Name: p\_vh\_97

Sub-program with function value: REAL\*8 FUNCTION PVH97(V,H)

for call from Fortran REAL\*8 V,H

Sub-program with parameter: INTEGER\*4 FUNCTION C\_PVH97(P,H)

for call from DLL REAL\*8 P,V,H

#### Input values

V - Specific volume v in m<sup>3</sup>/kg

H - Specific enthalpy h in kJ/kg

#### Result

**PVH97**, **p** or **p\_vh\_97** - Pressure *p* in bar

#### Range of validity

Enthalpy range and entropy range: according to pressures from 0.00611 bar to 1000 bar and Temperatures from 0  $^{\circ}$ C to 800  $^{\circ}$ C

High temperature region: according to pressures to 500 bar and temperatures to 2000 °C

#### Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of v and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of p in the appropriate region will be carried out.

#### Results for wrong input values

Result PVH97, P = -1 or  $p_vh_97 = -1$  for input values:

 $v < 0.0009 \text{ m}^3/\text{kg}$ 

h < h(0.00611 bar, x) at h'(0.00611 bar) < h < h''(0.00611 bar)

## Backward Function: Pressure p = f(v, u)

Function Name: p\_vu\_97

Sub-program with function value: REAL\*8 FUNCTION PVU97(V,U)

for call from Fortran REAL\*8 V,U

Sub-program with parameter: INTEGER\*4 FUNCTION C\_VU97(P,V,U)

for call from DLL REAL\*8 P,V,U

#### Input values

V - Specific volume h in kJ/kg

**U** - Specific internal energy *u* in kJ/kg

#### Result

**PVU97**, **p** or **p\_vu\_97** - Pressure *p* in bar

#### Range of validity

Enthalpy range and entropy range: according to pressures from 0.00611 bar to 1000 bar and temperatures from 0  $^{\circ}$ C to 800  $^{\circ}$ C

High temperature region: according to pressures to 500 bar and temperatures to 2000 °C

#### Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of v and u the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of p in the appropriate region will be carried out.

#### Results for wrong input values

Result PVU97, P = -1 or p vu 97 = -1 for input values:

 $v < 0.0009 \text{ m}^3/\text{kg}$ 

u < u(0.00611 bar, x) at u'(0.00611 bar) < u < u''(0.00611 bar)

# *Prandtl*-Number Pr = f(p,t,x)

Function Name: Pr\_ptx\_97

Sub-program with function value: REAL\*8 FUNCTION PRPTX97(P,T,X)

for call from Fortran REAL\*8 P,T,X

Sub-program with parameter: INTEGER\*4 FUNCTION C\_PRPTX97(PR,P,T,X)

for call from DLL REAL\*8 PR,P,T,X

#### Input values

**P** - Pressure p in bar

T - Temperature t in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Result

**PRPTX97**, **Pr** or **Pr\_ptx\_97** - Prandtl-number 
$$Pr = \frac{v}{a} = \frac{\eta \cdot c_p}{\lambda}$$

#### Range of validity

Temperature range: from 0 °C to 900 °C

Pressure range: from 0.00611 bar to 1000 bar

# Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for x-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from  $t_t = 0 \, ^{\circ}\text{C}$  to  $t_c = 373.946 \, ^{\circ}\text{C}$ 

Pressure ranges from  $p_t = 0.00611$  bar to  $p_c = 220.64$  bar)

#### Results for wrong input values

Result PRPTX97, Pr = -1 or Pr ptx 97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1)  $t > 900 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$ 

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

(x = 0 or x = 1) at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at  $|t-t_{\rm S}(p)| > 0.1 \text{ K}$ 

#### References:

Internal calculation of  $\eta$  [7], [6], and  $\rho$  or v and  $c_p$  [1], [2], [3]

# Vapor Pressure $p_s = f(t)$

Function Name: ps\_t\_97

Sub-program with function value: REAL\*8 FUNCTION PST97(T)

for call from Fortran REAL\*8 T

Sub-program with parameter: INTEGER\*4 FUNCTION C\_PST97(PS,T)

for call from DLL REAL\*8 PS,T

#### Input values

T - Temperature t in °C

#### Result

 $\textbf{PST97}, \, \textbf{PS} \,\, \text{or} \,\, \textbf{ps\_t\_97} \,\, \textbf{-} \,\, \text{Vapor pressure} \,\, \rho_{\text{S}} \,\, \text{in bar}$ 

#### Range of validity

from  $t_t = 0$  °C to  $t_c = 373.946$  °C

#### Results for wrong input values

Result PST97, PS = -1 or ps\_t\_97 = -1 for input values:

t < 0 °C or t > 373.946 °C

# Density $\rho = f(p,t,x)$

**Function Name:** Rho\_ptx\_97

**REAL\*8 FUNCTION RHOPTX97(P,T,X)** Sub-program with function value:

for call from Fortran REAL\*8 P,T,X

Sub-program with parameter: INTEGER\*4 FUNCTION C\_RHOPTX97(RHO,P,T,X)

for call from DLL REAL\*8 RHO,P,T,X

#### Input values

**P** - Pressure *p* in bar T - Temperature t in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Result

**RHOPTX97**, **RHO** or **rho\_ptx\_97** - Density 
$$\rho = \frac{1}{v}$$
 in kg/m<sup>3</sup>

#### Range of validity

from 0 °C to 800 °C Temperature range:

Pressure range: from 0.00611 bar to 1000 bar High temperature region: to 2000 °C at pressures to 500 bar

#### Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1 or the given value for p and t = -1 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve.

(Wet steam region of the IAPWS-IF97:  $t_t = 0$  °C ...  $t_c = 373.946$  °C  $p_{\rm t} = 0.00611 \text{ bar } \dots p_{\rm c} = 220.64 \text{ bar})$ 

#### Results for wrong input values

Result RHOPTX97, RHO = -1 or rho\_ptx\_97 = -1 for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

 $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or (x = -1)

 $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

Wet steam region: at p = -1 and t > 373.946 °C or t < 0 °C or

at t = -1 and p > 220.64 bar or p < 0.00611 bar or  $(0 \le x \le 1)$ 

> at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at  $|t-t_s(p)| > 0.1 \text{ K}$ 

# Backward Function: Specific Entropy s = f(p,h)

Function Name: s\_ph\_97

Sub-program with function value: REAL\*8 FUNCTION SPH97(P,H)

for call from Fortran REAL\*8 P,H

Sub-program with parameter: INTEGER\*4 FUNCTION C\_SPH97(S,P,H)

for call from DLL REAL\*8 S,P,H

#### Input values

P - Pressure p in bar

H - Specific enthalpy h in kJ/kg

#### Result

SPH97, S or s\_ph\_97 - Specific entropy s in kJ/kg K

#### Range of validity

Pressure range: from 0.00611 bar to 1000 bar

Enthalpy range: according temperatures from 0 °C to 800 °C High temperature region: to 500 bar and to enthalpy regarding 2000 °C

#### Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of s in the appropriate region will be carried out.

Wet steam region: Pressure ranges from  $p_t = 0.00611$  bar to  $p_c = 220.64$  bar

#### Results for wrong input values

Result **SPH97**, S = -1 or  $s_ph_97 = -1$  for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

at internal calculation result  $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or

 $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

Wet steam region: p > 220.64 bar or p < 0.00611 bar or

at internal calculation result t > 373.946 °C or t < 0 °C

# Specific Entropy s = f(p,t,x)

Function Name: s\_ptx\_97

Sub-program with function value: REAL\*8 FUNCTION SPTX97(P,T,X)

for call from Fortran REAL\*8 P,T,X

Sub-program with parameter: INTEGER\*4 FUNCTION C\_SPTX97(S,P,T,X)

for call from DLL REAL\*8 S,P,T,X

#### Input values

**P** - Pressure *p* in bar

T - Temperature t in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Result

SPTX97, S or s\_ptx\_97 - Specific entropy s in kJ/kg K

#### Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar

High temperature region: to 2000 °C at pressures to 500 bar

#### Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1 or the given value for p and t = -1 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve.

(Wet steam region of the IAPWS-IF97:  $t_{\rm t} = 0~{\rm ^{\circ}C}~...~t_{\rm c} = 373.946~{\rm ^{\circ}C}$  $p_{\rm t} = 0.00611~{\rm bar}~...~p_{\rm c} = 220.64~{\rm bar})$ 

#### Results for wrong input values

Result SPTX97, S = -1 or  $s_ptx_97 = -1$  for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1)  $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or  $t > 800 \,^{\circ}\text{C}$  at p > 500 bar

Wet steam region: at p=-1 and t>373.946 °C or t<0 °C or  $(0 \le x \le 1)$  at t=-1 and t>220.64 bar or t<0 °C or at t=-1 and t>220.64 bar or t<0 °C or at t=-1 and t>220.64 bar or t<0 °C or at t=-1 and t>220.64 bar or t<0 °C or at t=-1 and t>220.64 bar or t<0 °C or at t=-1 and t>220.64 bar or t<0 °C or at t<0 °

at p > 220.64 bar or p < 0.006at p > 220.64 bar or p < 0.00611 bar

and t > 373.946 °C or t < 0 °C

at  $|t-t_s(p)| > 0.1 \text{ K}$ 

# Surface Tension $\sigma = f(p)$

Function Name: Sigma\_p\_97

Sub-program with function value: REAL\*8 FUNCTION SIGMAP97(P)

for call from Fortran REAL\*8 P

Sub-program with parameter: INTEGER\*4 FUNCTION C\_SIGMAP97(SIGMA,P)

for call from DLL REAL\*8 SIGMA,P

#### Input values

**P** - Pressure p in bar

#### Result

**SIGMAP97**, **SIGMA** or **sigma\_p\_97** - Surface tension  $\sigma$  in mN/m = mPa·m

#### Range of validity

from  $p_{\rm t} = 0.00611$  bar to  $p_{\rm c} = 220.64$  bar

#### Results for wrong input values

Result SIGMAP97, SIGMA = -1 or sigma\_p\_97 = -1 for input values:

p < 0.00611 bar or p > 220.64 bar

#### References:

[8], internal calculation with  $t_s = f(p)$  [1], [2], [3]

# Surface Tension $\sigma = f(t)$

Function Name: Sigma\_t\_97

Sub-program with function value: REAL\*8 FUNCTION SIGMAT97(T)

for call from Fortran REAL\*8 T

Sub-program with parameter: INTEGER\*4 FUNCTION C\_SIGMAT97(SIGMA,T)

for call from DLL REAL\*8 SIGMA,T

#### Input values

T - Temperature t in °C

#### Result

**SIGMAT97**, **SIGMA** or **sigma\_t\_97** - Surface tension  $\sigma$  in mN/m = mPa·m

#### Range of validity

from  $t_{\rm t}$  = 0 °C to  $t_{\rm c}$  = 373.946 °C

#### Results for wrong input values

Result SIGMAT97, SIGMA = -1 or sigma\_t\_97 = -1 for input values:

t < 0 °C or t > 373.946 °C

References: [8]

# Backward Function: Temperature t = f(h,s)

Function Name: t\_hs\_97

Sub-program with function value: REAL\*8 FUNCTION THS97(H,S)

for call from Fortran REAL\*8 H,S

Sub-program with parameter: INTEGER\*4 FUNCTION C\_THS97(T,H,S)

for call from DLL REAL\*8 T,H,S

#### Input values

H - Specific enthalpy h in kJ/kgS - Specific entropy s in kJ/kg K

#### Result

THS97, T or t\_hs\_97 - Temperature t in °C

#### Range of validity

Enthalpy range and entropy range: according to pressures from 0.00611 bar to 1000 bar and temperatures from 0  $^{\circ}$ C to 800  $^{\circ}$ C

High temperature region: according to pressures to 500 bar and temperatures to 2000 °C

#### Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of h and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of t in the appropriate region will be carried out.

#### Results for wrong input values

Result **THS97**, T = -1 or  $t_s= -1$  for input values:

s < -0.009 kJ/kg K

h < h(0.00611 bar, x) at h'(0.00611 bar) < h < h''(0.00611 bar)

# #K\$+ Backward Function: Temperature t = f(p,h)

**Function Name:** t\_ph\_97

Sub-program with function value: **REAL\*8 FUNCTION TPH97(P,H)** 

for call from Fortran REAL\*8 P,H

Sub-program with parameter: INTEGER\*4 FUNCTION C\_TPH97(T,P,H)

for call from DLL REAL\*8 T,P,H

#### Input values

**P** - Pressure p in bar

H - Specific enthalpy h in kJ/kg

#### Result

**TPH97**, **T** or **t\_ph\_97** - Temperature *t* in °C

#### Range of validity

from 0.00611 bar to 1000 bar Pressure range:

Enthalpy range: according temperatures from 0 °C to 800 °C High temperature region: to 500 bar and to enthalpy regarding 2000 °C

#### Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of t in the appropriate region will be carried out.

Wet steam region: Pressure ranges from  $p_t = 0.00611$  bar to  $p_c = 220.64$  bar

#### Results for wrong input values

Result **TPH97**, T = -1 or  $t_ph_97 = -1$  for input values:

p > 1000 bar or p < 0.00611 bar or Single phase region:

at internal calculation result  $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or

 $t > 800 \, ^{\circ}\text{C}$  at  $p > 500 \, \text{bar}$ 

Wet steam region: p > 220.64 bar or p < 0.00611 bar or

at internal calculation result t > 373.946 °C or t < 0 °C

<sup>#</sup> FUNC\_97\_200

K Backward function: Temperature t = f(p,h)

<sup>\$</sup> Backward function: Temperature, t = f(p,h)

<sup>+</sup> SUCH:200

# Backward Function: Temperature t = f(p,s)

Function Name: t\_ps\_97

Sub-program with function value: REAL\*8 FUNCTION TPS97(P,S)

for call from Fortran REAL\*8 P,S

Sub-program with parameter: INTEGER\*4 FUNCTION C\_TPS97(T,P,S)

for call from DLL REAL\*8 T,P,S

#### Input values

P - Pressure p in bar

S - Specific entropy s in kJ/kg K

#### Result

TPS97, T or t\_ps\_97 - Temperature t in °C

#### Range of validity

Pressure range: from 0.00611 bar to 1000 bar

Entropy range: according temperatures from 0 °C to 800 °C High temperature region: to 500 bar and to entropy regarding 2000 °C

#### Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of t in the appropriate region will be carried out.

Wet steam region: Pressure ranges from  $p_t = 0.00611$  bar to  $p_c = 220.64$  bar

#### Results for wrong input values

Result **TPS97**, T = -1 or  $t_ps_97 = -1$  for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

at internal calculation result  $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or

 $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

Wet steam region: p > 220.64 bar or p < 0.00611 bar or

at internal calculation result t > 373.946 °C or t < 0 °C

# **#K\$+** Backward Function: Temperature *t* = f(*v*,*h*)

Function Name: t\_vh\_97

Sub-program with function value: REAL\*8 FUNCTION TVH97(V,H)

for call from Fortran REAL\*8 V,H

Sub-program with parameter: INTEGER\*4 FUNCTION C\_TVH97(T,V,H)

for call from DLL REAL\*8 T,V,H

#### Input values

V - Specific volume v in  $m^3/kg$ 

H - Specific enthalpy h in kJ/kg

#### Result

TVH97, T or t\_vh\_97 - Temperature t in °C

#### Range of validity

Pressure range: from 0.00611 bar to 1000 bar

Enthalpy range: according temperatures from 0 °C to 800 °C High temperature region: to 500 bar and to enthalpy regarding 2000 °C

#### Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of v and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of t in the appropriate region will be carried out.

Wet steam region: Pressure ranges from  $p_t = 0.00611$  bar to  $p_c = 220.64$  bar

#### Results for wrong input values

Result TVH97, T = -1 or  $t_vh_97 = -1$  for input values:

 $v < 0.0009 \text{ m}^3/\text{kg}$ 

h < h(0.00611 bar, x) at h'(0.00611 bar) < h < h''(0.00611 bar)

**References:** [1], [2], [3]

,,

<sup>#</sup> FUNC\_97\_212

K Backward function: Temperature t = f(v,h)

<sup>\$</sup> Backward function: Temperature, t = f(v,h)

<sup>&</sup>lt;sup>+</sup> SUCH:212

# #K\$+ Backward Function: Temperature t = f(v,u)

**Function Name:** t vu 97

Sub-program with function value: **REAL\*8 FUNCTION TVU97(V,U)** 

for call from Fortran REAL\*8 V,U

INTEGER\*4 FUNCTION C\_TVU97(T,V,U) Sub-program with parameter:

for call from DLL REAL\*8 T,V,U

#### Input values

V - Specific volume v in m<sup>3</sup>/kg

**U** - Specific internal energy *u* in kJ/kg

#### Result

TVU97, T or t\_vu\_97 - Temperature t in °C

#### Range of validity

Pressure range: from 0.00611 bar to 1000 bar

according temperatures from 0 °C to 800 °C Enthalpy range: High temperature region: to 500 bar and to enthalpy regarding 2000 °C

#### Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of v and u the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of t in the appropriate region will be carried out.

Wet steam region: Pressure ranges from  $p_t = 0.00611$  bar to  $p_c = 220.64$  bar

#### Results for wrong input values

Result TVU97, T = -1 or  $t_vu_97 = -1$  for input values:

 $v < 0.0009 \text{ m}^3/\text{kg}$ 

u < u(0.00611 bar, x) at u'(0.00611 bar) < u < u''(0.00611 bar)

**References:** [1], [2], [3]

# FUNC\_97\_214

K Backward function: Temperature t = f(v,u)

<sup>§</sup> Backward function: Temperature, t = f(v,u)

<sup>+</sup> SUCH:214

# Saturation Temperature $t_s = f(p)$

Function Name: ts\_p\_97

Sub-program with function value: REAL\*8 FUNCTION TSP97(P)

for call from Fortran REAL\*8 P

Sub-program with parameter: INTEGER\*4 FUNCTION C\_TSP97(TS,P)

for call from DLL REAL\*8 TS,P

#### Input values

**P** - Pressure *p* in bar

#### Result

**TSP97**, **T** or  $ts_p_97$  - Saturation temperature  $t_s$  in °C

#### Range of validity

from  $p_{\rm t} = 0.00611$  bar to  $p_{\rm c} = 220.64$  bar

#### Results for wrong input values

Result **TSP97**, **T** = -1 or **ts**\_**p**\_**97** = -1 for input values: p < 0.00611 bar or p > 220.64 bar

# Specific Internal Energy u = f(p,t,x)

Function Name: u\_ptx\_97

Sub-program with function value: REAL\*8 FUNCTION UPTX97(P,T,X)

for call from Fortran REAL\*8 P,T,X

Sub-program with parameter: INTEGER\*4 FUNCTION C\_UPTX97(U,P,T,X)

for call from DLL REAL\*8 U,P,T,X

#### Input values

**P** - Pressure *p* in bar

T - Temperature t in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Result

**UPTX97**, **U** or **u\_ptx\_97** - Specific internal energy *u* in kJ/kg

#### Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar

High temperature region: to 2000 °C at pressures to 500 bar

#### Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1 or the given value for p and t = -1 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve.

(Wet steam region of the IAPWS-IF97:  $t_{\rm t} = 0~{\rm ^{\circ}C}~...~t_{\rm c} = 373.946~{\rm ^{\circ}C}$  $p_{\rm t} = 0.00611~{\rm bar}~...~p_{\rm c} = 220.64~{\rm bar})$ 

#### Results for wrong input values

Result **UPTX97**, U = -1 or  $u_ptx_97 = -1$  for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1)  $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or  $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

Wet steam region: at p=-1 and t>373.946 °C or t<0 °C or  $(0 \le x \le 1)$  at t=-1 and t>220.64 bar or t<0 °C or at t=-1 and t>220.64 bar or t<0 °C or at t=-10.

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at  $|t-t_s(p)| > 0.1 \text{ K}$ 

# Backward Function: Specific Volume v = f(p,h)

Function Name: v\_ph\_97

Sub-program with function value: REAL\*8 FUNCTION VPH97(P,H)

for call from Fortran REAL\*8 P,H

Sub-program with parameter: INTEGER\*4 FUNCTION C\_VPH97(V,P,H)

for call from DLL REAL\*8 V,P,H

#### Input values

**P** - Pressure p in bar

H - Specific enthalpy h in kJ/kg

#### Result

**VPH97**, **V** or **v\_ph\_97** - Specific volume v in m<sup>3</sup>/kg

#### Range of validity

Pressure range: from 0.00611 bar to 1000 bar

Enthalpy range: according to temperatures from 0 °C to 800 °C High temperature region: to 500 bar and to enthalpy regarding 2000 °C

#### Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of v in the appropriate region will be carried out.

Wet steam region: Pressure ranges from  $p_t = 0.00611$  bar to  $p_c = 220.64$  bar

#### Results for wrong input values

Result VPH97, V = -1 or  $v_ph_97 = -1$  for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

at internal calculation result  $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or

 $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

Wet steam region: p > 220.64 bar or p < 0.00611 bar or

at internal calculation result t > 373.946 °C or t < 0 °C

# Backward Function: Specific Volume v = f(p,s)

Function Name: v\_ps\_97

Sub-program with function value: REAL\*8 FUNCTION VPS97(P,S)

for call from Fortran REAL\*8 P,S

Sub-program with parameter: INTEGER\*4 FUNCTION C\_VPS97(V,P,S)

for call from DLL REAL\*8 V,P,S

#### Input values

**P** - Pressure *p* in bar

S - Specific entropy s in kJ/kg K

#### Result

**VPS97**, **V** or **v\_ps\_97** - Specific volume v in  $m^3/kg$ 

#### Range of validity

Pressure range: from 0.00611 bar to 1000 bar

Entropy range: according to temperatures from 0 °C to 800 °C High temperature region: to 500 bar and to entropy regarding 2000 °C

#### Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. Afterwards the calculation of v in the appropriate region will be carried out.

Wet steam region: Pressure ranges from  $p_t = 0.00611$  bar to  $p_c = 220.64$  bar

#### Results for wrong input values

Result **VPS97**, V = -1 or  $v_ps_97 = -1$  for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

at internal calculation result  $t > 2000 \, ^{\circ}\text{C}$  or  $t < 0 \, ^{\circ}\text{C}$  or

 $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

Wet steam region: p > 220.64 bar or p < 0.00611 bar or

at internal calculation result t > 373.946 °C or t < 0 °C

# Specific Volume v = f(p, t, x)

Function Name: v\_ptx\_97

Sub-program with function value: REAL\*8 FUNCTION VPTX97(P,T,X)

for call from Fortran REAL\*8 P,T,X

Sub-program with parameter: INTEGER\*4 FUNCTION C\_VPTX97(V,P,T,X)

for call from DLL REAL\*8 V,P,T,X

#### Input values

**P** - Pressure *p* in bar

T - Temperature t in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Result

**VPTX97**, **V** or **v\_ptx\_97** - Specific volume v in  $m^3/kg$ 

#### Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar High temperature region: to 2000 °C at pressures to 500 bar

#### Details on the vapor fraction x and on the calculation of wet steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located in the wet steam region, a value for x between 0 and 1 (x = 0 for saturated liquid, x = 1 for saturated steam) must be entered.

When calculating wet steam either the given value for t and p = -1 or the given value for p and t = -1 and in both cases the value for x between 0 and 1 must be entered.

If p and t and x are entered as given values, the program considers p and t to be appropriate to represent the vapor pressure curve.

(Wet steam region of the IAPWS-IF97:  $t_{\rm t}$  = 0 °C ...  $t_{\rm c}$  = 373.946 °C  $p_{\rm t}$  = 0.00611 bar ...  $p_{\rm c}$  = 220.64 bar)

#### Results for wrong input values

Result **VPTX97**, V = -1 or  $v_ptx_97 = -1$  for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1)  $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or  $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

Wet steam region: at p = -1 and t > 373.946 °C or t < 0 °C or

 $(0 \le x \le 1)$  at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

at  $|t-t_s(p)| > 0.1 \text{ K}$ 

## Isentropic Speed of Sound w = f(p,t,x)

**Function Name:** w\_ptx\_97

Sub-program with function value: **REAL\*8 FUNCTION WPTX97(P,T,X)** 

for call from Fortran REAL\*8 P,T,X

Sub-program with parameter: INTEGER\*4 FUNCTION C WPTX97(W,P,T,X)

for call from DLL REAL\*8 W,P,T,X

#### Input values

**P** - Pressure *p* in bar

T - Temperature t in °C

**X** - Vapor fraction x in (kg saturated steam)/(kg wet steam)

#### Result

WPTX97, W or w\_ptx\_97 - Isentropic speed of sound w in m/s

#### Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar to 2000 °C at pressures to 500 bar High temperature region:

#### Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction x are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t <u>and</u> p = -1, or the given value for p <u>and</u> t = -1, plus the value for x (x = 0 or x = 1). If p <u>and</u> t <u>and</u> x are entered as given values, the program will consider p and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

 $t_{\rm t} = 0 \, ^{\circ}{\rm C}$  to  $t_{\rm c} = 373.946 \, ^{\circ}{\rm C}$ Temperature ranges from

 $p_{\rm t} = 0.00611$  bar to  $p_{\rm c} = 220.64$  bar) Pressure ranges from

#### Results for wrong input values

Result WPTX97, W = -1 or  $w_ptx_97 = -1$  for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1) $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or  $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or (x = 0 or x = 1)

at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and  $t > 373.946 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$ 

at  $|t-t_{s}(p)| > 0.1 \text{ K}$ 

# Backward Function: Vapor Fraction x = f(h,s)

Function Name: x\_hs\_97

Sub-program with function value: REAL\*8 FUNCTION XHS97(H,S)

for call from Fortran REAL\*8 H,S

Sub-program with parameter: INTEGER\*4 FUNCTION C\_XHS97(X,H,S)

for call from DLL REAL\*8 X,H,S

#### Input values

H - Specific enthalpy h in kJ/kgS - Specific entropy s in kJ/kg K

#### Result

**XHS97**, **X** or **x\_hs\_97** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Range of validity

Enthalpy range and entropy range according to pressures from 0.00611 bar to 1000 bar and Temperatures from 0  $^{\circ}$ C to 800  $^{\circ}$ C

High temperature region: according pressures to 500 bar and temperatures to 2000 °C

#### Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of h and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. When calculating wet steam the value for x between 0 and 1 is calculated (0 for saturated liquid, 1 for saturated steam). If the state point to be calculated is located in the single-phase region the result x = -1 will be returned.

#### Results for wrong input values

Result XHS97, X = -1 or x + hs + 97 = -1 for input values:

s < -0.009 kJ/kg K

h < h(0.00611 bar, x) at h'(0.00611 bar) < h < h''(0.00611 bar)

if the state point is located in the single phase region

# Backward Function: Vapor Fraction x = f(p,h)

Function Name: x\_ph\_97

Sub-program with function value: REAL\*8 FUNCTION XPH97(P,H)

for call from Fortran REAL\*8 P,H

Sub-program with parameter: INTEGER\*4 FUNCTION C\_XPH97(X,P,H)

for call from DLL REAL\*8 X,P,H

## Input values

**P** - Pressure *p* in bar

H - Specific enthalpy h in kJ/kg

#### Result

**XPH97**, **X** or **x\_ph\_97** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

# Range of validity

Pressure range: from 0.00611 bar to 1000 bar

Enthalpy range: according to pressures from 0.00611 bar to 1000 bar and

Temperatures from 0 °C to 800 °C

High temperature region: according pressures to 500 bar and temperatures to 2000 °C

#### Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. When calculating wet steam the value for x between 0 and 1 is calculated (0 for saturated liquid, 1 for saturated steam). If the state point to be calculated is located in the single-phase region the result x = -1 will be returned.

#### Results for wrong input values

Result XPH97, X = -1 or  $x_ph_97 = -1$  for input values: if the state point is located in the single phase region

p > 220.64 bar or p < 0.00611 bar

# Backward Function: Vapor Fraction x = f(v,h)

Function Name: x vh 97

Sub-program with function value: REAL\*8 FUNCTION XVH97(V,H)

for call from Fortran REAL\*8 V,H

Sub-program with parameter: INTEGER\*4 FUNCTION C\_XVH97(X,V,H)

for call from DLL REAL\*8 X,V,H

## Input values

V - Specific volume v in  $m^3/kg$ 

H - Specific enthalpy h in kJ/kg

#### Result

**XVH97**, **X** or **x\_vh\_97** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Range of validity

Enthalpy range: according to pressures from 0.00611 bar to 1000 bar and

temperatures from 0 °C to 800 °C

High temperature region: according to pressures to 500 bar and temperatures to 2000 °C

#### Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of v and h the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. When calculating wet steam the value for x between 0 and 1 is calculated (0 for saturated liquid, 1 for saturated steam). If the state point to be calculated is located in the single-phase region the result x = -1 will be returned.

#### Results for wrong input values

Result XVH97, X = -1 or  $x_vh_97 = -1$  for input values:

if the state point is located in the single phase region

p > 220.64 bar or p < 0.00611 bar

# Backward Function: Vapor Fraction x = f(v,u)

Function Name: x\_vu\_97

Sub-program with function value: REAL\*8 FUNCTION XVU97(V,U)

for call from Fortran REAL\*8 V,U

Sub-program with parameter: INTEGER\*4 FUNCTION C\_XVU97(X,V,U)

for call from DLL REAL\*8 X,V,U

# Input values

V - Specific volume v in  $m^3/kg$ 

**U** - Specific internal energy *u* in kJ/kg

#### Result

**XVU97**, **X** or **x\_vu\_97** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Range of validity

Enthalpy range: according to pressures from 0.00611 bar to 1000 bar and

temperatures from 0 °C to 800 °C

High temperature region: according to pressures to 500 bar and temperatures to 2000 °C

#### Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of v and u the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. When calculating wet steam the value for x between 0 and 1 is calculated (0 for saturated liquid, 1 for saturated steam). If the state point to be calculated is located in the single-phase region the result x = -1 will be returned.

### Results for wrong input values

Result XVU97, X = -1 or  $x_vu_97 = -1$  for input values:

if the state point is located in the single phase region

p > 220.64 bar or p < 0.00611 bar

# Backward Function: Vapor Fraction x = f(p,s)

Function Name: x\_ps\_97

Sub-program with function value: REAL\*8 FUNCTION XPS97(P,S)

for call from Fortran REAL\*8 P,S

Sub-program with parameter: INTEGER\*4 FUNCTION C\_XPS97(X,P,S)

for call from DLL REAL\*8 X,P,S

## Input values

P - Pressure p in bar

S - Specific entropy s in kJ/kg K

#### Result

**XPS97, X** or **x\_ps\_97** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

# Range of validity

Pressure range: from 0.00611 bar to 1000 bar

Entropy range: according to pressures from 0.00611 bar to 1000 bar and

temperatures from 0 °C to 800 °C

High temperature region: according pressures to 500 bar and temperatures to 2000 °C

#### Details on the calculation of wet steam

The wet steam region is calculated automatically. This means that from the given values of p and s the function will determine whether the state point to be calculated is located within the single-phase region (liquid or steam) or the wet steam region. When calculating wet steam the value for x between 0 and 1 is calculated (0 for saturated liquid, 1 for saturated steam). If the state point to be calculated is located in the single-phase region the result x = -1 will be returned.

#### Results for wrong input values

Result XPS97, X = -1 or  $x_ps_97 = -1$  for input values: if the state point is located in the single phase region

p > 220.64 bar or p < 0.00611 bar

# Compression Factor z = f(p,t,x)

Function Name: z\_ptx\_97

Sub-program with function value: REAL\*8 FUNCTION ZPTX97(P,T,X)

for call from Fortran REAL\*8 P,T,X

Sub-program with parameter: INTEGER\*4 FUNCTION C\_ ZPTX97 (Z,P,T,X)

for call from DLL REAL\*8 Z,P,T,X

# Input values

**P** - Pressure *p* in bar **T** - Temperature *t* in °C

**X** - Vapor fraction *x* in (kg saturated steam)/(kg wet steam)

#### Result

**ZPTX97**, **Z** or **z\_ptx\_97** - Compression factor *z* 

#### Range of validity

Temperature range: from 0 °C to 800 °C

Pressure range: from 0.00611 bar to 1000 bar High temperature region: to 2000 °C at pressures to 500 bar

# Details on the vapor fraction x and on the calculation of saturated liquid and saturated steam

The wet steam region is calculated automatically by the subprograms. For this purpose the following fixed details on the vapor fraction *x* are to be considered:

If the state point to be calculated is located in the single-phase region (liquid or superheated steam) x = -1 must be entered as a pro-forma value.

If the state point to be calculated is located on the saturated liquid line, x = 0 must be entered. When calculating saturated steam (saturated vapor line) x = 1 must be entered.

The calculation for *x*-values between 0 and 1 is not possible.

When calculating saturated liquid or saturated steam, it is adequate to enter either the given value for t and t = -1, or the given value for t and t = -1, plus the value for t (t = 0 or t = 1). If t and t are entered as given values, the program will consider t and t to be appropriate to represent the vapor pressure curve.

(Saturated liquid and saturated vapor line:

Temperature ranges from  $t_t = 0$  °C to  $t_c = 373.946$  °C

Pressure ranges from  $p_t = 0.00611$  bar to  $p_c = 220.64$  bar)

# Results for wrong input values

Result **ZPTX97**, Z = -1 or  $z_ptx_97 = -1$  for input values:

Single phase region: p > 1000 bar or p < 0.00611 bar or

(x = -1)  $t > 2000 \,^{\circ}\text{C}$  or  $t < 0 \,^{\circ}\text{C}$  or

 $t > 800 \,^{\circ}\text{C}$  at  $p > 500 \,^{\circ}\text{bar}$ 

Saturation lines: at p = -1 and t > 373.946 °C or t < 0 °C or

(x = 0 or x = 1) at t = -1 and p > 220.64 bar or p < 0.00611 bar or

at p > 220.64 bar or p < 0.00611 bar and t > 373.946 °C or t < 0 °C

4 14 4 (m) 1 . 0 4 1/2

at  $|t-t_{\rm S}(p)| > 0.1 \text{ K}$ 



## ZITTAU/GOERLITZ UNIVERSITY OF APPLIED SCIENCES

Department of Technical Thermodynamics www.thermodynamics-zittau.de



# 4. Property Libraries for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators

#### Water and Steam

#### **Library LibIF97**

- Industrial Formulation IAPWS-IF97 (Revision 2007)
- Supplementary Standards
- IAPWS-IF97-S01
- IAPWS-IF97-S03rev
- IAPWS-IF97-S04
- IAPWS-IF97-S05
- IAPWS Revised Advisory Note No. 3 on Thermodynamic Derivatives (2008)

#### **Humid Combustion Gas Mixtures**

#### Library LibHuGas

Model: Ideal mixture of the real fluids:

CO<sub>2</sub> - Span and Wagner O<sub>2</sub> - Schmidt and Wagner

H<sub>2</sub>O - IAPWS-95

Ar - Tegeler et al.

N<sub>2</sub> - Span et al.

and of the ideal gases:

SO<sub>2</sub>, CO, Ne (Scientific Formulation of Bücker et al.)

Consideration of:

Dissociation from VDI 4670 and Poynting effect

#### **Humid Air**

#### Library LibHuAir

Model: Ideal mixture of the real fluids:

- Dry Air from Lemmon et al.
- Steam, water and ice from IAPWS-IF97 and IAPWS-06

#### Consideration of:

- Condensation and freezing of steam
- Dissociation from the VDI 4670
- Poynting effect from ASHRAE RP-1485

# Carbon Dioxide including Dry Ice Library LibCO2

Formulation of Span and Wagner (1994)

#### Seawater

#### Library LibSeaWa

IAPWS Formulation 2008 of Feistel and IAPWS-IF97

#### Ice

# Library LibICE

Ice from IAPWS-06, Melting and sublimation pressures from IAPWS-08, Water from IAPWS-IF97, Steam from IAPWS-95 and -IF97

#### Ideal Gas Mixtures

### Library LibIdGasMix

Model: Ideal mixture of the ideal gases:

| Ar              | NO               | не              | Propylene  |
|-----------------|------------------|-----------------|------------|
| Ne              | H <sub>2</sub> O | $F_2$           | Propane    |
| $N_2$           | SO <sub>2</sub>  | NH <sub>3</sub> | Iso-Butane |
| $O_2$           | H <sub>2</sub>   | Methane         | n-Butane   |
| CO              | H₂S              | Ethane          | Benzene    |
| CO <sub>2</sub> | ОН               | Ethylene        | Methanol   |
| Air             |                  |                 |            |

Consideration of:

Dissociation from the VDI Guideline 4670

### **Library LibIDGAS**

Model: Ideal gas mixture from VDI Guideline 4670

Consideration of:

Dissociation from the VDI Guideline 4670

# Dry Air including Liquid Air Library LibRealAir

Formulation of Lemmon et al. (2000)

# Nitrogen

#### Library LibN2

Formulation of Span et al. (2000)

# Hydrogen

#### **Library LibH2**

Formulation of Leachman et al. (2007)

# Refrigerants

#### **Ammonia**

# **Library LibNH3**

Formulation of Tillner-Roth (1995)

#### R134a

#### Library LibR134a

Formulation of Tillner-Roth and Baehr (1994)

#### Iso-Butane

#### Library LibButane\_Iso

Formulation of Bücker et al. (2003)

#### n-Butane

#### Library LibButane n

Formulation of Bücker et al. (2003)

# **Mixtures for Absorption Processes**

# Ammonia/Water Mixtures Library LibAmWa

IAPWS Guideline 2001 of Tillner-Roth and Friend (1998)

Helmholtz energy equation for the mixing term
(also useable for calculating Kalina Cycle)

# Water/Lithium Bromide Mixtures

#### **Library LibWaLi**

Formulation of Kim and Infante Ferreira (2004)
Gibbs energy equation for the mixing term

#### **Liquid Coolants**

# Liquid Secondary Refrigerants

#### Library LibSecRef

Liquid solutions of water with

 $\begin{array}{lll} \text{C}_2\text{H}_6\text{O}_2 & \text{Ethylene glycol} \\ \text{C}_3\text{H}_8\text{O}_2 & \text{Propylene glycol} \\ \text{C}_2\text{H}_5\text{OH} & \text{Ethyl alcohol} \\ \text{CH}_3\text{OH} & \text{Methyl alcohol} \\ \text{C}_3\text{H}_8\text{O}_3 & \text{Glycerol} \end{array}$ 

K<sub>2</sub>CO<sub>3</sub> Potassium carbonate
CaCl<sub>2</sub> Calcium chloride
MgCl<sub>2</sub> Magnesium chloride
NaCl Sodium chloride
C<sub>2</sub>H<sub>3</sub>KO<sub>2</sub> Potassium acetate

Formulation of the International Institute of Refrigeration (1997)

#### Siloxanes as ORC Working Fluids

Octamethylcyclotetrasiloxane C<sub>8</sub>H<sub>24</sub>O<sub>4</sub>Si<sub>4</sub> Library LibD4

Decamethylcyclopentasiloxane C<sub>10</sub>H<sub>30</sub>O<sub>5</sub>Si<sub>5</sub> Library LibD5

Tetradecamethylhexasiloxane C<sub>14</sub>H<sub>42</sub>O<sub>5</sub>Si<sub>6</sub> Library LibMD4M

Hexamethyldisiloxane C<sub>6</sub>H<sub>18</sub>OSi<sub>2</sub> Library LibMM

Formulation of Colonna et al. (2006)

Dodecamethylcyclohexasiloxane C<sub>12</sub>H<sub>36</sub>O<sub>6</sub>Si<sub>6</sub> Library LibD6

Decamethyltetrasiloxane C<sub>10</sub>H<sub>30</sub>O<sub>3</sub>Si<sub>4</sub> Library LibMD2M

Dodecamethylpentasiloxane C<sub>12</sub>H<sub>36</sub>O<sub>4</sub>Si<sub>5</sub> Library LibMD3M

Octamethyltrisiloxane C<sub>8</sub>H<sub>24</sub>O<sub>2</sub>Si<sub>3</sub> Library LibMDM

Formulation of Colonna et al. (2008)

# **Propane**

#### Library LibPropane

Formulation of Lemmon et al. (2007)

# Methanol

## Library LibCH3OH

Formulation of de Reuck and Craven (1993)

#### Ethanol

#### Library LibC2H5OH

Formulation of Schroeder et al. (2012)

# Helium Library LibHe

Formulation of Arp et al. (1998)

## **Hydrocarbons**

Decane C<sub>10</sub>H<sub>22</sub> Library LibC10H22

Isopentane C<sub>5</sub>H<sub>12</sub> Library LibC5H12\_ISO

Neopentane C<sub>5</sub>H<sub>12</sub> Library LibC5H12\_NEO

Isohexane C<sub>5</sub>H<sub>14</sub> Library LibC5H14

Toluene C<sub>7</sub>H<sub>8</sub> Library LibC7H8

Formulation of Lemmon and Span (2006)

#### **Further Fluids**

Carbon monoxide CO Library LibCO

Carbonyl sulfide COS Library LibCOS

Hydrogen sulfide H<sub>2</sub>S Library LibH2S

Dinitrogen monooxide N<sub>2</sub>O Library LibN2O

Sulfur dioxide SO<sub>2</sub> Library LibSO2

Acetone C<sub>3</sub>H<sub>6</sub>O Library LibC3H6O

Formulation of Lemmon and Span (2006)

# For more information please contact:

Zittau/Goerlitz University of Applied Sciences Department of Technical Thermodynamics Professor Hans-Joachim Kretzschmar

Dr. Ines Stoecker

Theodor-Koerner-Allee 16 02763 Zittau, Germany

Internet: www.thermodynamics-zittau.de

E-mail: hj.kretzschmar@hs-zigr.de

Phone: +49-3583-61-1846 Fax.: +49-3583-61-1846

# The following thermodynamic and transport properties can be calculated<sup>a</sup>:

# Thermodynamic Properties

- Vapor pressure p<sub>s</sub>
- Saturation temperature T<sub>s</sub>
- ullet Density ho
- Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity  $c_{p}$
- Isochoric heat capacity c<sub>v</sub>
- Isentropic exponent  $\kappa$
- Speed of sound w
- Surface tension  $\sigma$

# **Transport Properties**

- $\bullet$  Dynamic viscosity  $\eta$
- ullet Kinematic viscosity u
- $\bullet$  Thermal conductivity  $\lambda$
- Prandtl-number Pr

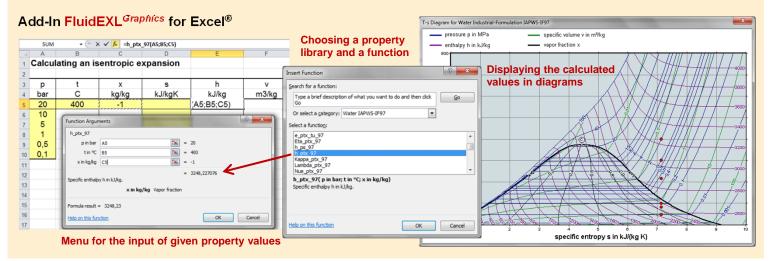
# **Backward Functions**

- T, v, s(p,h)
- *T*, *v*, *h* (*p*,*s*)
- p, T, v (h,s)
- p, T (v,h)
- p, T (v,u)

#### Thermodynamic Derivatives

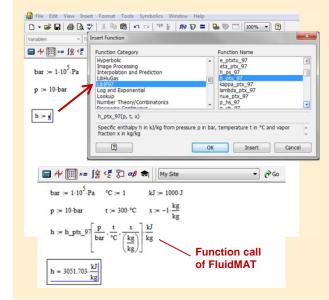
Partial derivatives can be calculated.

<sup>&</sup>lt;sup>a</sup> Not all of these property functions are available in all property libraries.



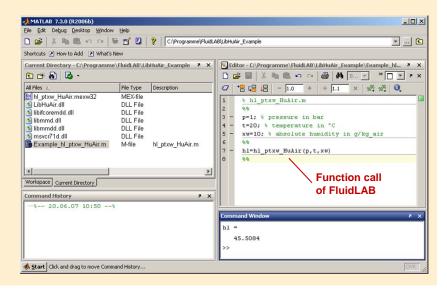

# ZITTAU/GOERLITZ UNIVERSITY OF APPLIED SCIENCES

Department of Technical Thermodynamics www.thermodynamics-zittau.de



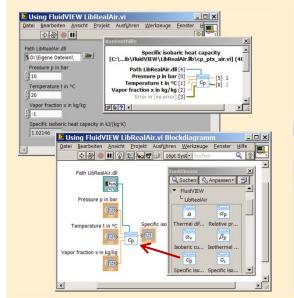

# **Property Software for Calculating Heat Cycles, Boilers, Turbines, and Refrigerators**




#### Add-In FluidMAT for Mathcad®

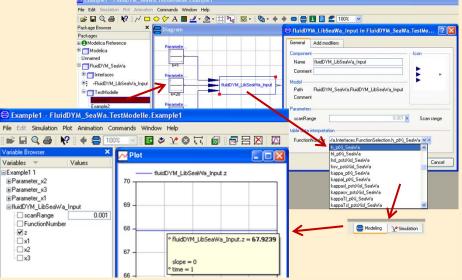
The property libraries can be used in Mathcad<sup>®</sup>.



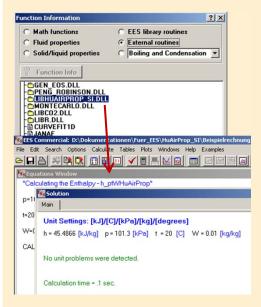

#### Add-In FluidLAB for MATLAB®

Using the Add-In FluidLAB the property functions can be called in MATLAB®.




## Add-On FluidVIEW for LabVIEW®

The property functions can be calculated in LabVIEW®.




# Add-In FluidDYM for DYMOLA® (Modelica) and SimulationX®

The property functions can be called in DYMOLA® and SimulationX®



# Add-In FluidEES for **Engineering Equation Solver®**



# **App International Steam Tables** for iPhone, iPad, iPod touch, Android smart phones and tablets



# **Online Property Calculator at** www.thermodynamics-zittau.de



## **Property Software for Pocket Calculators**







# For more information please contact:

Zittau/Goerlitz University of Applied Sciences **Department of Technical Thermodynamics** Professor Hans-Joachim Kretzschmar Dr. Ines Stoecker Theodor-Koerner-Allee 16 02763 Zittau, Germany

E-mail: hj.kretzschmar@hs-zigr.de Internet: www.thermodynamics-zittau.de

Phone: +49-3583-61-1846 Fax.: +49-3583-61-1846

The following thermodynamic and transport properties a can be calculated in Excel®, MATLAB®, Mathcad®, Engineering Equation Solver® EES, DYMOLA® (Modelica), SimulationX®, and LabVIEW®:

#### Thermodynamic Properties

- Vapor pressure p<sub>s</sub>
- Saturation temperature T<sub>s</sub>
- Density ρ
- · Specific volume v
- Enthalpy h
- Internal energy u
- Entropy s
- Exergy e
- Isobaric heat capacity c<sub>p</sub>
- Isochoric heat capacity c<sub>v</sub>
- Isentropic exponent  $\kappa$
- Speed of sound w
- Surface tension σ

#### **Transport Properties**

- Dynamic viscosity η
- Kinematic viscosity v
- Thermal conductivity λ
- Prandtl-number Pr

#### **Backward Functions**

- T, v, s (p,h)
- T, v, h (p,s)
- p, T, v (h,s)
- p, T (v,h)
- p, T (v,u)

#### Thermodynamic Derivatives

· Partial derivatives can be calculated.

<sup>&</sup>lt;sup>a</sup> Not all of these property functions are available in all property libraries.

# 5. References

- [1] Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam IAPWS-IF97.

  Available at the IAPWS website http://www.iapws.org
- [2] Wagner, W.; Kretzschmar, H.-J.: International Steam Tables. Springer-Verlag, Berlin (2008)
- [3] Wagner, W.; Cooper, J.R.; Dittmann, A.; Kijima, J.; Kretzschmar, H.-J.; Kruse, A.; Mares, R.; Oguchi, K.; Sato, H.; Stöcker, I.; Sifner, O.; Takaishi, Y.; Tanishita, I.; Trübenbach, J.; Willkommen, Th.: The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam.

  Journal of Eng. for Gas Turbines and Power 122 (2000) No 1, pp. 150-182
- [4] Advisory Note No. 3, Calculation of Thermodynamic Derivatives for Water and Steam from the IAPWS Formulations 2007. Available at the IAPWS website http://www.iapws.org
- [5] Kretzschmar, H.-J.:Mollier h-s Diagram.Springer-Verlag, Berlin (1998, 2008)
- [6] Release on the IAPWS Formulation 2011 for the Thermal Conductivity of Ordinary Water Substance. Available at the IAPWS website http://www.iapws.org
- [7] Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance. Available at the IAPWS website http://www.iapws.org
- [8] Release on Surface Tension of Ordinary Water Substance 1994. Available at the IAPWS website http://www.iapws.org
- [9] Supplementary Release on Backward Equations for Specific Volume as a Function of Pressure and Temperature v(p,T) for Region 3 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam 2005. Available at the IAPWS website http://www.iapws.org
- [10] Supplementary Release on Backward Equations p(h,s) for Region 3, Equations as a Function of h and s for the Region Boundaries, and an Equation T<sub>sat</sub>(h,s) for Region 4 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam 2004. Available at the IAPWS website http://www.iapws.org

[11] Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. Available at the IAPWS website http://www.iapws.org

[12] Grigull, U.:

Properties of Water and Steam in SI Units.

Springer-Verlag, Berlin (1989)

[13] Kretzschmar, H.-J.:

Zur Aufbereitung und Darbietung thermophysikalischer Stoffdaten für die Energietechnik.

Habilitation, TU Dresden, Fakultät Maschinenwesen (1990)

[14] Baehr, H.D.; Diederichsen, Ch.:

Berechnungsgleichungen für Enthalpie und Entropie der Komponenten von Luft und Verbrennungsgasen.

BWK 40 (1988) No 1/2, pp. 30-33

[15] Brandt, F.:

Wärmeübertragung in Dampferzeugern und Wärmetauschern. FDBR-Fachbuchreihe, 2nd edition, Vulkan Verlag Essen (1995)

[16] VDI-Wärmeatlas, 7. Auflage. VDI-Verlag, Düsseldorf (1995)

[17] Blanke, W.:

Thermophysikalische Stoffgrößen.

Springer-Verlag, Berlin (1989)

[18] VDI-Richtlinie 4670

Thermodynamische Stoffwerte von feuchter Luft und Verbrennungsgasen. VDI-Handbuch Energietechnik, VDI-Gesellschaft Energietechnik, Düsseldorf (2000)

[19] Lemmon, E. W.; Jacobsen, R. T.; Penoncello, S. G.; Friend, D. G.: Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon and Oxygen from 60 to 2000 K at Pressures to 2000 MPa.

J. Phys. Chem. Ref. Data 29 (2000) No 2, pp. 331-385

[20] Lemmon, E. W.; Jacobsen, R. T:

Transport Properties of Air.

National Institute of Standards and Technology, Boulder CO, (2000), private communication

- [21] Revised Supplementary Release on Saturation Properties of Ordinary Water Substance 1992. Available at the IAPWS website http://www.iapws.org
- [22] Hyland, R. W.; Wexler, A.:

Formulations for the Thermodynamic Properties of Saturated Phases of H<sub>2</sub>O from 173.15 K to 473.15 K.

Report No. 2793 (RP-216), National Bureau of Standards, Washington, D.C. (1983)

# 6. Satisfied Customers

Date: 10/2011

The following companies and institutions use the property libraries

- FluidEXL<sup>Graphics</sup> for Excel<sup>®</sup>
- FluidLAB for MATLAB®
- FluidMAT for Mathcad®
- FluidEES for Engineering Equation Solver<sup>®</sup> EES
- FluidDYM for Dymola<sup>®</sup> (Modelica)
- FluidVIEW for LabVIEW®:

# 2011

| Lance Managia Oncia                                  | 40/0044                      |
|------------------------------------------------------|------------------------------|
| Lopez, Munguia, Spain                                | 10/2011                      |
| University of KwaZulu-Natal, Westville, South Africa | 10/2011                      |
| Voith, Heidenheim                                    | 09/2011                      |
| SpgBe Montreal, Canada                               | 09/2011                      |
| SPG TECH, Montreuil Cedex, France                    | 09/2011                      |
| Voith, Heidenheim-Mergelstetten                      | 09/2011                      |
| MTU Aero Engines, Munich                             | 08/2011                      |
| MIBRAG, Zeitz                                        | 08/2011                      |
| RWE, Essen                                           | 07/2011                      |
| Fels, Elingerode                                     | 07/2011                      |
| Weihenstephan University of Applied Sciences         | 07/2011, 09/2011,<br>10/2011 |
| Forschungszentrum Juelich                            | 07/2011                      |
| RWTH Aachen University                               | 07/2011, 08/2011             |
| INNEO Solutions, Ellwangen                           | 06/2011                      |
| Caliqua, Basel, Switzerland                          | 06/2011                      |
| Technical University of Freiberg                     | 06/2011                      |
| Fichtner IT Consulting, Stuttgart                    | 05/2011, 06/2011,<br>08/2011 |
| Salzgitter Flachstahl, Salzgitter                    | 05/2011                      |
| Helbling Beratung & Bauplanung, Zurich, Switzerland  | 05/2011                      |
| INEOS, Cologne                                       | 04/2011                      |
| Enseleit Consulting Engineers, Siebigerode           | 04/2011                      |
| Witt Consulting Engineers, Stade                     | 03/2011                      |

| Helbling, Zurich, Switzerland                                    | 03/2011                            |
|------------------------------------------------------------------|------------------------------------|
| MAN Diesel, Copenhagen, Denmark                                  | 03/2011                            |
| AGO, Kulmbach                                                    | 03/2011                            |
| University of Duisburg                                           | 03/2011, 06/2011                   |
| CCP, Marburg                                                     | 03/2011                            |
| BASF, Ludwigshafen                                               | 02/2011                            |
| ALSTOM Power, Baden, Switzerland                                 | 02/2011                            |
| Universität der Bundeswehr, Munich                               | 02/2011                            |
| Calorifer, Elgg, Switzerland                                     | 01/2011                            |
| STRABAG, Vienna, Austria                                         | 01/2011                            |
| TUEV Sued, Munich                                                | 01/2011                            |
| ILK Dresden                                                      | 01/2011                            |
| Technical University of Dresden                                  | 01/2011, 05/2011, 06/2011, 08/2011 |
|                                                                  | 00/2011, 00/2011                   |
| 2010                                                             |                                    |
| Umweltinstitut Neumarkt                                          | 12/2010                            |
| YIT Austria, Vienna, Austria                                     | 12/2010                            |
| MCI Innsbruck, Austria                                           | 12/2010                            |
| University of Stuttgart                                          | 12/2010                            |
| HS Cooler, Wittenburg                                            | 12/2010                            |
| Visteon, Novi Jicin, Czech Republic                              | 12/2010                            |
| CompuWave, Brunntal                                              | 12/2010                            |
| Stadtwerke Leipzig                                               | 12/2010                            |
| MCI Innsbruck, Austria                                           | 12/2010                            |
| EVONIK Energy Services, Zwingenberg                              | 12/2010                            |
| Caliqua, Basel, Switzerland                                      | 11/2010                            |
| Shanghai New Energy Resources Science & Technology, China        | 11/2010                            |
| Energieversorgung Halle                                          | 11/2010                            |
| Hochschule für Technik Stuttgart, University of Applied Sciences | 11/2010                            |
| Steinmueller, Berlin                                             | 11/2010                            |
| Amberg-Weiden University of Applied Sciences                     | 11/2010                            |
| AREVA NP, Erlangen                                               | 10/2010                            |
| MAN Diesel, Augsburg                                             | 10/2010                            |
| KRONES, Neutraubling                                             | 10/2010                            |
| Vaillant, Remscheid                                              | 10/2010                            |

| PC Ware, Leipzig                                    | 10/2010                     |
|-----------------------------------------------------|-----------------------------|
| Schubert Consulting Engineers, Weißenberg           | 10/2010                     |
| Fraunhofer Institut UMSICHT, Oberhausen             | 10/2010                     |
| Behringer Consulting Engineers, Tagmersheim         | 09/2010                     |
| Saacke, Bremen                                      | 09/2010                     |
| WEBASTO, Neubrandenburg                             | 09/2010                     |
| Concordia University, Montreal, Canada              | 09/2010                     |
| Compañía Eléctrica de Sochagota, Bogota, Colombia   | 08/2010                     |
| Hannover University of Applied Sciences             | 08/2010                     |
| ERGION, Mannheim                                    | 07/2010                     |
| Fichtner IT Consulting, Stuttgart                   | 07/2010                     |
| TF Design, Matieland, South Africa                  | 07/2010                     |
| MCE, Berlin                                         | 07/2010, 12/2010            |
| IPM, Zittau/Goerlitz University of Applied Sciences | 06/2010                     |
| TUEV Sued, Dresden                                  | 06/2010                     |
| RWE IT, Essen                                       | 06/2010                     |
| Glen Dimplex, Kulmbach                              | 05/2010, 07/2010<br>10/2010 |
| Hot Rock, Karlsruhe                                 | 05/2010                     |
| Darmstadt University of Applied Sciences            | 05/2010                     |
| Voith, Heidenheim                                   | 04/2010                     |
| CombTec, Zittau                                     | 04/2010                     |
| University of Glasgow, Great Britain                | 04/2010                     |
| Universitaet der Bundeswehr, Munich                 | 04/2010                     |
| Technical University of Hamburg-Harburg             | 04/2010                     |
| Vattenfall Europe, Berlin                           | 04/2010                     |
| HUBER Consulting Engineers, Berching                | 04/2010                     |
| VER, Dresden                                        | 04/2010                     |
| CCP, Marburg                                        | 03/2010                     |
| Offenburg University of Applied Sciences            | 03/2010                     |
| Technical University of Berlin                      | 03/2010                     |
| NIST Boulder CO, USA                                | 03/2010                     |
| Technical University of Dreaden                     |                             |
| Technical University of Dresden                     | 02/2010                     |
| Siemens Energy, Nuremberg                           | 02/2010<br>02/2010          |
| ·                                                   |                             |

| ALSTOM Power, Baden, Switzerland                             | 02/2010, 05/2010             |
|--------------------------------------------------------------|------------------------------|
| MIT Massachusetts Institute of Technology Cambridge MA, USA  | 02/2010                      |
| Wieland Werke, Ulm                                           | 01/2010                      |
| Siemens Energy, Goerlitz                                     | 01/2010, 12/2010             |
| Technical University of Freiberg                             | 01/2010                      |
| ILK, Dresden                                                 | 01/2010, 12/2010             |
| Fischer-Uhrig Consulting Engineers, Berlin                   | 01/2010                      |
| 2009                                                         |                              |
| ALSTOM Power, Baden, Schweiz                                 | 01/2009, 03/2009,<br>05/2009 |
| Nordostschweizerische Kraftwerke AG, Doettingen, Switzerland | 02/2009                      |
| RWE, Neurath                                                 | 02/2009                      |
| Brandenburg University of Technology, Cottbus                | 02/2009                      |
| Hamburg University of Applied Sciences                       | 02/2009                      |
| Kehrein, Moers                                               | 03/2009                      |
| EPP Software, Marburg                                        | 03/2009                      |
| Bernd Münstermann, Telgte                                    | 03/2009                      |
| Suedzucker, Zeitz                                            | 03/2009                      |
| CPP, Marburg                                                 | 03/2009                      |
| Gelsenkirchen University of Applied Sciences                 | 04/2009                      |
| Regensburg University of Applied Sciences                    | 05/2009                      |
| Gatley & Associates, Atlanta, USA                            | 05/2009                      |
| BOSCH, Stuttgart                                             | 06/2009, 07/2009             |
| Dr. Nickolay, Consulting Engineers, Gommersheim              | 06/2009                      |
| Ferrostal Power, Saarlouis                                   | 06/2009                      |
| BHR Bilfinger, Essen                                         | 06/2009                      |
| Intraserv, Wiesbaden                                         | 06/2009                      |
| Lausitz University of Applied Sciences, Senftenberg          | 06/2009                      |
| Nuernberg University of Applied Sciences                     | 06/2009                      |
| Technical University of Berlin                               | 06/2009                      |
| Fraunhofer Institut UMSICHT, Oberhausen                      | 07/2009                      |
| Bischoff, Aurich                                             | 07/2009                      |
| Fichtner IT Consulting, Stuttgart                            | 07/2009                      |
| Techsoft, Linz, Austria                                      | 08/2009                      |
| DLR, Stuttgart                                               | 08/2009                      |

| Wienstrom, Vienna, Austria                                          | 08/2009          |
|---------------------------------------------------------------------|------------------|
| RWTH Aachen University                                              | 09/2009          |
| Vattenfall, Hamburg                                                 | 10/2009          |
| AIC, Chemnitz                                                       | 10/2009          |
| Midiplan, Bietigheim-Bissingen                                      | 11/2009          |
| Institute of Air Handling and Refrigeration ILK, Dresden            | 11/2009          |
| FZD, Rossendorf                                                     | 11/2009          |
| Techgroup, Ratingen                                                 | 11/2009          |
| Robert Sack, Heidelberg                                             | 11/2009          |
| EC, Heidelberg                                                      | 11/2009          |
| MCI, Innsbruck, Austria                                             | 12/2009          |
| Saacke, Bremen                                                      | 12/2009          |
| ENERKO, Aldenhoven                                                  | 12/2009          |
| 2008                                                                |                  |
| Pink, Langenwang                                                    | 01/2008          |
| Fischer-Uhrig, Berlin                                               | 01/2008          |
| University of Karlsruhe                                             | 01/2008          |
| MAAG, Kuesnacht, Switzerland                                        | 02/2008          |
| M&M Turbine Technology, Bielefeld                                   | 02/2008          |
| Lentjes, Ratingen                                                   | 03/2008          |
| Siemens Power Generation, Goerlitz                                  | 04/2008          |
| Evonik, Zwingenberg (general EBSILON program license)               | 04/2008          |
| WEBASTO, Neubrandenburg                                             | 04/2008          |
| CFC Solutions, Munich                                               | 04/2008          |
| RWE IT, Essen                                                       | 04/2008          |
| Rerum Cognitio, Zwickau                                             | 04/2008, 05/2008 |
| ARUP, Berlin                                                        | 05/2008          |
| Research Center, Karlsruhe                                          | 07/2008          |
| AWECO, Neukirch                                                     | 07/2008          |
| Technical University of Dresden, Professorship of Building Services | 07/2008          |
| Technical University of Cottbus, Chair in Power Plant Engineering   | 07/2008, 10/2008 |
| Ingersoll-Rand, Unicov, Czech Republic                              | 08/2008          |
| Technip Benelux BV, Zoetermeer, Netherlands                         | 08/2008          |
| Fennovoima Oy, Helsinki, Finland                                    | 08/2008          |

|    | Fichtner Consulting & IT, Stuttgart                                                     | 09/2008          |
|----|-----------------------------------------------------------------------------------------|------------------|
|    | PEU, Espenhain                                                                          | 09/2008          |
|    | Poyry, Dresden                                                                          | 09/2008          |
|    | WINGAS, Kassel                                                                          | 09/2008          |
|    | TUEV Sued, Dresden                                                                      | 10/2008          |
|    | Technical University of Dresden,<br>Professorship of Thermic Energy Machines and Plants | 10/2008, 11/2008 |
|    | AWTEC, Zurich, Switzerland                                                              | 11/2008          |
|    | Siemens Power Generation, Erlangen                                                      | 12/2008          |
| 20 | 007                                                                                     |                  |
|    | Audi, Ingolstadt                                                                        | 02/2007          |
|    | ANO Abfallbehandlung Nord, Bremen                                                       | 02/2007          |
|    | TUEV NORD SysTec, Hamburg                                                               | 02/2007          |
|    | VER, Dresden                                                                            | 02/2007          |
|    | Technical University of Dresden, Chair in Jet Propulsion Systems                        | 02/2007          |
|    | Redacom, Nidau, Switzerland                                                             | 02/2007          |
|    | Universität der Bundeswehr, Munich                                                      | 02/2007          |
|    | Maxxtec, Sinsheim                                                                       | 03/2007          |
|    | University of Rostock, Chair in Technical Thermodynamics                                | 03/2007          |
|    | AGO, Kulmbach                                                                           | 03/2007          |
|    | University of Stuttgart, Chair in Aviation Propulsions                                  | 03/2007          |
|    | Siemens Power Generation, Duisburg                                                      | 03/2007          |
|    | ENTHAL Haustechnik, Rees                                                                | 05/2007          |
|    | AWECO, Neukirch                                                                         | 05/2007          |
|    | ALSTOM, Rugby, Great Britain                                                            | 06/2007          |
|    | SAAS, Possendorf                                                                        | 06/2007          |
|    | Grenzebach BSH, Bad Hersfeld                                                            | 06/2007          |
|    | Reichel Engineering, Haan                                                               | 06/2007          |
|    | Technical University of Cottbus,<br>Chair in Power Plant Engineering                    | 06/2007          |
|    | Voith Paper Air Systems, Bayreuth                                                       | 06/2007          |
|    | Egger Holzwerkstoffe, Wismar                                                            | 06/2007          |
|    | Tissue Europe Technologie, Mannheim                                                     | 06/2007          |
|    | Dometic, Siegen                                                                         | 07/2007          |
|    | RWTH Aachen University, Institute for Electrophysics                                    | 09/2007          |
|    | National Energy Technology Laboratory, Pittsburg, USA                                   | 10/2007          |
|    |                                                                                         |                  |

|    | Energieversorgung Halle                                                                          |          | 10/2007 |
|----|--------------------------------------------------------------------------------------------------|----------|---------|
|    | AL-KO, Jettingen                                                                                 |          | 10/2007 |
|    | Grenzebach BSH, Bad Hersfeld                                                                     |          | 10/2007 |
|    | Wiesbaden University of Applied Sciences,<br>Department of Engineering Sciences                  |          | 10/2007 |
|    | Endress+Hauser Messtechnik, Hannover                                                             |          | 11/2007 |
|    | Munich University of Applied Sciences, Department of Mechanical Engineering                      |          | 11/2007 |
|    | Rerum Cognitio, Zwickau                                                                          |          | 12/2007 |
|    | Siemens Power Generation, Erlangen                                                               |          | 11/2007 |
|    | University of Rostock, Chair in Technical Thermodynamics                                         | 11/2007, | 12/2007 |
| 20 | 06                                                                                               |          |         |
|    | STORA ENSO Sachsen, Eilenburg                                                                    |          | 01/2006 |
|    | Technical University of Munich, Chair in Energy Systems                                          |          | 01/2006 |
|    | NUTEC Engineering, Bisikon, Switzerland                                                          | 01/2006, | 04/2006 |
|    | Conwel eco, Bochov, Czech Republic                                                               |          | 01/2006 |
|    | Offenburg University of Applied Sciences                                                         |          | 01/2006 |
|    | KOCH Transporttechnik, Wadgassen                                                                 |          | 01/2006 |
|    | BEG Bremerhavener Entsorgungsgesellschaft                                                        |          | 02/2006 |
|    | Deggendorf University of Applied Sciences, Department of Mechanical Engineering and Mechatronics |          | 02/2006 |
|    | University of Stuttgart, Department of Thermal Fluid Flow Engines                                |          | 02/2006 |
|    | Technical University of Munich,<br>Chair in Apparatus and Plant Engineering                      |          | 02/2006 |
|    | Energietechnik Leipzig (company license),                                                        |          | 02/2006 |
|    | Siemens Power Generation, Erlangen                                                               | 02/2006, | 03/2006 |
|    | RWE Power, Essen                                                                                 |          | 03/2006 |
|    | WAETAS, Pobershau                                                                                |          | 04/2006 |
|    | Siemens Power Generation, Goerlitz                                                               |          | 04/2006 |
|    | Technical University of Braunschweig, Department of Thermodynamics                               |          | 04/2006 |
|    | EnviCon & Plant Engineering, Nuremberg                                                           |          | 04/2006 |
|    | Brassel Engineering, Dresden                                                                     |          | 05/2006 |
|    | University of Halle-Merseburg,<br>Department of USET Merseburg incorporated society              |          | 05/2006 |
|    | Technical University of Dresden,<br>Professorship of Thermic Energy Machines and Plants          |          | 05/2006 |

| Fichtner Consulting & IT Stuttgart (company licenses and distribution)                                   | 05/2006                      |
|----------------------------------------------------------------------------------------------------------|------------------------------|
| Suedzucker, Ochsenfurt                                                                                   | 06/2006                      |
| M&M Turbine Technology, Bielefeld                                                                        | 06/2006                      |
| Feistel Engineering, Volkach                                                                             | 07/2006                      |
| ThyssenKrupp Marine Systems, Kiel                                                                        | 07/2006                      |
| Caliqua, Basel, Switzerland (company license)                                                            | 09/2006                      |
| Atlas-Stord, Rodovre, Denmark                                                                            | 09/2006                      |
| Konstanz University of Applied Sciences, Course of Studies Construction and Development                  | 10/2006                      |
| Siemens Power Generation, Duisburg                                                                       | 10/2006                      |
| Hannover University of Applied Sciences, Department of Mechanical Engineering                            | 10/2006                      |
| Siemens Power Generation, Berlin                                                                         | 11/2006                      |
| Zikesch Armaturentechnik, Essen                                                                          | 11/2006                      |
| Wismar University of Applied Sciences, Seafaring Department                                              | 11/2006                      |
| BASF, Schwarzheide                                                                                       | 12/2006                      |
| Enertech Energie und Technik, Radebeul                                                                   | 12/2006                      |
| 2005                                                                                                     |                              |
| TUEV Nord, Hannover                                                                                      | 01/2005                      |
| J.H.K Plant Engineering and Service, Bremerhaven                                                         | 01/2005                      |
| Electrowatt-EKONO, Zurich, Switzerland                                                                   | 01/2005                      |
| FCIT, Stuttgart                                                                                          | 01/2005                      |
| Energietechnik Leipzig (company license)                                                                 | 02/2005, 04/2005,<br>07/2005 |
| eta Energieberatung, Pfaffenhofen                                                                        | 02/2005                      |
| FZR Forschungszentrum, Rossendorf/Dresden                                                                | 04/2005                      |
| University of Saarbruecken                                                                               | 04/2005                      |
| Technical University of Dresden Professorship of Thermic Energy Machines and Plants                      | 04/2005                      |
| Grenzebach BSH, Bad Hersfeld                                                                             | 04/2005                      |
| TUEV Nord, Hamburg                                                                                       | 04/2005                      |
| Technical University of Dresden, Waste Management                                                        | 05/2005                      |
| Siemens Power Generation, Goerlitz                                                                       | 05/2005                      |
| Duesseldorf University of Applied Sciences, Department of Mechanical Engineering and Process Engineering | 05/2005                      |

|    | Redacom, Nidau, Switzerland                                                             | 06/2005   |
|----|-----------------------------------------------------------------------------------------|-----------|
|    | Dumas Verfahrenstechnik, Hofheim                                                        | 06/2005   |
|    | Alensys Engineering, Erkner                                                             | 07/2005   |
|    | Stadtwerke Leipzig                                                                      | 07/2005   |
|    | SaarEnergie, Saarbruecken                                                               | 07/2005   |
|    | ALSTOM ITC, Rugby, Great Britain                                                        | 08/2005   |
|    | Technical University of Cottbus, Chair in Power Plant Engineering                       | 08/2005   |
|    | Vattenfall Europe, Berlin (group license)                                               | 08/2005   |
|    | Technical University of Berlin                                                          | 10/2005   |
|    | Basel University of Applied Sciences, Department of Mechanical Engineering, Switzerland | 10/2005   |
|    | Midiplan, Bietigheim-Bissingen                                                          | 11/2005   |
|    | Technical University of Freiberg, Chair in Hydrogeology                                 | 11/2005   |
|    | STORA ENSO Sachsen, Eilenburg                                                           | 12/2005   |
|    | Energieversorgung Halle (company license)                                               | 12/2005   |
|    | KEMA IEV, Dresden                                                                       | 12/2005   |
| 20 | 004                                                                                     |           |
|    | Vattenfall Europe (group license)                                                       | 01/2004   |
|    | TUEV Nord, Hamburg                                                                      | 01/2004   |
|    | University of Stuttgart, Institute of Thermodynamics and Heat Engineering               | 02/2004   |
|    | MAN B&W Diesel A/S, Copenhagen, Denmark                                                 | 02/2004   |
|    | Siemens AG Power Generation, Erlangen                                                   | 02/2004   |
|    | Ulm University of Applied Sciences                                                      | 03/2004   |
|    | Visteon, Kerpen 03/2004                                                                 | , 10/2004 |
|    | Technical University of Dresden, Professorship of Thermic Energy Machines and Plants    | 04/2004   |
|    | Rerum Cognitio, Zwickau                                                                 | 04/2004   |
|    | University of Saarbruecken                                                              | 04/2004   |
|    | Grenzebach BSH, Bad Hersfeld                                                            | 04/2004   |
|    | SOFBID Zwingenberg (general EBSILON program license)                                    | 04/2004   |
|    | EnBW Energy Solutions, Stuttgart                                                        | 05/2004   |
|    | HEW-Kraftwerk, Tiefstack                                                                | 06/2004   |
|    | h s energieanlagen, Freising                                                            | 07/2004   |
|    | FCIT, Stuttgart                                                                         | 08/2004   |
|    | Physikalisch Technische Bundesanstalt (PTB), Braunschweig                               | 08/2004   |
|    | Mainova Frankfurt                                                                       | 08/2004   |

| Rietschle Energieplaner, Winterthur, Switzerland                  | 08/2004          |
|-------------------------------------------------------------------|------------------|
| MAN Turbo Machines, Oberhausen                                    | 09/2004          |
| TUEV Sued, Dresden                                                | 10/2004          |
| STEAG Kraftwerk, Herne                                            | 10/2004, 12/2004 |
| University of Weimar                                              | 10/2004          |
| energeticals (e-concept), Munich                                  | 11/2004          |
| SorTech, Halle                                                    | 11/2004          |
| Enertech EUT, Radebeul (company license)                          | 11/2004          |
| Munich University of Applied Sciences                             | 12/2004          |
| STORA ENSO Sachsen, Eilenburg                                     | 12/2004          |
| Technical University of Cottbus, Chair in Power Plant Engineering | 12/2004          |
| Freudenberg Service, Weinheim                                     | 12/2004          |
| 2003                                                              |                  |
| Paper Factory, Utzenstorf, Switzerland                            | 01/2003          |
| MAB Plant Engineering, Vienna, Austria                            | 01/2003          |
| Wulff Energy Systems, Husum                                       | 01/2003          |
| Technip Benelux BV, Zoetermeer, Netherlands                       | 01/2003          |
| ALSTOM Power, Baden, Switzerland                                  | 01/2003, 07/2003 |
| VER, Dresden                                                      | 02/2003          |
| Rietschle Energieplaner, Winterthur, Switzerland                  | 02/2003          |
| DLR, Leupholdhausen                                               | 04/2003          |
| Emden University of Applied Sciences, Department of Technology    | 05/2003          |
| Petterssson+Ahrends, Ober-Moerlen                                 | 05/2003          |
| SOFBID ,Zwingenberg (general EBSILON program license)             | 05/2003          |
| Ingenieurbuero Ostendorf, Gummersbach                             | 05/2003          |
| TUEV Nord, Hamburg                                                | 06/2003          |
| Muenstermann GmbH, Telgte-Westbevern                              | 06/2003          |
| University of Cali, Colombia                                      | 07/2003          |
| Atlas-Stord, Rodovre, Denmark                                     | 08/2003          |
| ENERKO, Aldenhoven                                                | 08/2003          |
| STEAG RKB, Leuna                                                  | 08/2003          |
| eta Energieberatung, Pfaffenhofen                                 | 08/2003          |
| exergie, Dresden                                                  | 09/2003          |
| AWTEC, Zurich, Switzerland                                        | 09/2003          |
| Energie, Timelkam, Austria                                        | 09/2003          |
|                                                                   |                  |

|    | Electrowatt-EKONO, Zurich, Switzerland                                          | 09/2003 |
|----|---------------------------------------------------------------------------------|---------|
|    | LG, Annaberg-Buchholz                                                           | 10/2003 |
|    | FZR Forschungszentrum, Rossendorf/Dresden                                       | 10/2003 |
|    | EnviCon & Plant Engineering, Nuremberg                                          | 11/2003 |
|    | Visteon, Kerpen                                                                 | 11/2003 |
|    | VEO Vulkan Energiewirtschaft Oderbruecke, Eisenhuettenstadt                     | 11/2003 |
|    | Stadtwerke Hannover                                                             | 11/2003 |
|    | SaarEnergie, Saarbruecken                                                       | 11/2003 |
|    | Fraunhofer-Gesellschaft, Munich                                                 | 12/2003 |
|    | Erfurt University of Applied Sciences, Department of Supply Engineering         | 12/2003 |
|    | SorTech, Freiburg                                                               | 12/2003 |
|    | Mainova, Frankfurt                                                              | 12/2003 |
|    | Energieversorgung Halle                                                         | 12/2003 |
| 20 | 002                                                                             |         |
|    | Hamilton Medical AG, Rhaezuens, Switzerland                                     | 01/2002 |
|    | Bochum University of Applied Sciences, Department of Thermo- and Fluid Dynamics | 01/2002 |
|    | SAAS, Possendorf/Dresden                                                        | 02/2002 |
|    | Siemens, Karlsruhe<br>(general license for the WinIS information system)        | 02/2002 |
|    | FZR Forschungszentrum, Rossendorf/Dresden                                       | 03/2002 |
|    | CompAir, Simmern                                                                | 03/2002 |
|    | GKS Gemeinschaftskraftwerk, Schweinfurt                                         | 04/2002 |
|    | ALSTOM Power Baden, Switzerland (group licenses)                                | 05/2002 |
|    | InfraServ, Gendorf                                                              | 05/2002 |
|    | SoftSolutions, Muehlhausen (company license)                                    | 05/2002 |
|    | DREWAG, Dresden (company license)                                               | 05/2002 |
|    | SOFBID, Zwingenberg (general EBSILON program license)                           | 06/2002 |
|    | Kleemann Engineering, Dresden                                                   | 06/2002 |
|    | Caliqua, Basel, Switzerland (company license)                                   | 07/2002 |
|    | PCK Raffinerie, Schwedt (group license)                                         | 07/2002 |
|    | Fischer-Uhrig Engineering, Berlin                                               | 08/2002 |
|    | Fichtner Consulting & IT, Stuttgart (company licenses and distribution)         | 08/2002 |
|    | Stadtwerke Duisburg                                                             | 08/2002 |

|      | Stadtwerke Hannover                                                          | 00/2002                   |  |  |
|------|------------------------------------------------------------------------------|---------------------------|--|--|
|      |                                                                              | 09/2002                   |  |  |
|      | Siemens Power Generation, Goerlitz                                           | 10/2002                   |  |  |
|      | Energieversorgung Halle (company license)                                    | 10/2002                   |  |  |
|      | Bayer, Leverkusen                                                            | 11/2002                   |  |  |
|      | Dillinger Huette, Dillingen                                                  | 11/2002                   |  |  |
|      | G.U.N.T. Geraetebau, Barsbuettel (general license and training test benches) | 12/2002                   |  |  |
|      | VEAG, Berlin (group license)                                                 | 12/2002                   |  |  |
| 20   | 001                                                                          |                           |  |  |
|      | ALSTOM Power, Baden, Switzerland                                             | 01/2001, 06/2001, 12/2001 |  |  |
|      | KW2 B. V., Amersfoot, Netherlands                                            | 01/2001, 11/2001          |  |  |
|      | Eco Design, Saitamaken, Japan                                                | 01/2001                   |  |  |
|      | M&M Turbine Technology, Bielefeld                                            | 01/2001, 09/2001          |  |  |
|      | MVV Energie, Mannheim                                                        | 02/2001                   |  |  |
|      | Technical University of Dresden, Department of Power Machinery and Plants    | 02/2001                   |  |  |
|      | PREUSSAG NOELL, Wuerzburg                                                    | 03/2001                   |  |  |
|      | Fichtner Consulting & IT Stuttgart (company licenses and distribution)       | 04/2001                   |  |  |
|      | Muenstermann GmbH, Telgte-Westbevern                                         | 05/2001                   |  |  |
|      | SaarEnergie, Saarbruecken                                                    | 05/2001                   |  |  |
|      | Siemens, Karlsruhe<br>(general license for the WinIS information system)     | 08/2001                   |  |  |
|      | Neusiedler AG, Ulmerfeld, Austria                                            | 09/2001                   |  |  |
|      | h s energieanlagen, Freising                                                 | 09/2001                   |  |  |
|      | Electrowatt-EKONO, Zurich, Switzerland                                       | 09/2001                   |  |  |
|      | IPM Zittau/Goerlitz University of Applied Sciences (general lic              | ense) 10/2001             |  |  |
|      | eta Energieberatung, Pfaffenhofen                                            | 11/2001                   |  |  |
|      | ALSTOM Power Baden, Switzerland                                              | 12/2001                   |  |  |
|      | VEAG, Berlin (group license)                                                 | 12/2001                   |  |  |
| 2000 |                                                                              |                           |  |  |
| _    | SOFBID, Zwingenberg<br>(general EBSILON program license)                     | 01/2000                   |  |  |
|      | AG KKK - PGW Turbo, Leipzig                                                  | 01/2000                   |  |  |
|      | PREUSSAG NOELL, Wuerzburg                                                    | 01/2000                   |  |  |
|      | M&M Turbine Technology, Bielefeld                                            | 01/2000                   |  |  |
|      |                                                                              |                           |  |  |

|      | IBR Engineering Reis, Nittendorf-Undorf                                                       | 02/2000          |  |  |
|------|-----------------------------------------------------------------------------------------------|------------------|--|--|
|      | GK, Hannover                                                                                  | 03/2000          |  |  |
|      | KRUPP-UHDE, Dortmund (company license)                                                        | 03/2000          |  |  |
|      | UMAG W. UDE, Husum                                                                            | 03/2000          |  |  |
|      | VEAG, Berlin (group license)                                                                  | 03/2000          |  |  |
|      | Thinius Engineering, Erkrath                                                                  | 04/2000          |  |  |
|      | SaarEnergie, Saarbruecken                                                                     | 05/2000, 08/2000 |  |  |
|      | DVO Data Processing Service, Oberhausen                                                       | 05/2000          |  |  |
|      | RWTH Aachen University                                                                        | 06/2000          |  |  |
|      | VAUP Process Automation, Landau                                                               | 08/2000          |  |  |
|      | Knuerr-Lommatec, Lommatzsch                                                                   | 09/2000          |  |  |
|      | AVACON, Helmstedt                                                                             | 10/2000          |  |  |
|      | Compania Electrica, Bogota, Colombia                                                          | 10/2000          |  |  |
|      | G.U.N.T. Geraetebau, Barsbuettel (general license for training test benches)                  | 11/2000          |  |  |
|      | Steinhaus Informationssysteme, Datteln (general license for process data software)            | 12/2000          |  |  |
| 1999 |                                                                                               |                  |  |  |
|      | Bayernwerk, Munich                                                                            | 01/1999          |  |  |
|      | DREWAG, Dresden (company license)                                                             | 02/1999          |  |  |
|      | KEMA IEV, Dresden                                                                             | 03/1999          |  |  |
|      | Regensburg University of Applied Sciences                                                     | 04/1999          |  |  |
|      | Fichtner Consulting & IT, Stuttgart (company licenses and distribution)                       | 07/1999          |  |  |
|      | Technical University of Cottbus, Chair in Power Plant Engineering                             | 07/1999          |  |  |
|      | Technical University of Graz, Department of Thermal Engineering, Aus                          | stria 11/1999    |  |  |
|      | Ostendorf Engineering, Gummersbach                                                            | 12/1999          |  |  |
| 1998 |                                                                                               |                  |  |  |
|      | Technical University of Cottbus, Chair in Power Plant Engineering                             | 05/1998          |  |  |
|      | Fichtner Consulting & IT (CADIS information systems) Stuttgart (general KPRO program license) | 05/1998          |  |  |
|      | M&M Turbine Technology Bielefeld                                                              | 06/1998          |  |  |
|      | B+H Software Engineering Stuttgart                                                            | 08/1998          |  |  |
|      | Alfa Engineering, Switzerland                                                                 | 09/1998          |  |  |
|      | VEAG Berlin (group license)                                                                   | 09/1998          |  |  |
|      | NUTEC Engineering, Bisikon, Switzerland                                                       | 10/1998          |  |  |
|      |                                                                                               |                  |  |  |

07/1997

| SCA Hygiene Products, Munich                 | 10/1998 |  |  |
|----------------------------------------------|---------|--|--|
| RWE Energie, Neurath                         | 10/1998 |  |  |
| Wilhelmshaven University of Applied Sciences | 10/1998 |  |  |
| BASF, Ludwigshafen (group license)           | 11/1998 |  |  |
| Energieversorgung, Offenbach                 | 11/1998 |  |  |
| 1997                                         |         |  |  |
| Gerb, Dresden                                | 06/1997 |  |  |

Siemens Power Generation, Goerlitz