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Representation of Data on Thermodynamic
Properties of Substances for Computerized
Calculation of Technical Processes

A. DITTMANN, J. KLINGER, and H.-J. KRETZSCHMAR

Dresden Technical University, Department of Energy
Conversion, 8027 Dresden, DDR

The paper discusses the experience gained in multipurpose applicaticn
of the generalized system of the programmes for representing the thermo-
dynamic properties of substances and their derivatives. The values of all
the equations of state not explicitly formulated are calculated iteratively
ensuring their precise adjustment of consistency, where the initial itera-
tion values are independent of a certain substance and are thermody-
namically based relations.

Especially, the results of using different equations of state for water
in thermodynamic process calculations are dealt with.

1. INTRODUCTION

In algorithms to calculate thermodynamic processes, the retrievals
of the properties of substances determine the extent of computing time.
Therefore, for a long period of time, the authors have been seeking for
an effective method of representation of the thermodynamic properties
for such calculations. Further we shall discuss the experience gained
in solving this problem, especially in applying the different statements
describing the thermodynamic properties of water and water steam.
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First of all, it should be especially taken into consideration that
most of the equations of state occurring in the process algorithms because
of their complexity cannot be introduced evidently. The authors think that
in developing new equations of state, their applicability in the thermo-
dynamic process calculations should be first taken into account.

2. DESCRIPTION OF THE PROGRAMME SET
FOR CALCULATING PROPERTY VALUES
OF SUBSTANCES

2.1. WORKING SUBSTANCES

At present, the state parameters of almost 30 working substances
may be determined with the help of the actual programme set for
calculating property values of substances (see Table 1). As the mathe-
matical procedures are principally carried out independent of a substance,
when the equation of state belonging to the respective substance is used,
in addition for several variants for water, other substances relevant to
process calculations in energetics are also offered.

Table 1. Equations of state for water in the material characteristics programme set
of the Department of Thermodynamics

Source of
literature

Substance ) Equation of state

Water The 1968 IFC formulation for scientific and
general use M
The 1967 IFC formulation for industrial use 21
Formulation by Rivkin and Kremenevskaya, 1977 [3]
VDI steam tables, 1960 4]
Formulation by Haar and Gallagher, 1982 [54

Other substances:

9 Reirigerants -
Carbondioxide
Helium
Sodium

15 Ideal gases

‘Because of the complexity of the IFC formulations, the VDI formu-
lation of 1960 and the reduced equations of Rivkin and Kremenevskaya
(for a limited field of applications) have been introduced. First test
calculations were made with the characteristic - equations of Haar,
Gallagher and Kell.

2.2. FUNCTIONS OF THE PROPERTIES OF SUBSTANCES

The wide range of thermodynamic equations of state, transport
parameters and differential coefficients (cf. Table 2) in our programme
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Table 2. Functions of the thermodynamic properties of substances in the programme set

set arises from the requirements of different process calculations in the
field of power engineering.

of the Department of Thermodynamics

ps=ps(Ts)
Ts=Ts(ps)
v=v(p, T, x)

p, x=p, x(T, v)
T, x=T, x(p, v)

n=n(p, T, v*, x)
K=K(P, Tr U‘! x)
o5 =03 (T)

cp=cp (P, T, v*, x)
as=as(p, T, v*, x)

dp
AR (o7 )= (5 ) 0o
T, v, x=T, v, x(p, s) (ﬂ_) ( ) T, (v, %
T, v, x=T, v, x(p, h) v J, P T
p, T, x=p, T, x(v, 5) dv
A=Y (55 e =(aghromenn
Os ds .
p.T,v, x=p, T, v, x(s, h) (—T = —.F) (p, T, v*, x)

* There is no necessity of the input of v as a given
quantity.

First of all, the inverse functions required for the given pairs of
parameters p, T, v, s and h are calculated. From this, each additional
parameter may be determmed by a single or double call of subprograms
arranged in series. The variable v included additionally in the straight-
through calculations in this case regardless whether there is a technical
f(p, T) or physical §(7, v) formulation, allows one to make an efficient
calculation. The percentage of vapour included in the functional relations
indicates the applicability of the subprograms in the fluid one-phase
and two-phase region (water/vapour).

The user disposes of the set of programmes as “black box” available
as subprograms developed for each of the functions pointed out in
Table 2. He selects the desired function by an index as an additional
parameter.

2.3. PROCEDURE OF CALCULATION
To prepare the functional dependences shown in Table 2, the follow-
ing procedure is applied.
Proceeding from reduced specific equations of state %, o, e=
=y, o, ¢(B, 9, x) for technical formulation or B, o, e=8, g, (¥, %)
for physical formulation and from the function of the vapour pressure
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pe=P:(9,) the thermodynamic functions and differential coefficients are
calculated by iterations and by forming the numerical difference quotients
(exceptions are A, n and g,, for these separate equations are present).
This procedure stood the test, in contrast to other methods {6]; the ther-
modynamic consistency of the calculated parameters is immediately
directed by the selectable error limits in the iterations and the pres-
cribed distances in the numerical differentiations. As for the required
memory capacity, this procedure offers considerable economy, anyway.
And if the sufficient initial parameters and effective methods of iteration
and differentiation are applied, the computing time required is also
justified [17].

The internal procedure of calculation may be illustrated by an
example. As seen from Fig. 1, firstly, it is tested in the algorithms,
whether there is a one-phase or two-phase region. In the example of the
tunctions, T, v, x=T, v, x(p, s) illustrated, proceeding from the pressure,
the border curve entropies are determined and compared with the given
one, Secondly, the actual calculations in the one-phase and two-phase
regions are performed. In order to avoid ineffective interlocked iterations,
the calculations are executed separately for technical and physical
formulations of the specific state equations. That means that a way
of calculation is adopted on the base of the parameters given in a specific
instance (here B and o) separately. As the algorithm in Fig. 1 is inde-
pendent of a certain substance, all the operations are carried out by the
parameters reduced to the critical state (following the IFC formulations).

2.4. INITIAL EQUATIONS OF ITERATION

Due to the fact that all the functions whose variables coincide with
the indicated parameters of the stored equations of state are determined
iteratively, there arises a question concerning the kind of initial values
the accuracy of which defines the efficiency of the iterations. In 8] for
the functional dependences compiled in Table 3 approximations indepen-
dent of materials were prepared. The solution described more closely
in [9] and [10] is based on a modification of the Redlich-Kwong equation
of state and on a linear approximation of the vapour pressure function
in the InB,, 1/9, plane.

3. EXPERIENCE GAINED IN APPLYING
DIFFERENT CHARACTERISTIC EQUATIONS FOR WATER

3.1. THE ACCURACY

The known formulations of IFC 68, IFC 67, Rivkin and Kremenev-
skaya (R-+K), VDI 60 and other reduced equations of state are discussed
from the standpoint of their fitness to determine the thermodynamic
processes in this and in the following sections.

Of course, the IFC 68 provides the most accurate values, especially
close to the critical point, but for the calculations in power engineering
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Fig. 2. Relative errors of equations of state of enthalpy by
VDI 60 and RK on the dew line and boiling line in compa-
rison with IFC 68

it is not so important. The inconsistency between the equations of state for
the subregions on the border curves and a separate function of vapour
pressure is disadvantageous. When neither p nor T are given parameters,
the solution by means of the equations of Clausius and Clapeyron in
iterating 7 ifrom s and h in the two-phase region results in relative
errors of 0.001-0.01%, regardless of a more precise iteration accuracy.
This is also valid for IFC 67, VDI 60 and RK. In using the Maxwell’s
criterion to calculate the vapour pressure relation as it is provided by
Haar, Gallagher and Kell, the error described does not occur. However,
the proportional increase of the computing time is of such.an extent
that we consider that it is not well to apply in the long run the concept
last named in thermodynamic calculations.

As to the accuracy in process calculations, IFC 68 and IFC 67
equations are equal, and the formulation HGK results in improving the
accuracy at high pressures. If VDI 60 or the formulation RK is applied,
the errors quickly increase beyond the range of validity mentioned.
(Fig. 2 shows a comparison of the saturation and the dewing line.
As the actual equations in using VDI 60 become very inaccurate, in the
border curves they should be replaced by statements according to Tratz,
Vesper, Mayinger, Schmidt.) In addition, greater deviations should be
determined in the overheated vapour region.
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3.2, THE REQUIREMENTS FOR MEMORY LOCATIONS

For the comparison, with respect to the process calculations it is
insufficient to compare only the different equations of state. The differen-
ces are considerably levelled by the iterating subprograms independent
of substances.

In Table 4, the differences for individual equations of state and
for the total set of programmes are specified.

Table 4. Comparison of equations of state for water on their application
in thermodynamic calculations of processes

IFC 68 IFC 67 Rivkin VD 160 Haar

1. Calculation time

— equations of state 1009 849, 26 % 499%, ~315Y%
— calculations

of processes 100% 60% 159% 25% ~400%
2. Storage capacity

needed
— equations of state 100% 90% 25% 30% 50%
— programme set 100% 989, 91% 93% 959

3.3. THE COMPUTING TIME

The comparison of the periods of time required for computing the
equations of state (Table 4) reflects the scope and complexity of different
formulations and shows that among the formulations so far applied,
the IFC 68 requires the longest period of computing time.

These differences become still more apparent in process calculations.
Since in the IFC 68 the total superheated steam range is formulated
from the physical point of view, that results in two-dimensional iteration
cycles as compared with IFC 67, the period of computing time is con-
siderably longer, though the complexity of the equations of state used
in computations is practically the same. Due to more simple algorithms,
the periods of computing time becomes considerably shorter for VDI 60
and RK, as compared with IFC 67.

The algorithm according to HGK is more comprehensive that results
in a longer computing time. This arises, above all, from the required
calculations twofold accurate. However, these statements are valid for
the computer BESM 6.

3.4. THE APPLICABILITY FOR PROCESS CALCULATIONS

IFC 68. Being now the most accurate formulation, it is still not
convenient for use. Due to many subregions, the problems of consistency
arise at the borders. There are additional problems in the
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two-phase region, as in the technically interesting area the border curves
are differently formulated.

. IFC 67. As known, this formulation is more suitable for computer-
aided calculations, as the conventional superheated steam region is
technically predetermined.

VDI 60. The continuous technical formulation is in its favour, but
there are inaccuracies in the critical region which should not be tolerated.

RK. In the regiod described a sufficient accuracy is achieved.
However, this formulation can only be applied to calculate steam expan-
sion in turbines; as the maximum pressure in the two-phase region is
insufficient to describe modern power station cycles.

Comparison. Enthalpy differences are mainly relevant in algorithms
for stationary processing. The differences in accuracy of the individual
formulations are principally so insignificant that they are inferior to
the inaccuracies in modelling of machine elements. As for computational
time (see Table 4) almost similar packet programs are fed into the
computer memory, the GDR industry still uses the VDI 60 system to
solve conventional tasks; IFC 68 is employed for commercial delivery
calculations. But as for instationary enterprise calculations, thermo-
dynamic differential coefficients are required. Satisfactory numerical
results in these cases can be achieved only by applying IFC 68 and HGK.

The reduced equations to describe the process calculations of
frequently occurring thermodynamic functions for definite state regions
developed by Dohrendorf, Schwindt, Meyer-Pitroif, Vesper, Grigull,
Magerfleisch and others were tested and used in experiments. However,
it was impossible to insert them into the universally applicable prog-
ramme set because of some difficulties when changing to the IFC 68 and
IFC 67. Besides, the inconsistency in the domain of definition increases
and additional memory location is required.

We welcome IAPS efforts lasting for years to obtain a uniform
equation of state. Thus, the disadvantages described adhering to the
IFC 68 and IFC 67 are omitted. In addition, less memory location is
required. By the use of the Maxwell criterion of vapour pressure relation
also their inconsistency is guaranteed. However, it should not be
neglected that the computing time is considerably increased when each
physically formulated equation of state for process calculations of open
systems is applied, because they are oriented to pressure and temperature
as independent variables and again to the Maxwell criterion. Therefore,
it should be investigated whether this economic aspect allows one to
sleadily apply such equations in process calculations.

4. UTILIZATION AND APPLICATION

The programme set of thermodynamic properties of substances was
drawn up to effectively represent characteristics parameters of substances
for thermodynamic process calculations with the use of computers. Also
at present, this utilization is still in the forefront. However, by the
further development of the electronic data processing and the introduction
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of the engineer’s interactive operation, new practical demands should be
taken into consideration.

The main results are the programme systems for process calculations
{7] and [11], the water vapour chart computed directly according to

IFC 68 (14] in contrast to [12] and [13] and a system to make optional
state diagrams [15).

At present, a data file programme is being developed with access
{o the property values programme set. The increasing interest of the
industry to the use of reduced equations of state, not only for water,
induces us to start tlie investigation of this problem.
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